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Hence the difference between similar and equal things, which are
yet not congruent (for instance, two symmetric helices), cannot be
made intelligible by any concept, but only by the relation to the
right and the left hands which immediately refers to intuition.

I. Kant
Prolegomena to Any Future Metaphysics (1783)
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Preface

Writing a book is an adventure. To begin with, it is a toy and an amusement;
then it becomes a mistress, and then it becomes a master, and then a tyrant.
The last phase is that just as you are about to be reconciled to your servitude,
you kill the monster, and fling him out to the public.

W. Churchill

This book deals with the mathematical analysis of deterministic and stochas-
tic problems arising in the theory of the electromagnetics in complex media.

The most primitive electrical and magnetic phenomena (the attraction of
a husk of grain to rubbed amber1 and of iron to lodestone) were undoubtedly
observed before recorded history. However, these phenomena were first reg-
istered in antiquity by Thales of Miletus (ca. 585 B.C.). The first reported
attempt at a “scientific” explanation of magnetism2 was by Lucretius (first
century B.C.). For a concise account of the history of electromagnetism, see,
e.g., [83], [150], [348].

The fascinating story of complex media started in the last part of the nine-
teenth century and the early years of the twentieth. After Maxwell unified
optics with electricity and magnetism, it became possible to establish the
connection between optical activity and the electromagnetic parameters of
materials (some historical comments can be found in Chapter 1). Until the
1960s, electromagnetic researchers focussed on vacuum, or metals, or dielec-
tric media. Sporadic attention to general electromagnetic media emerged
rather slowly and was limited to a theoretical level until the mid-1980s.
Since then, though, the landscape has changed drastically, at first mainly
because of the technological importance of chiral materials at microwave fre-
quencies, more recently because of the vast progress being made in theoret-
ical and experimental research in complex media electromagnetics. Intense
research that has resulted in an impressively extensive bibliography on elec-
tromagnetic fields in complex (and in particular chiral) media appeared in

1The ancient Greek word for amber is η̇λεκτ%oν, pronounced “́ılectron”, meaning
“shining”.

2The Greek word for magnet is µαγνη̇της, pronounced “magńıtis”. It originates from
Mágnites, a tribe that inhabited — from the tenth century B.C. — the southeastern area
(still called Magneśıa) of central Greece. In the seventh century B.C. the tribe established
two colonies (both bearing the name Magneśıa) in Asia Minor; in the region of one of them
natural magnetic minerals could be found and were called magnesian stones.
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the applied physics and engineering communities. Results for complex me-
dia electromagnetics within a framework of rigorous mathematical analysis
are much fewer, however, having started to appear only in the mid-1990s.
Publications in this field have dealt mostly with time-harmonic determin-
istic problems, followed by deterministic problems in the time domain and
finally problems related to the effects of randomness on the evolution and
behaviour of electromagnetic fields. Although the research in these areas
now constitutes a distinct, well-established branch of applied mathematics,
no monograph has appeared treating this field as such. Our purpose in this
book is to take a step toward filling this gap by describing the major devel-
opments in this field as presented in the work of many researchers, including
the authors of this book. In addition, the book includes results (e.g., parts
of Chapters 8, 9, 10 and 13, Chapter 11, and Chapter 14) that have not
previously been published elsewhere.

The audience for this monograph is expected to comprise researchers and
graduate students in applied mathematics, applied analysis, applied stochas-
tic analysis, applied physics, electrical engineering, telecommunications, etc.
Had this book been written thirty years ago, one could have said - light-
heartedly - that it was addressed mainly to applied mathematicians of the
French school. However, the concepts that were perhaps considered abstract
applied analysis a few years ago have now entered the mainstream of ap-
plied mathematics (and rightly so). Techniques from functional analysis or
the abstract theory of differential equations are now widely used in the study
of applied problems, to gain qualitative information on the behaviour of sys-
tems and even to make progress in the numerical analysis of a variety of
problems. This book should therefore be of interest to applied mathemati-
cians desirous of using advanced concepts from mathematical analysis and
the theory of partial differential equations (PDEs) in the study of physical
and engineering problems, in particular problems in electromagnetics, and
also to engineers and physicists who wish to obtain a deeper understanding
of the physical models and their potentials and limitations. The latter turn
out to be more important than the former in a number of cases! The con-
cept of well posedness3 proves to be extremely important in this respect: a
physical model is often a formal statement of physical postulates expressed
in mathematical language; however, unless one checks the grammar and the
syntax of the statement and shows that it is correct, the statement is of
little use to anyone. The well posedeness of a system (consisting of differen-
tial equations plus initial orboundary conditions) describing some model can
thus be used as an internal consistency check of the modelling; if the system
fails to be well posed, then one has to go back to the drawing board and
even reconsider the physical assumptions employed in the model. This step
is very important before one proceeds to the numerical treatment of the mod-
els. It is not coincidental that solvability methods, e.g., the Faedo-Galerkin

3A problem is well posed in the sense of Hadamard [177] if (a) a solution exists and is
unique for the class of data of interest, and (b) the solution depends continuously on the
data.
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method, may turn into powerful numerical techniques for the numerical ap-
proximation of various problems. The other issues addressed in this book are
also of dual interest, to applied mathematicians and engineers and physicists
alike. Control theory is the mathematical study of how to manipulate the
parameters affecting the behaviour of a system so as to produce a desired or
optimal outcome. Homogenisation deals with material properties in hetero-
geneous media; they can frequently be described by their effective behaviour,
i.e., there is a homogeneous medium, the effective medium, whose material
properties are close to those of the real medium when measured on long
space-time scales. A process of averaging, or homogenisation, takes place
so that the complicated small-scale structure of the material is replaced by
an asymptotically equivalent homogeneous structure. Homogenisation as a
mathematical problem treats the asymptotic behaviour of solutions of PDEs
with rapidly changing coefficients. A variety of computational aspects (Sec-
tions 4.6, 5.9, 6.4.2, 7.5.2, 12.5.2, 12.5.3) will probably be of interest to the
book’s readers.

As the title indicates, both deterministic and stochastic4 problems are
treated - an unusual combination for a single text.

The book is divided into five parts. Part 1 refers to preliminary concepts:
Chapter 1 provides a general introduction and some historical comments on
complex media, while in Chapter 2 we introduce the Maxwell equations and
discuss constitutive relations; additionally, we describe the problems treated
in this book. Chapter 3 deals with the function spaces and operators needed
in mathematical electromagnetic theory. Part 2 deals with time-harmonic
deterministic problems: in Chapter 4 we consider solvability issues for spa-
tially dependent media, while in Chapters 5 and 6 we consider a variety of
scattering problems in homogeneous media. Part 3 treats time-dependent
deterministic problems: Chapter 7 provides a study of solvability of the
Maxwell equations for the most general linear media in the time domain. In
Chapter 8 we study controllability issues, and in Chapter 9 we deal with ho-
mogenisation problems. Chapter 10 is an introductory chapter on scattering
theory in the time domain, while Chapter 11 is an introduction to the math-
ematical theory for nonlinear complex media. Part 4 deals with stochastic
problems: Chapter 12 provides well-posedness results for stochastic media,
Chapter 13 focuses on stochastic controllability issues and Chapter 14 deals
with stochastic homogenisation. The trinity well posedness - controllability
- homogenisation is the common underlying framework of these two parts.
Since we aim at a rather broad and diverse audience, we have decided to
include some material that should facilitate the access of mathematicians
of a more applied persuasion or engineers and physicists to the material of
the book. Hence, Part 5 contains five appendices that, for the convenience
of the reader, include useful facts from functional analysis (Appendix A),
stochastic analysis (Appendix B), elliptic homogenisation theory (Appendix

4A stochastic process is one referring to systems whose subsequent state is determined
both by the process’s predictable actions and by an unpredictable random element.
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C) and dyadic analysis (Appendix D); Appendix E is a list of notations and
abbreviations used throughout the book.

It would not be possible to end this preface without expressing our ac-
knowledgements to a number of people. First, collectively:

. We are indebted to George Dassios, a good friend and great colleague,
for writing Appendix D, containing a short introduction to dyadic anal-
ysis.

. Several friends and collaborators have been a constant source of inspi-
ration. We wish to thank our co-authors of papers on topics related to
the mathematical analysis of complex media electromagnetics: Chris-
tos E. Athanasiadis, Gerassimos Barbatis, George Costakis, Patrick
Courilleau, Dimitri Frantzeskakis, Thierry Horsin, Andreas Ioannidis,
Nikos Kavallaris, Gerhard Kristensson, Kostas Liaskos, Paul A. Mar-
tin, Roland Potthast and Thanassis Spyropoulos.

. It has been an intellectual pleasure and a mathematical experience
to talk with Nicolas Charalambakis, Gerhard Kristensson, François
Murat and George C. Papanicolaou.

. Special thanks to the press’s two anonymous reviewers, whose sugges-
tions and constructive criticism resulted in a substantially improved
manuscript.

. We also thank the editorial staff of Princeton University Press, in par-
ticular Vickie Kearn, Stefani Wexler and Leslie Grundfest, for a most
professional and friendly collaboration and for their patience and un-
derstanding. Further, we thank Marjorie Pannell for her superb copy-
editing work.

. Regarding the typesetting, the times when we referred to More Math
Into LATEX, by G. Grätzer (4th ed., Springer, New York, 2007) have
indeed been uncountable!

Individual acknowledgements:
G.F.R. The influence of the pioneering work of Teruo Ikebe, Peter Lax

and Ralph Phillips, and Calvin Wilcox on wave-scattering problems is grate-
fully recognized. In particular, a profound debt of gratitude is owed to Aldo
Belleni-Morante (1938–2009), Rolf Leis and Calvin Wilcox (1924–2001) who
have been such an inspiration over the years. I would like to express my
gratitude to the many colleagues with whom I have had useful discussions;
in particular, I thank Wilson Lamb and Christos E. Athanasiadis.

I.G.S. It is a great pleasure and a moral obligation to express my thanks
to several persons, most of whom honour me with their friendship: first, to
my oldest fellow traveller on many journeys in the mathematics of chiral
media, Christos E. Athanasiadis. My introduction to the electromagnetics
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of complex media emerged originally from the work of, and later from the
personal acquaintance and discussions with, Akhlesh Lakhtakia and Werner
Weiglhofer (1962–2003). My understanding of applied mathematics has been
enhanced by a long-standing collaboration with Paul A. Martin. Luis Castro,
Martin Costabel, Thanassis Fokas, Vladislav Kravchenko, Gerhard Kristens-
son, David Natroshvili and Valeriy Serov have substantially contributed to
my understanding of their areas of expertise. I have enjoyed and benefited
from discussions with Habib Ammari and Andreas Kirsch. I owe excep-
tional thanks to Eleni Manolakaki for the time she spent talking to me
about causality and determinism. It is always a pleasure to be in the same
academic environment with Nick Alikakos, Christos E. Athanasiadis, Geras-
simos Barbatis, Vassilis Dougalis, Grigoris Kalogeropoulos, Giorgos Sagias
and Savva Avramovich Tersenov. Being thanked by a son in a book’s preface
is, I am sure, a great satisfaction for a parent. I am sorry that my father,
George (1917–2007), is no longer with us, while my mother, Theodora, has
not been granted by life a peaceful old age. I can only hope that in previ-
ous years I was successful in letting them feel how grateful I was to both of
them for the way they were to me and Anastasia, the best sister one could
wish for. As for precious Mπε̇ης, there are no words to express my feelings.
Finally, I could never imagine that my son would be so supportive, tolerant
and understanding during the long hours I “betrayed” him for this book:
thanks, George!

A.N.Y. I would like to thank my colleagues from AUEB, Professors Nikos
Frangos, Epameinondas Panas, Anastasios Xepapadeas and Michael Zaza-
nis and Stelios Psarakis, for useful and enjoyable discussions (mathematical
or not), as well as for contributing to a fruitful and productive atmosphere
within AUEB. I also thank Professors Dimitris Kravvaritis, Kyriakos Hizani-
dis and Claude Le Bris for stimulating discussions on nonlinear analysis, elec-
tromagnetics and stochastic homogenisation, respectively; as well as Stelios
Xanthopoulos. I would also like to express my sincere acknowledgements to
Professor Ioannis Karatzas, from whom I have learned a lot, both in stochas-
tic analysis and in writing style. On a personal level, this work would not
have been completed had it not been for Electra’s constant encouragement
and support both on the moral side and in quotidian matters, and for her
advice on matters of style and presentation. The book absorbed a large
part of our common time at home; luckily being a colleague - though not of
the mathematical variety - she understands! Furthermore, I am indebted to
my parents, Jenny and Nikos, for their constant support and to my sister
Helen. Last but not least, I must thank Kalitsa. Finally, special thanks go
to my good friend Lambros Boukas, for invaluable help on the information
technology front!

Gary F. Roach (Fintry, Glasgow)
Ioannis G. Stratis (Halandri, Athens)

Athanasios N. Yannacopoulos (Pagrati, Athens)
October 2011
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Modelling and Mathematical Preliminaries
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Chapter One

Complex Media

In recent years technology has replaced Hercules as far as the labours are
concerned: the progress in theoretical studies, followed by impressive exper-
imental work and achievements, is reaching the everyday lives of ordinary
people and is rapidly changing our habits and lives.

A big part of this technological revolution, which emerged in the late
twentieth century and is propagating with increasing speed and expanding
front, is the result of complex media. Complex media are artificial materials
exhibiting properties, based on their structure rather than their composi-
tion, superior to those in naturally existing materials. Nevertheless, there
certainly do exist materials in nature displaying “exotic” properties.

A characteristic of a fast-growing research area, such as the one concerned
with the study of complex media, is its interdisciplinary nature; scientists
from a wide provenance spectrum, including electrical engineering, electro-
magnetics, solid state physics, microwave and antenna engineering, opto-
electronics, classical optics, materials science, semiconductor engineering,
and nanoscience, are engaged in this field. Of course, mathematics has its
usual share, as well!

A discrimination between left and right has proved to be a fertile concept
in the many branches of science that feed into electromagnetics: handedness
is a term that is used extensively in the complex media1 literature. There
are actually three notions of handedness of interest in electromagnetics2:

Left-handedness: The term left-handed as a description of a certain class
of metamaterials springs from the handedness of the vector triplet (E,H,K)
(E being the electric field, H the magnetic field, and K the wave vector3,
respectively) of a linearly4 polarised wave propagating in such media. This
type of left-handedness refers to materials whose electric permittivity and
magnetic permeability are both negative. The theoretical prediction of their
existence was made by V. Veselago [420] in 1964.

1The very fashionable term metamaterials refers to a wide class of complex media. A
thorough discussion on the use and meaning of this term can be found in [383].

2For more details see [384], on which the following discussion of the notions of hand-
edness is based.

3Recall that for a three-dimensional travelling plane wave Ψ(t, x) = Acos(K ·x−$ t+
φ), with position vector x ∈ R3, at time t > 0, of angular frequency $, amplitude A, and
“phase offset” φ, the vector K is the “wave vector” and its magnitude is the angular wave
number |K| = 2π/λ, λ being the wavelength.

4See Section 5.2.
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Handedness of a circularly5 polarised wave: In the electrical engineering
community, handedness is manifested in relation to polarisation, which refers
to the direction and behaviour of the electric field vector, which in the case of
circular (or elliptical) polarisation exhibits a form of helicity (or handedness).
The wave propagates in a certain direction, and (for isotropic media) the
electric field is transverse. In the transverse plane, the temporal oscillations
of the field vector are described by an ellipse or a circle (in the case of lin-
ear polarisation, the ellipse shrinks to a straight line). Along its direction of
propagation, the wave may rotate to the left or to the right. Of course, these
notions are meaningless unless one of them is properly defined: according to
the U.S. Federal Standard 1037C (http://www.its.bldrdoc.gov/fs-1037/), the
polarisation is defined as right-handed if the temporal rotation is clockwise
when viewed from the transmitter (in the propagation direction) and left-
handed if the rotation is counterclockwise. By contrast, astronomers look
towards the source (transmitter), and therefore in the direction opposite that
in which the wave propagates; hence the terms “clockwise” and “counter-
clockwise” attribute meanings opposite to right- and left-handedness. Nev-
ertheless, the handedness of a specific object remains invariant under or-
thogonal transformations.

Chirality and geometry: Handedness is a characteristic of material objects,
such as corkscrews, doors, cookers, sinks, computer mice, keyboards, scissors,
and a variety of construction tools. The mirror image of a right-handed
object is the same as the original except that it is left-handed (the original
image cannot be superimposed on its mirror image.) A nonhanded object
remains the same within this mirror-image operation6 since, after imaging, it
can be brought into congruence with the original by simple translations and
rotations. A handed object is called chiral (a term coined in 1888 by Kelvin7,
from the Greek word χει̇%, meaning “hand”). Chiral media possess optical
activity, or the ability to rotate the plane of polarisation of a beam of light
passing through them. The relation between the chiral (micro)structure and
the (macroscopic) optical rotation was discovered by Pasteur in the 1840s.
The mirror-image operation is also called parity transformation (all spatial
axes are reversed when parity is changed); it is a fundamental property of

5See Section 5.2.
6In a much more general setting, “mirror symmetry” is an example of a phenomenon

known as duality, which occurs when two seemingly different physical systems are isomor-
phic in a nontrivial way. The nontriviality of this isomorphism makes quantum corrections
necessary. In mathematics, an analogy is the Fourier transform: a local concept as the
multiplication of two functions is equivalent to a convolution product, requiring integra-
tion over the whole space. Finding such dualities leads to solving complicated physical
questions in terms of simple ones in the dual framework. A deep understanding of the in-
ner mechanisms of duality symmetries is, in general, not yet feasible, with one exception:
mirror symmetry. A mathematical framework to rigorise physical statements is already in
an advanced stage of development. An excellent source elaborating aspects of this theory
for physicists and mathematicians is [194].

7“I call any geometrical figure, or group of points, chiral, and say that it has chirality,
if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself”
([234], p. 619).
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physics that parity symmetry is broken in subatomic interactions. On several
different scales and levels of nature, parity is not balanced. From amino acids
through bacteria, winding plants and right-handed human beings to spiral
galaxies, one of the handednesses dominates the other. The handedness
of an optically active substance is called dextrorotary (resp., levorotary) if
polarised light is rotated clockwise (resp., anticlockwise) as the observer faces
the substance, with the substance between the observer and the light source.
The handedness is indicated by prefixing “d-” (resp., “l-”) to the substance’s
name.8

In geometry, an object is chiral if it does not coincide with its image under
rotations and translations: in three dimensions any object with a plane of
symmetry or a centre of symmetry is not chiral, but there are objects that,
although they have neither a plane of symmetry nor a centre of symmetry,
they are nonchiral. In two dimensions, any bounded nonchiral figure has an
axis of symmetry. Typical chiral ones in two dimensions are rhomboids and
spirals, while in three dimensions they are irregular tetrahedra9 and Möbius
strips.

A right-handed object and its corresponding left-handed object would be
considered identical by usual symmetry. So, in what sense do the three
above ways of looking at handedness differ, as far as the left-right classi-
fication is concerned? Obviously, the circular-polarisation-based handed-
ness property is fully symmetric. Although the conventions differ and the
definitions of left- and right-handedness are not alike in different scientific
fields, the handedness of the polarisation in dipole antennas is only a matter
of phase shift. Only metamaterials (which according to certain definitions
cannot exist naturally) can display material parameters that are both si-
multaneously negative. As left-handed materials they belong to a class of
media that by no means can be considered to be identified with that of
the right-handed ones. As far as structural chirality is concerned, if all DNA
molecules10 were to twist in the right-handed sense, there would be no chance
of the opposite handedness surviving. This is the reason that justifies the
use of the term dyssymmetry11 for this specific type of partial asymmetry.
This phenomenon was discovered in 1811 by Arago [16], experimenting with
quartz crystals (an anisotropic material), and one year later by Biot [63],

8From the Latin words dexter meaning right and laevus meaning left.
9See Chiral Polyhedra, by E. W. Weisstein, in the framework of “The Wolfram Demon-

strations Project” (http://demonstrations.wolfram.com/ChiralPolyhedra/).
10The DNA double helix is a spiral polymer of nucleic acids, held together by nu-

cleotides that base pair together. In B-DNA, the most common double helical structure,
the double helix is right-handed. Z-DNA is another of the many possible double helical
structures of DNA. It is a left-handed double helical structure in which the double helix
winds to the left in a zig-zag pattern. A-DNA is yet another of the possible double helical
structures of DNA. A-DNA is thought to be one of three biologically active double helical
structures, along with B- and Z-DNA. It is a right-handed double helix fairly similar to
the B-DNA form, but with a shorter, more compact helical structure.

11From the Greek prefix δυσ- (dys-) meaning “difficult”, “bad” or “ill” (it appears
in many medical terms, e.g., dyspepsia, dysphagia, dyspnoea, etc.), and the word
συµµετ%ι̇α, (“symmetry”).
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experimenting with turpentine vapour (an isotropic medium). Fresnel also
examined optical activity in a chiral medium [154], as did in 1842 Cauchy
[90]; this was the first mathematical study of chirality. The answer to the
question of what is this strange property of media that makes them optically
active was given by Pasteur in 1848 [345]: he noticed that two substances
that were chemically identical in the classification scheme at the time but
that had physical structures that were mirror images of each other exhib-
ited different physical properties. Thus, Pasteur introduced geometry into
chemistry and originated the branch of chemistry today called stereochem-
istry. Much more recently the studies of Prelog were extremely important;
he shared12 the 1975 Nobel Prize in Chemistry for his work in the field
of natural compounds and stereochemistry. His lecture [351] at the Nobel
Prize award ceremony regarding the rôle of chirality in chemistry, is very
interesting.

Although they contain identical atoms in equal numbers, enantiomers13

can, as mentioned above, have different properties. As Lakhtakia has written
[272], “one enantiomer of the chiral compound thalidomide may be used
to cure morning sickness, but its mirror image induces fetal malformation.
Aspartame, a common artificial sweetener, is one of the four enantiomers of
a dipeptive derivative. Of these four, one (i.e. aspartame) is sweet, another
is bitter, while the remaining two are tasteless. Of the approximately 1850
natural, semisynthetic and synthetic drugs marketed these days, no less than
1045 can exist as two or more enantiomers; but only 570 were being marketed
in the late 1980s as single enantiomers, 61 of which were totally synthetic.
But since 1992, the U.S. Food and Drug Administration has insisted that
only one enantiomer of a chiral drug be brought into market.” Another
example is mint flavored chewing gums containing chiral enantiomers; they
create a different taste sensation to different people because the human taste
sensors contain chiral molecules.

The great philosopher Kant was probably the first eminent scholar to
point out the philosophical significance of mirror operations. The interested
reader may refer to Section 13 of his 1783 “Prolegomena to Any Future
Metaphysics” [222], where a most interesting discussion involving the notion
of what is today called chirality is found.

Some of the history of the development of ideas about chirality may be
found in the monographs [273], [268], [289] and the papers [272], [142], [213].
Also, the general audience oriented-books [158], [212] are very inspiring. See
also [188].

The formalisation of the mathematical description of electrostatics took
place around 1800, by giants such as J. L. Lagrange, P.-S. Laplace, S.-D.
Poisson, G. Green and C. F. Gauss. However, there was no idea at the time
of how electricity and magnetism were related. It was another giant, J. C.

12With Sir J. W. Cornforth.
13In chemistry, enantiomers (from the Greek words ενα̇ντιoς, meaning “opposite”,

and µε̇%oς, meaning “part” or “portion”) are stereoisomers that are nonsuperimposable
complete mirror images of each other.
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Maxwell, who in the 1860s unified optics with electricity and magnetism in
his monumental A Treatise on Electricity and Magnetism, first published in
1873 [306]. For a concise account of the history of electromagnetism, see,
e.g., [83], [150], [348].

In the last part of the nineteenth century, after Maxwell’s unification, it
became possible to establish the connection between optical activity and the
electromagnetic parameters of materials. In 1914, Lindman was the first
to demonstrate the effect of a chiral medium on electromagnetic waves (his
work in this field was about forty years ahead of that of other scientists); he
devised a macroscopic model for the phenomenon of “optical” activity that
used microwaves instead of light and wire spirals instead of chiral molecules.
His related work was published in 1920 and 1922; for a very interesting
account of Lindman’s work, see [288].

At the macroscopic level, the Maxwell equations read

curlH = ∂tD + J, Ampère’s law,

curlE = −∂tB, Faraday’s law,

divD = ρ, divB = 0, Gauss’s laws,

where E, H are the electric and the magnetic field, D, B are the electric
and magnetic flux densities, J is the electric current density, and ρ is the
density of the (externally impressed) electric charge.

This system contains eight equations (three from each of the first two
“vector” laws and one from each of the “scalar” Gauss laws) but twelve
unknowns (three components for each of the vector fields E,H,D,B). Con-
stitutive relations, i.e., relations of the form

D = D(E,H) , B = B(E,H) ,

must therefore be introduced. As is well known, constitutive relations are
relations between physical quantities that are specific to a material or sub-
stance, and approximate the response of that material to external forces.
Some constitutive equations are simply phenomenological; others are de-
rived from first principles. This topic is discussed in Chapter 2.

Intensive research that has resulted in an impressively extensive bibliogra-
phy on electromagnetic fields in complex (and in particular in chiral) media
has appeared in the applied physics and engineering communities since the
mid-1980s. By contrast, not so many rigorous mathematical contributions
have appeared on the study of complex media. The large majority of these
publications deal with time-harmonic electromagnetic fields in chiral me-
dia and appeared in the mid-1990s. The 1994 paper by Petri Ola [341]
opened the way, followed initially by publications of the group at the Cen-
tre de Mathématiques Appliquées, École Polytechnique, Palaiseau, Paris,
France, and the group at the Department of Mathematics of the National
and Kapodistrian University of Athens, Greece. Of course, many other re-
searchers gradually came onto the stage, so that the study of complex media
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in electromagnetics today forms an identifiable branch of applied mathemat-
ics. The rigorous mathematical analysis of time domain problems for com-
plex media was the next step, and important progress in this field has been
made. The vast majority of existing work deal with linear media, although
recently advances have been made in nonlinear complex media. While most
of the theory refers to deterministic complex media, its stochastic counter-
part is not negligible.

Although there are books of different levels of mathematical rigour in the
applied physics and engineering literature on the electromagnetics of complex
media (e.g., [260], [266], [268], [271], [273], [289], [299], [378]), it seems that
no books (apart from some parts of [91] and [145]) are devoted exclusively
to the related mathematical theory. It is our intention to try to fill this gap
by providing an introduction to the mathematical theory of complex media,
linear and nonlinear, deterministic and stochastic. Of course, not all topics
can be or are covered.
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Chapter Two

The Maxwell Equations and Constitutive Relations

2.1 INTRODUCTION

The aim of this chapter is twofold: first, to introduce the constitutive re-
lations which are commonly used in electromagnetic theory for the mathe-
matical modelling of complex electromagnetic media. In the context of the
present work these constitutive relations are to be understood as operators
connecting the electric flux density and the magnetic flux density with the
electric and the magnetic fields. These relations are considered as formal
expressions of the physical laws that govern the electromagnetics of complex
media. When they are introduced into the Maxwell equations, we obtain
differential equations (PDEs) that govern the evolution of the electromag-
netic fields; the treatment of these equations, in the rigorous mathematical
sense, is the main object of this monograph. Through the treatment of these
evolution equations we may model, understand and predict qualitative and
quantitative phenomena related to complex media electromagnetics. The
second goal of this chapter is to formulate and discuss the scope of the var-
ious problems related to the Maxwell equations that will be treated in this
work. We introduce and formulate in terms of differential equations various
problems of interest related to the Maxwell equations: time-harmonic prob-
lems, scattering problems, time-domain evolution problems, random and
stochastic problems, controllability problems, homogenisation problems, etc.
The mathematical analysis of these problems will be treated in detail in this
book.

The structure of this chapter is as follows: in Section 2.2 we introduce the
Maxwell equations, which are a set of PDEs that govern the evolution of
electromagnetic fields in a general electromagnetic medium. In Section 2.3
we introduce a variety of constitutive relations that are used in the mathe-
matical and physical modelling of complex electromagnetic media, while in
Section 2.4 we introduce and discuss various problems related to the Maxwell
equations in complex media that will be treated in the course of this book.

2.2 FUNDAMENTALS

Every electromagnetic phenomenon is specified by four vector quantities:
the electric field E, the magnetic field H, the electric flux density D and the
magnetic flux density B. These quantities are considered time-dependent



rsy-book-final December 7, 2011

10 CHAPTER 2

vector fields on a domain O of R3, so they are vector-valued functions of
the spatial variable x ∈ O ⊂ R3 and the time variable t ∈ R. The inter-
dependence of these quantities is given by the celebrated Maxwell system,
which at the macroscopic level is stated as

curlH(t, x) = ∂tD(t, x) + J(t, x),

curlE(t, x) = −∂tB(t, x),
(2.1)

where J is the electric current density. These equations are the so-called
Ampère’s law and Faraday’s law, respectively. In addition to the above, we
have the two laws of Gauss,

divD(t, x) = ρ(t, x),

divB(t, x) = 0,
(2.2)

where ρ is the density of the externally impressed electric charge. For the
time being, the differential operators curl and div are defined formally, in
terms of their standard definitions used in vector calculus; we return to a
more rigorous treatment of these operators in Chapter 3.

The Maxwell system must be supplemented with initial and boundary
conditions. The initial conditions describe the initial state of the system at
the time we assume that the observation starts (chosen to be without loss
of generality t = 0) and are of the form

E(0, x) = E0(x) ,

H(0, x) = H0(x) ,
(2.3)

for x ∈ O. The boundary conditions, which describe the behaviour of the
fields for all times t on the boundary of the considered domain ∂O, can be
of various types, depending on the physical situation we wish to model. In
this work we make extensive but not exclusive use of the “perfect conductor”
boundary condition

n(x)× E(t, x) = 0, for x ∈ ∂O and t ∈ I, (2.4)

where I is a time interval. By n(x) we denote the outward normal on ∂O,
which is assumed to be an appropriately smooth surface. In a number of
instances we will make use of the “inhomogeneous” variant of the perfect
conductor boundary condition, namely,

n(x)× E(t, x) = f(t, x), for x ∈ ∂O and t ∈ I, (2.5)

Remark 2.2.1 By a standard procedure1, the general problem consisting
of (2.1) and (2.5) can be reduced to the problem consisting of (2.1) and the
perfect conductor boundary condition (2.4). This is possible by considering
a suitable lifting f of f from ∂O to O and then appropriately modifying
J in terms of f. In the same spirit, one can consider (2.3) with vanishing
right-hand sides.

1Especially in the case of linear constitutive relations.
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Concerning the interval I ⊂ R, where the time variable takes values, we
will restrict ourselves for most of this work to the case where I ⊂ R+.
Furthermore, we consider that t is allowed only to increase, i.e., there is
a definite direction in time. In doing so we accept the physical axiom of
causality; stated simply, this means that only the past of the phenomenon
is likely to affect the future; thus we neglect the behaviour of the fields for
t < 0. The issue of causality is very important for the physical modelling of
electromagnetic media, and we return to it in more detail in Section 2.3.

The Maxwell system (2.1) and the Gauss laws (2.2) form a differential sys-
tem from which we wish to calculate the quadruplet (B,D,E,H), assuming
that the vector J and the scalar ρ are known. The equation of continuity
can then be considered a consistency condition between the known quan-
tities. Thus, one has to calculate twelve scalar functions from a system of
eight scalar equations. This means that the system is underdetermined. To
overcome this deficiency, constitutive relations must be introduced:

D = D(E,H) , B = B(E,H) . (2.6)

These functional relations allow us to obtain a well-posed system of dif-
ferential equations that, when combined with the initial and the boundary
conditions, provides information on the evolution of the fields. The choice of
constitutive relations is an extremely important step towards the modelling
of complex media2.

Remark 2.2.2 Applying the divergence operator on equation (2.1) and us-
ing the first of (2.2), we obtain the equation of continuity

∂tρ+ divJ = 0. (2.7)

Conversely, assume that (2.1) and (2.7) hold. Taking the divergence of (2.1)
and using (2.7), we deduce that there exist φ(x), ψ(x) such that divD(t, x) =
ρ(t, x) + φ(x) and divB(t, x) = ψ(x). If D(0, x) = D(E0(x), H0(x)) and
B(0, x) = B(E0(x), H0(x)) are such that divD(0, x) = ρ(0, x) and divB(0, x)
= 0, then Gauss’s laws (2.2) hold for all t. This allows us to consider
as “the Maxwell system” the set of equations (2.1) plus the constitutive
relations (2.6), plus the equation of continuity (2.7), which in what follows
will always be assumed to hold (although we will not explicitly state it).
Furthermore, this argument points out that all four vector equations may
not be independent.

Remark 2.2.3 For conducting media, it is usual for the currents not to be
entirely freely chosen but to obey a generalised Ohm’s law, J = J(E,H),
instead. More precisely, the currents are expressed as the sum of a “consti-
tutive” part and a “forced” part [145, p. 15], [370], J = F (E,H) + Jf. Such
a consideration does not essentially change the treatment of the problem,
but it introduces some extra complications in notation and in the study of
the energy of the medium. To avoid these complications, we will assume
F (E,H) = 0.

2Some authors use the constitutive relations in the form D = D(E,B), H = H(E,B).
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Often, especially when the main objective is the mathematical treatment
of the Maxwell system, it is convenient to express the system in more com-
pact form. This is done by using the so-called six-vector notation. Using the
superscript tr to denote transposition, we define

. the electromagnetic flux density d := (D,B)tr,

. the electromagnetic field u := (u1, u2)tr := (E,H)tr,

. the current j := (−J, 0)tr,

. the initial state u0 := (E0, H0)tr.

A linear operator acting on u is written as a 2×2 (block) matrix with linear
operators as its entries. An important example, one that will be used very
often in this work, is the Maxwell operator,

M :=

(
0 curl
−curl 0

)
. (2.8)

The constitutive relations are now modelled by an operator L and are un-
derstood as the functional equation

d = Lu.
The properties of this operator reflect the physical properties of the medium
in question. Various aspects of a “rigorous abstract modelling” approach to
the properties of the operator L appear in [201], [202], [205], [206].

In view of the above, the Maxwell system can be written as an initial-value
problem for an abstract evolution equation

(Lu)′(t) = Mu(t) + j(t) , for t ≥ 0 ,

u(0) = u0 .
(2.9)

The prime stands for the time derivative3. In fact, by using standard ter-
minology, (2.9) is an inhomogeneous neutral functional differential equation.

A crucial first step towards the study of the solvability of (2.9) is the deter-
mination of its state space; this choice is again dictated by physical principles
but does not have to be unique. One possibility would be to choose the state
space of the problem as the space of spatially square integrable vector-valued
functions of a real variable t. This choice is consistent with energy consid-
erations for the Maxwell system (see Section 2.3.2). However, other choices
are possible, depending on the properties of the electromagnetic fields we
wish to address. Such functional framework alternatives are addressed in
this work (see Chapter 3).

For thorough presentations of the theory of electromagnetism, we refer to
the books [69], [145], [211], [245], [287], [328], [371], [396].

3The explicit dependence on the spatial variable x is omitted and it is considered that
both u, j are functions mapping t into vector fields u(t, x), j(t, x) containing the explicit
spatial dependence, which is suppressed. The operator M acts on the spatial part of the
function u. Furthermore, the boundary conditions are included in the choice of function
space that acts as the state space of the system and the definition of the operator M. In
fact, equation (2.9) is considered an ordinary differential equation (ODE) in a properly
selected function space setting. This is the approach adopted in this book.
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2.3 CONSTITUTIVE RELATIONS

2.3.1 An “axiomatic” approach to constitutive relations

The constitutive relations for an electromagnetic medium reflect the physics
that govern the phenomena and are expected to comply with the fundamen-
tal physical laws, which play the rôle of physical hypotheses, or postulates,
concerning the properties of the material inside the domain O.

We state the postulates that govern the evolution of the electromagnetic
field in a complex medium. The approach followed, based on [176], [205], is
system theoretic in the sense that we consider the electromagnetic field u as
the cause and the electromagnetic flux density d as the effect. Compliance
with these postulates dictates the form of the operator L.

plausible physical hypotheses

. determinism For every cause, there exists exactly one effect.

. linearity The effect is linearly related to its cause.

. causality The effect cannot precede its cause4.

. locality in space A cause at any particular spatial point produces
an effect only at this point and not elsewhere.

. time-translation invariance If the cause is advanced (or delayed)
by some time interval, the same time shift occurs for the effect.

The above physical postulates have mathematical interpretations in terms
of the properties of the operator L, as follows:

. determinism L exists and is a single-valued nontrivial operator.

. linearity L is a linear operator.

. causality If u(t, x) = 0 for t ≤ τ , then (Lu)(t, x) = 0, for t ≤ τ .

. locality in space L is a local operator with respect to the spatial
variables, i.e., L(u(·, x))(·, x) = s(·, x), where s is a local functional,
allowing spatial derivatives of the electromagnetic fields, but not in-
tegrals with respect to the spatial variables. Locality with respect to
temporal variables is not assumed; on the contrary, memory effects are
allowed.

. time-translation invariance For all κ ≥ 0, L commutes with the
right κ-shift operator τκ . Therefore, the time instant at which the
observation starts does not play any significant rôle; the “present” can
be chosen arbitrarily.

4The concept of causality is a very delicate concept that has generated extensive epis-
temological and philosophical discussion.
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Remark 2.3.1 We do not assume continuity since it follows by linearity
and time-translation invariance. Note that continuity is not ascertained in
the case where commutativity with the left shift operator is assumed instead
of with the right shift operator (for details regarding both these comments,
see [295]).

Remark 2.3.2 The postulate of linearity will be abandoned in our study of
nonlinear media (see Sections 2.3.5, 2.4.10 and Chapter 11). Furthermore,
the postulate of time-translation invariance is abandoned by some authors,
leading to more general constitutive relations (see, e.g., [70]). Most of the
results in this book may be extended for such constitutive relations under
additional technical assumptions.

The general form of the constitutive operator L, consistent with the above
physical postulates, is a continuous operator having the following convolution
form ([226], [227]):

d(t, x) = (Lu)(t, x) = Aor(x)u(t, x) +

∫ t

0

Gd(t− s, x)u(s, x) ds, (2.10)

where

Aor(x) :=

(
ε(x) ξ(x)
ζ(x) µ(x)

)
, Gd(t, x) :=

(
εd(t, x) ξd(t, x)
ζd(t, x) µd(t, x)

)
. (2.11)

The entries of the above matrices are 3× 3 matrices whose elements are
essentially bounded functions5 on O. Note that each Aor(·), Gd(t, ·) defines
a multiplication operator in the state space. Equation (2.10) will often be
abbreviated as

d = Aoru+ Gd ? u, (2.12)

where ? denotes temporal convolution. The local-in-time part Aor of the
operator L models the instantaneous response of the medium, and Aor is
accordingly called the optical response operator. The nonlocal-in-time part
Gd? of L models the dispersion phenomena. The kernel function Gd is called
the susceptibility kernel.

Remark 2.3.3 A necessary and sufficient condition for any linear operator
to be a convolution operator is established, in an abstract distributional
setting, by Zemanian (see Theorem 5.8-2 in [452]). This general result can
be applied to justify the use of convolution operators of the form (2.10) to
model the constitutive relations ([201], [205]).

Based on the above discussion, and in particular using the operator rep-
resentation (2.10), we may provide a classification of the various complex
electromagnetic media.

5See Chapter 3, Section 3.2.1.
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Definition 2.3.4 (media classification) A material is called

. isotropic, if ε, µ, εd, µd are scalar multiples of I3×3 and ξ = ζ =
ξd = ζd = 0.

. anisotropic, if the members of at least one of the pairs ε, εd or µ, µd
are not scalar multiples of I3×3 and ξ = ζ = ξd = ζd = 0.

. biisotropic, if all the blocks of the matrices Aor, Gd are scalar multi-
ples of I3×3.

. bianisotropic, in all other cases.

The following standing assumptions are used throughout this book.

Assumption 2.3.5 The optical response matrix Aor has essentially bounded
entries and is almost everywhere symmetric, i.e., Aor(x) = Aor(x)tr, for almost
all x ∈ O, and almost everywhere uniformly coercive, i.e., there exists a
constant C such that |y · Aor(x) y| ≥ C |y|2 for almost all x ∈ O and all
nonzero y ∈ R6.

Assumption 2.3.6 The dispersion matrix Gd(0, x) is almost everywhere non-
negative definite, i.e., Gd(0, x) y · y ≥ 0, for almost all x ∈ O and all nonzero
y ∈ R6.

Remark 2.3.7 Assumption 2.3.5 is related to the one adopted in [226],
[227] and is consistent with physical arguments based on energy considera-
tions (see also [145] for related arguments based on thermodynamics) and
is convenient for the mathematical theory of complex media as developed
in the present book; from the mathematical point of view, this assumption
can be relaxed at the cost of (major) technical modifications. It is not hard
to see that if Assumption 2.3.5 holds, then Aor is almost everywhere positive
definite and boundedly invertible. Some comments on these energy consider-
ations are presented in Section 2.3.2.

A large class of materials displays properties that may be modelled by a
diagonal matrix Aor, i.e., ξ(x) = ζ(x) = 0. To distinguish such materials we
will employ the notation A0 for the matrix Aor in such cases:

A0 = A0(x) =

(
ε(x) 0

0 µ(x)

)
. (2.13)

Furthermore, it is common in the physics and engineering literature to scale
the coefficients of the diagonal blocks of the matrix Gd in terms of ε and µ;
this is done to emphasise the smallness of the dispersion terms as compared
to the optical response terms. In such cases, instead of Gd we use the matrix

G0 (t− s, x) =

(
ε(x)χe(t− s) χem(t− s)
χme(t− s) µ(x)χm(t− s)

)
. (2.14)
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This choice leads to constitutive relations of the general form

d(t, x) = (Lu)(t, x) = A0u(t, x) +

∫ t

0

G0 (t− s, x)u(s, x)ds. (2.15)

It is important to state the physical meaning of the various terms appear-
ing in equations (2.13) and (2.14). Here and in what follows, ε, µ are the
permittivity and permeability of the medium, respectively. Depending on the
setting they can either be constant (e.g., representing the permittivity and
permeability of the vacuum, or the relative permittivity and permeability of
a homogeneous medium) or functions of the position vector, in the case of
spatially inhomogeneous media. Four susceptibility kernels appear in these
equations: the dyadics6 (3× 3 matrices) χe(t), χm(t), χem(t) and χme(t) are
respectively called the dielectric susceptibility kernel, the magnetic suscepti-
bility kernel and the magnetoelectric kernels.

Remark 2.3.8 Regarding notation, we will use (2.10) when dealing with
general linear abstract complex media (e.g., in Chapters 9 or 14), whereas
when treating special classes of complex media, e.g., chiral media, we will
use (2.15), which is compatible with the widely used form adopted by the
electromagnetic community.

2.3.2 Dissipative media

We now turn our attention to some general energy considerations for complex
electromagnetic media. The discussion here is along similar lines to that in
[226], [227]. The power of the electromagnetic field E,H in a domain O is∫

O
(H · ∂tB + E · ∂tD) dx.

The integrand defines the power density of the material, and the total stored
energy per volume is, therefore,

w(x) =

∫ t

−∞
(H(s, x) · ∂sB(s, x) + E(s, x) · ∂sD(s, x)) ds.

Recall that the Poynting vector, S := E×H, models the power flux density.
By using the identity divS = H · curlE−E · curlH and the Maxwell system,
we obtain - in six-vector notation - the Poynting Theorem7

divS + u · ∂td = u · j .
The term u · ∂td is the time rate of change of stored electric and magnetic
energy density in the medium, whereas the term u · j is the power supplied
by the current j. Note that the term u · ∂td can be written as

u · ∂td = wopt + wdisp,

6A concise introduction to dyadic analysis is included in Appendix D.
7This theorem was independently discovered by J. H. Poynting, O. Heaviside and N.

A. Umov.
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where

wopt := u · Aor ∂tu, wdisp := u · ∂t(Gd ? u)

are the optical response part and the dispersive part, respectively.
Consider now a source-free medium, i.e., j = 0. The total stored energy

per volume at a point x is

w(t) = wopt(t) + wdisp(t).

In accordance with [156], [226] and [227], we introduce the following:

Definition 2.3.9 (Dissipative (passive) media)

(i) The medium is dissipative at a fixed point x ∈ O if and only if w(t) =
wopt(t) + wdisp(t) ≥ 0 for every temporally localised sufficiently smooth
six-vector u(t).

(ii) The medium is dissipative in O if and only if it is dissipative for all
x ∈ O.

Remark 2.3.10 The above definition reflects that no net production of elec-
tromagnetic energy is possible in O, and therefore the medium is passive
([156], [226], [227]). This is consistent with thermodynamic considerations
(see [145]).

Whether a material is dissipative or not depends on the properties of Aor

and Gd. For instance, dissipativity is guaranteed in the optical response re-
gion if Aor(x) is symmetric and positive semidefinite almost everywhere in O
(see [156], [226], [227]). This may serve as a justification on physical grounds
for Assumption 2.3.5. As for dissipation due to the dispersive part, a neces-
sary condition, [227], is that Gd(0, x) is a non-negative definite matrix; this
serves as a justification on physical grounds for Assumption 2.3.6. Further,
if Gd(0, x) = 0, it turns out ([227], [260]) that the function(

∂tGd(t, x) + ∂tGd(−t, x)tr
)

y · y
is of positive type8 with respect to t, for almost all x ∈ O and for all
nonzero y ∈ R3 × R3. Let us note that the so-called Lorentz materials
satisfy Gd(0, x) = 0, while the so-called Debye materials do not. Recall (see,
e.g., [381]) that the susceptibility kernel for Debye materials is of the form
αD h(t)e−t/τ , where τ is the relaxation time, while for Lorentz materials it
is of the form αLh(t) sin(ν0 t)e

−νt/2, where ν is the damping amplitude, αD,
αL, ν0 are physical parameters, and h is the Heaviside step function.

8A complex-valued function ϑ ∈ C(R;C) is of positive type if∫
R

(∫
R
ϑ(t− s) θ(s) ds

)
θ(t) dt ≥ 0, ∀ θ ∈ C(R;C) .

Functions of positive type are characterised by a classical theorem due to Bochner, ac-
cording to which they are exactly the functions of the form ϑ(t) =

∫
R e

iktdµ(k), where µ
is a finite positive Borel measure.
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Remark 2.3.11 The integrated total stored energy in O, i.e.,

J(t) :=

∫ t

0

∫
O
w(t, x) dx dt =

∫ t

0

∫
O
u(t, x) · ∂td(t, x) dx dt,

is what usually measures the variation of electromagnetic energy for t ≥ 0.
In view of the Poynting theorem and the Gauss divergence theorem we

obtain9

J(t) =

∫ t

0

∫
O
u · j −

∫ t

0

∫
∂O

u2 · (n× u1) ,

a fact that shows the importance of the boundary conditions to the energy
balance of parts of the medium.

2.3.3 Constitutive relations in the frequency domain

A very important special case is when the time dependence of the fields is
harmonic. As is well known, this assumption leads to stationary problems.
Assume that all time-dependent quantities are Fourier transformable,

s(t, x) =
1

2π

∫ +∞

−∞
e−i$ts̃(x,$) d$,

where s is a proxy for the vector fields d, u, j and by $ we denote the
angular frequency10. The integral is understood in the Bochner sense (see
Appendix A, Section A.3.2). Using the properties of the convolution with
respect to the Fourier transform, the Fourier transform of the constitutive
relation becomes

d̃ = Aorũ+ G̃dũ , (2.16)

where “ s̃ ” is used to denote the Fourier transform of s. Therefore, in the
frequency domain, the constitutive relations are simplified by the transfor-
mation of the convolution operator to a multiplication operator.

We define

Ãor := Aor + G̃d =

(
ε+ ε̃d ξ + ξ̃d
ζ + ζ̃d µ+ µ̃d

)
=:

(
εF ξF
ζF µF

)
, (2.17)

so the frequency domain constitutive relations are written as

d̃ = Ãorũ , (2.18)

where now in general Ãor = Ãor(x;$). We impose the following assumption

on Ãor in the frequency domain:

Assumption 2.3.12 Let c, C be positive constants. For any fixed frequency

$, the matrix Ãor = Ãor(x;$) satisfies the following properties11:

9Recall that u = (u1, u2)tr = (E,H)tr.
10We use the symbol $ instead of the usual symbol ω for the angular frequency because

the latter will be used to denote an element of the sample space Ω in subsequent chapters
referring to random media and stochastic problems.

11| · | denotes the modulus of a complex number and || · || denotes the Euclidean norm
in C6.
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(i) Ãor ∈ L∞(O,C6×6) .

(ii) ztr · (Im Ãor) z ≥ c ||z||2 , for all z ∈ C6.

(iii) |z1 · Ãor z2| ≤ C ||z1|| ||z2|| , for all z1, z2 ∈ C6.

We now elaborate further on the classification of biisotropic media in the
frequency domain. Let12

ξF = κ+ iχ , ζF = κ− iχ . (2.19)

The chirality parameter χ measures the degree of handedness of the material;
a change in the sign of χ corresponds to the consideration of the mirror image
of the material. The other parameter κ describes the magnetoelectric effect;
materials with κ 6= 0 are nonreciprocal.

The following terminology in the time-harmonic case is used. A medium
is called:

. isotropic, if κ = 0 and χ = 0, i.e., when ξF = ζF = 0.

. nonreciprocal nonchiral, or tellegen, if κ 6= 0 and χ = 0, i.e.,
when ξF = ζF.

. reciprocal chiral, or pasteur, if κ = 0 and χ 6= 0, i.e., when
ξF = − ζF.

. nonreciprocal chiral or general biisotropic, if κ 6= 0 and χ 6=
0, i.e., when ξF 6= ζF,− ζF.

Reciprocal chiral media will be studied mainly in Chapters 4, 5 and 6, and
they will be simply referred to as chiral media there.

In the case of reciprocal chiral media the constitutive relations for time-
harmonic fields were introduced by Chambers, and are usually written as

D̃ = εTẼ + βTH̃, B̃ = µTH̃ − βTẼ, (2.20)

(where εT := εF, µT := µF, βT := ξF = −ζF). The chirality parameter βT is
an inverse speed (ms ).

Another set of constitutive relations for reciprocal chiral media is the
Drude-Born-Fedorov (DBF) constitutive relations ([273], [268], [289]), intro-
duced in 1959 by F. I. Fedorov as a modification of constitutive relations
used in 1900 by P. K. L. Drude and in 1915 by M. Born. These read

D̃ = εDBF(Ẽ + βDBF curlẼ), B̃ = µDBF(H̃ + βDBF curlH̃). (2.21)

Here the medium is characterised by three (in general, complex) parameters,
namely, the electric permittivity εDBF, the magnetic permeability µDBF, and

12Care should be taken to avoid confusion regarding the use of the symbols κ, χ and
ξF, ζF for the corresponding media parameters. In [289] the symbols κ, χ have the reverse
meaning of the one we employ here; the authors of [289] adopted the notation employed
in (2.19) in their publications some years after their book appeared. The current notation
is more natural (since the term chirality comes from the word “hand” in Greek, and this
word begins with the letter χ), and is nowadays used by many authors.
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the chirality measure βDBF, which carries the unit of length (m). For source-
free regions the Tellegen constitutive parameters εT, µT and βT are connected
to the Drude-Born-Fedorov constitutive parameters εDBF, µDBF and βDBF via
the relations

εT =
εDBF

1−$2εDBFµDBFβ2
DBF

, µT =
µDBF

1−$2εDBFµDBFβ2
DBF

,

βT = i$εDBFµDBF

βDBF

1−$2εDBFµDBFβ2
DBF

.
(2.22)

In order to consider the case where the electromagnetic field in a chiral re-
gion is irradiated by sources, both the electric and the magnetic sources in
the Tellegen (resp. Drude-Born-Fedorov) description must be a combina-
tion of an electric and a magnetic source in the Drude-Born-Fedorov (resp.
Tellegen) description; see [268].

In what follows we will drop the subscript “DBF” from the parameters of
the DBF constitutive relations.

Remark 2.3.13 Apart from these constitutive relations, other sets have
been introduced for time-harmonic fields, namely, the ones by Condon and
those by Boys-Post. An interesting discussion concerning these relations can
be found in the monograph by Lakhtakia [268]. The Tellegen constitutive
relations are algebraically isomorphic to these other relations, and as such
they can be considered representative of them. All these sets differ from
the Drude-Born-Fedorov ones, (2.21), which contain differentials (the curl
operator).

In this book, in the time-harmonic regime, we adopt the Drude-Born-
Fedorov constitutive relations.

2.3.4 Constitutive relations for random media

In many applications (see, e.g., [209], [210], [322]), there is uncertainty con-
cerning either the externally imposed sources or the nature of the medium
under consideration. In such cases, it is useful to model the uncertain quan-
tities as random variables, with a prescribed probability distribution. These
random variables are now functions of the spatial variables and time, and can
be considered random fields defined on a probability space (Ω,F , P ). The
randomness is assumed to have as an effect that the repetition of different
experiments on the medium will generate different outcomes ω, either of the
medium parameters or the external sources. The set Ω contains the outcomes
ω of all the possible experiments or all possible realisations of the medium,
F is a σ-algebra on Ω and P is a probability measure on F , quantifying the
relative frequency of realisations of different outcomes in an (ideally infinite)
repetition of experiments under identical experimental conditions. In turn,
the randomness in the sources or the medium, is reflected in the resulting
electromagnetic fields, which have to be modelled as random fields as well.
It is of great interest to be able to predict the statistical properties of these
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fields, e.g., the distribution of realised values, statistical moments, etc., from
knowledge of the relevant statistical properties of the data of the problem.

The constitutive relations for random media are of the form

dω = Aor,ωuω + Gω ? uω, (2.23)

where now the quantities dω, uω are considered to be random fields, de-
pending on x and t, with the explicit dependence suppressed for simplicity.
We include the explicit dependence on ω13 to remind us that the values of
these quantities depend on the particular realisation ω of the experiment per-
formed (or the particular realisation of the random medium). Furthermore,
Aor,ω, Gω are (in general) random matrices whose elements consist of random
fields, which model the random parameters of the medium. The medium may
be spatially homogeneous or not, depending on the circumstances. Similarly,
we consider the external source J a random field J = J(t, x, ω).

The description of random media in terms of random fields finds a number
of interesting applications in the theory of composites, wave propagation or
in scattering problems from rough surfaces (see, e.g., [49], [147], [149], [322]).

2.3.5 Nonlinear media

It is well known that linearity is simply an approximation for the proper-
ties of electromagnetic media since experimental evidence implies that the
constitutive relations in many regimes of interest in physics and engineering
can be nonlinear. A good example is the famous Kerr (cubic) nonlinearity
in dielectric media which is widely used in nonlinear optics (see [315]) and
has led to the prediction and subsequent experimental verification of soliton-
type solutions, which find very important applications in telecommunications
(optical fibres).

For a nonlinear complex medium, we must relax the second of the postu-
lates introduced in Section 2.3.1, that of linearity. Therefore, the constitutive
relation will be modelled as d = Lu, where now L is allowed to be a nonlin-
ear operator. Since we do not relax any other postulate apart from linearity,
we assume that the nonlinear operator L has a representation in convolution
form as in (2.10), with the important difference that now the entries of the
matrices Aor and Gd depend on the components of the six-vector u. The
physical implication of this is that now the “effect” (d) is no longer simply
proportional to the “cause” (u).

We will assume this dependence to be on the magnitude of the electric
and the magnetic field components of the six-vector u, so that s(t, x, u) =
s(t, x, |u1|, |u2|), where s serves as a proxy for the components of the matrices
Aor and Gd, and |ui| is the Euclidean norm of the three-vector ui calculated
pointwise in x and t, (i = 1, 2). Furthermore, based on arguments related
to the Taylor expansion of the general nonlinear constitutive relations, we

13The explicit dependence of a random field s on the particular realisation of the
experiment ω will be denoted either by sω(t) or by s(t, x, ω), which is a more common
notation.
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assume a decomposition of the form

s(t, x, u) = s`(t, x) + sn`(t, x, u),

where s` (in general depending explicitly on t and x but not on the field
u) is the linear approximation of s and sn`(t, x, u) = sn`(t, |u1|, |u2|) is the
nonlinear part. The dependence of the nonlinear part sn` on the field am-
plitudes |ui|, i = 1, 2, may be approximated by a polynomial. In the special
case where this dependence is approximated by a quadratic polynomial, the
above constitutive relations lead to generalisations of the Kerr nonlinearity.
Other nonlinearities compatible with the above constitutive relations are the
saturable nonlinearities ([243]), where sn` is the ratio of polynomials of |ui|,
i = 1, 2, chosen so that sn` → 0 as |ui| → ∞.

In practice, the chirality effects and the nonlinear effects are considered
to be weak, so that the dominant effect will be only one of the two. In
line with this observation we will consider in this work weakly dispersive -
weakly nonlinear media; this implies that since chirality is a weak effect, we
may assume that the nonlinear chiral terms are negligible with respect to
the other terms. Thus, we are led to simplifications of the general nonlinear
constitutive relations. A nonlinear constitutive relation complying with the
above assumptions is

d = Lu = A0u+ G0 ? u+ G0,n` ? N(u)u, (2.24)

where A0, G0 are as in (2.13) and (2.14) and the nonlinear term is specified
by

N(u) :=

(
N1|u1|q 0

0 N2|u2|q
)
, G0,n` (t, x) :=

(
χe

n`
(t, x) 0
0 χm

n`(t, x)

)
,

(2.25)
where q ∈ N, N1, N2 ∈ R3×3 are matrices independent of the spatial and
temporal variables, 0 stands for the zero 3 × 3 matrix, and G0,n` is the non-
linear convolution matrix kernel. Note that we do not break up the nonlinear
part of the constitutive law explicitly into a local (nonlinear optical response)
part and a nonlocal (dispersive) part14; this is obtained automatically if we
assume singularities of G0,n` with respect to t.

Remark 2.3.14 The “chiral constitutive relation” (2.24) is motivated by
the Kerr-Debye model in dielectrics (described in [87]), which is often used
in nonlinear optics and represents the relaxation approximation to the Kerr
nonlinearity. For a dielectric, this model is stated in terms of the polarisation
P = ε0ϑE, where

∂tϑ+
1

τ
ϑ =

1

τ
εr|E|2

and τ is a relaxation parameter that corresponds to the finite time response
of the medium. Integrating this differential equation leads to a nonlinear
convolutive constitutive relation D = D(E) with an exponential kernel.

14As we have done for the linear part, to be consistent with the standard notation
adopted in the vast literature on linear problems.
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Remark 2.3.15 Generalisations of the above nonlinear constitutive rela-
tions are possible, e.g., we may consider Aor, Gd instead of A0, G0 (with
similar generalisations for the nonlinear terms).

2.4 THE MAXWELL EQUATIONS IN COMPLEX MEDIA:

A VARIETY OF PROBLEMS

In this section we present various problems related to the Maxwell equations
in chiral media that will be treated in this work.

2.4.1 Time-harmonic interior domain problems � Ch. 4

The interior problem in the case of time harmonic fields of a given angular
frequency $ is important in various applications. After taking the Fourier
transform, the Maxwell equations become

curlH̃(x) = i$D̃(x) + J̃(x),

curlẼ(x) = −i$B̃(x),
(2.26)

the Gauss laws yield

divD̃(x) = ρ̃(x),

divB̃(x) = 0,
(2.27)

for x ∈ O, and the boundary condition becomes

n(x)× Ẽ(x) = f̃(x), x ∈ ∂O , (2.28)

where “ s̃ ” denotes the Fourier transform of s. In the case of perfect con-
ductor boundary condition, f̃ = 0.

As for the time-dependent case, using the constitutive relations we may
obtain a system involving only the fields Ẽ, H̃. In terms of the six-vector
notation and the Maxwell equations in the frequency domain become

i$(Aor + G̃d)ũ = Mũ+ j̃ , (2.29)

where the boundary condition is included in the definition of the function
space chosen as the state space of the system (see also Remark 2.2.1). This
equation is a static equation.

In the frequency domain we may also employ the Drude-Born-Fedorov
constitutive relations (2.21) in order to associate D̃, B̃ with Ẽ, H̃. Substi-
tuting these expressions in (2.26), we obtain15

curlH̃(x) = i$
(
εF(Ẽ + βcurlẼ)

)
+ J̃(x),

curlẼ(x) = −i$
(
µF(H̃ + βcurlH̃)

)
,

(2.30)

where we now omit the equations (2.27), which remain unaltered.

15After dropping the subscripts DBF.
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We may rearrange equations (2.30), using standard algebraic manipula-
tions, into the form

curl Ẽ = βγ2Ẽ + i$µF

(γ
k

)2

H̃ + J̃ ,

curl H̃ = βγ2H̃ − i$εF
(γ
k

)2

Ẽ,

(2.31)

in O, where $ is the anqular frequency,

k2 = $2εFµF , γ2 = k2(1− β2k2)−1, (2.32)

and J̃ is an external force. Note that k is just an abbreviation for $
√
εFµF

and not a wave number16. Additionally, these equations are complemented
with the boundary condition (2.28).

Remark 2.4.1 Note that, when written in six-vector notation, equation
(2.31) coincides with (2.29). This motivates the relation (2.22) between the
parameters of the medium in the DBF and the Telegen approximation, and
in this way their equivalence.

Let us mention here that in the constant coefficients case (and assuming

J̃ = 0), one can easily eliminate either the electric or the magnetic field from

(2.31) and obtain a modified vector Helmholtz equation for Ũ , namely,

∆Ũ + 2βγ2curlŨ + γ2Ũ = 0 , (2.33)

where Ũ stands for either H̃ or Ẽ, respectively.
The appropriate boundary conditions are, respectively,

n× (n× curlH̃) = fH and n · H̃ = gH, on ∂O, (2.34)

and

n× Ẽ = fE and divẼ = gE, on ∂O . (2.35)

Remark 2.4.2 Another boundary condition often appearing in the study
of electromagnetics in the frequency domain is the impedance or Leontovich
condition,

Ẽ × n+ i %Z n× (H̃ × n) = q,

where % is a constant of the order σ−1/2 (σ being the conductivity), Z is
the impedance and q is a given tangential field on ∂O. We do not use this
condition in the present work.

2.4.2 The resonating chiral cavity problem � Ch. 4

Suppose that in problem (2.29) we set j̃ = 0, f̃ = 0. Then the resulting
problem is a homogeneous system that will have nontrivial solutions ũ =
(Ẽ, H̃)tr for specific values of the frequency $ (the other parameters of the
problem are considered to be fixed). This is equivalent to an eigenvalue
problem, that will reveal the resonant frequencies of O, called the cavity
problem.

16As we will later see, γ− = k (1 − βk)−1 and γ+ = k (1 + βk)−1 are the two wave
numbers inherent in this problem.
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2.4.3 Exterior domain problems � Ch. 4

An important class of problems is when the domain is the complement of a
bounded domain O, i.e., when we are working in Oe := R3 \ O. Such a set
Oe is often called an exterior domain. The form of the Maxwell equations
remains unchanged for such problems (i.e., (2.30) hold in Oe). Now, in
addition to the boundary condition imposed on ∂O, we have to specify the
behaviour of the fields at infinity. This “substitute” of a boundary condition
is a so-called radiation condition. A typical choice of radiation conditions for
time-harmonic fields in achiral electromagnetic media are the Silver-Müller
radiation conditions, which read

lim
|x|→∞

|x| (√µF,eH̃ × x̂−
√
εF,eẼ) = 0,

lim
|x|→∞

|x| (√εF,eẼ × x̂+
√
µF,eH̃) = 0 ,

(2.36)

where εF,e, µF,e are the electric permittivity and magnetic permeability of
the material (or the vacuum) in Oe, respectively, and the convergence is
assumed to be uniform over all directions x̂ = x

|x| . It can be shown (see

Section 5.7.4) that the Silver-Müller radiation conditions are adequate for
the chiral case, too. On the boundary ∂O of Oe we shall impose, for instance,
a boundary condition of the form (2.28).

Remark 2.4.3 In fact, it is well known that complementing the Maxwell
equations in Oe with either of the Silver-Müller radiation conditions (2.36)
is sufficient for obtaining uniqueness of the solution. Let us also note that
the Cartesian components of any solution of the Maxwell equations satisfy-
ing the Silver-Müller radiation conditions (2.36) also satisfy the Sommerfeld
radiation condition lim|x|→∞ (x̂ · gradv(x)− ikv(x)) = 0, uniformly over all
directions x̂ (v is a solution of the scalar Helmholtz equation ∆v+k2v = 0).

In the case that the coefficients are constant (and assuming J̃ = 0), one
can again eliminate either the electric or the magnetic field and obtain (2.33)

with boundary condition (2.34) when Ũ = H, or (2.35) when Ũ = E. The
radiation conditions become

lim
|x|→∞

|x| (curlŨ × n+ n divŨ − ikŨ) = 0 .

2.4.4 Transmission problems � Chs. 5, 6

Consider now the case of a domain O filled with an electromagnetic medium
(chiral or not). The medium is embedded in a different electromagnetic en-
vironment (again, chiral or not), i.e., Oe is considered to be filled with a
different medium of infinite extent. Discontinuities of the tangential compo-
nents of the electric and the magnetic field are allowed on the interface ∂O
between O and Oe. The problem of specifying the electromagnetic field in
the whole of R3 is called the transmission problem.
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Assume harmonic time dependence for the electromagnetic fields of angu-
lar frequency $, that O is filled with a chiral medium with parameters εF,
µF, β and that Oe is filled with a medium (chiral or not) with parameters
εF,e, µF,e, βe. Define

k2 = $2εFµF, γ2 = k2(1− β2k2)−1,

k2
e = $2εF,eµF,e, γ2

e = k2
e(1− β2

ek
2
e)−1,

in the regions O and Oe, respectively (see (2.32)).
The mathematical formulation of transmission problems consists in finding

the electromagnetic field (Ẽ, H̃) in O and the electromagnetic field (Ẽe, H̃e)
in Oe such that

curl Ẽ = βγ2Ẽ + i$µF

(
γ
k

)2
H̃,

curl H̃ = βγ2H̃ − i$εF
(
γ
k

)2
Ẽ,

in O, (2.37)

and

curl Ẽe = βeγ
2
e Ẽe + i$µF,e

(
γe
ke

)2

H̃e,

curl H̃e = βeγ
2
eH̃e − i$εF,e

(
γe
ke

)2

Ẽe,
in Oe. (2.38)

The electromagnetic fields of the two different regions are related by the
transmission conditions on the interface,

n× Ẽ − n× Ẽe = f̃E,

n× H̃ − n× H̃e = f̃H,
on ∂O, (2.39)

where n is the outward normal on ∂O and f̃E, f̃H are given tangential fields.
Further, one of the two Silver-Müller radiation conditions

lim
|x|→∞

|x| (√µF,eH̃e × x̂−
√
εF,eẼe) = 0 , (2.40)

or

lim
|x|→∞

|x| (√εF,eẼe × x̂+
√
µF,eH̃e) = 0 , (2.41)

is also assumed to hold, uniformly over all directions x̂.

Remark 2.4.4 The above problem covers all four possible cases: the in-
terior domain can be achiral or chiral, and similarly for its complement in
three-dimensional space.

Clearly the corresponding electric and magnetic transmission problems
can be also stated in terms of the modified Helmholtz equations.

2.4.5 Scattering Problems - Time-Harmonic Case � Chs. 5, 6

A very important special case of exterior or transmission boundary value
problems is that of scattering of electromagnetic waves. We consider the
same setting (and adopt the same notation) as in Section 2.4.4. Assume
now that the electromagnetic field, created by an incident field (Einc, H inc)
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which is applied in Oe, interacts with the material in O (the scatterer). The
incident field depends on the properties of the two different materials as well
as on the geometry of O, and generates a total electromagnetic field (Ẽt, H̃t)

in O (and Oe), part of which, called the scattered field (Ẽe, H̃e), is scattered
in Oe. In mathematical terms, the incident field (Einc, H inc) is a solution
of the chiral Maxwell equations in the exterior unbounded domain Oe that
does not satisfy the Silver-Müller radiation conditions. On the other hand,
the scattered field (Ẽe, H̃e) satisfies the Silver-Müller radiation conditions.

The total electromagnetic field in Oe,
Ẽt = Einc + Ẽe, H̃t = H inc + H̃e ,

satisfies the boundary condition under consideration (e.g., the perfect con-
ductor boundary condition)17 on the boundary ∂O of the domain O (the
scatterer).

The perfect conductor scattering problem then reads: find the total exte-
rior electromagnetic field (Ẽt, H̃t) so that

(i) Ẽt, H̃t satisfy the chiral Maxwell equations (2.38) in Oe.

(ii) Ẽ satisfies the perfect conductor boundary condition (n× Ẽt = 0) on
∂O.

(iii) The scattered field (Ẽe, H̃e) satisfies either (2.40) or (2.41).

Remark 2.4.5 Since the incident field (Einc, H inc) is a solution of the chiral
Maxwell equations in Oe, the above scattering problem can be restated in
terms of the scattered field (Ẽe, H̃e). Indeed, (Ẽe, H̃e) must satisfy the
chiral Maxwell equations in Oe, one of the two above Silver-Müller radiation
conditions, while the perfect conductor boundary condition becomes

Ẽe × n = −Einc × n . (2.42)

Similarly, the scattering of a given incident electromagnetic wave (Einc, H inc)
propagating in an environment Oe filled with a homogeneous chiral (or achi-
ral) material of parameters εF,e, µF,e, βe by a penetrable obstacleO filled with
a different homogeneous chiral (or achiral) material of parameters εF, µF, β
is described by the following transmission boundary value problem, which
covers all four possible cases regarding the nature of the homogeneous mate-
rials which fill the obstacle and its surrounding space in terms of them being
chiral or not: Find fields Ẽ, H̃ satisfying (2.37) in O, and Ẽe, H̃e satisfying
(2.38) in Oe the transmission conditions

Ẽe × n− Ẽ × n = −Einc × n,
H̃e × n− H̃ × n = −H inc × n,

on ∂O, (2.43)

and one of the Silver-Müller radiation conditions (2.40) - (2.41).

17More general boundary conditions can be considered as long as they are non-
dissipative; see [334].
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2.4.6 Interior domain problems in the time domain � Ch. 7

An important class of problems comprises interior domain problems. In
such problems we assume that O is a bounded domain, filled with a complex
material. The aim is to describe the spatiotemporal evolution of the electro-
magnetic fields in the time domain. This amounts to solving the Maxwell
equations in O, supplemented with appropriate boundary conditions. A
typical example of a boundary condition is the perfect conductor boundary
condition (2.4).

So, the interior problem takes the form

curlH(t, x) = ∂tD(t, x) + J(t, x),

curlE(t, x) = −∂tB(t, x),
(2.44)

along with the Gauss laws

divD(t, x) = ρ(t, x),

divB(t, x) = 0,
(2.45)

for x ∈ O, where J is the electric current density and ρ is the density of the
externally impressed electric charge. These equations are to be supplemented
with the perfect conductor boundary condition

n× E(t, x) = 0 , x ∈ ∂O, t ∈ [0, T ] ,

where by n we denote the exterior normal to the boundary of O. A more
general boundary condition is the “nonhomogeneous” version of the perfect
conductor boundary condition, i.e.,

n× E(t, x) = f , x ∈ ∂O, t ∈ [0, T ] ,

where f is a given tangential field; this problem may be transformed into
a problem with homogeneous boundary conditions with a modified source
term (see Remark 2.2.1). The fields D, B are given in terms of the fields E,
H by the constitutive relations (2.10) (or (2.15)). Inserting the constitutive
relations in the Maxwell equations provides a system of PDEs determining
the evolution of the fields E, H.

We now present this equation in the form of an abstract differential equa-
tion. Taking into account the comments in the footnote on page 12, the
constitutive relations, e.g., (2.10) and the definition of the Maxwell operator
M (see (2.8)) the Maxwell equations (2.44) assume the form

(Aoru+ Gd ? u)
′

= Mu+ j, (2.46)

where the prime denotes differentiation with respect to time. The mathe-
matical model for such problems is in the form of a Volterra-type integrod-
ifferential boundary value problem. This equation can be further simplified
if we assume that Gd(t, x) is weakly differentiable with respect to the tem-
poral variable. Then we may differentiate the convolution integral, and by
multiplying to the right by A−1

or
the equation can be written as

u′ = MAu+ GA ? u+ JA, (2.47)
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where

GA = −A−1
or

G′
d
, MA = A−1

or
M, JA = A−1

or
j,

and we have assumed that Gd(0, x) = 0. Otherwise, there is an extra term18

proportional to u, which may be incorporated in the definition of the op-
erator MA, leading to minor modifications to the mathematical treatment.
The boundary conditions, as well as the divergence free character of the
electromagnetic field, can be included in the definition of the operator M in
appropriately selected function spaces.

The well posedness of such problems will be studied in Chapter 7.

2.4.7 Controllability and optimal control problems � Ch. 8

Consider a complex medium, confined within the domain O ⊂ R3, consid-
ered to be sufficiently smooth. Assuming sufficient temporal smoothness of
the convolution kernels Gd, we rewrite the Maxwell equations for the elec-
tromagnetic fields in the medium in the compact form (see Section 2.4.6,
equation (2.47)):

u′ = MAu+ GA ? u+ JA. (2.48)

We now assume that we have access to an internal control v, that acts
on the system. This internal control is an externally determined function
v(·), which may be chosen at will so as to impose on the system a specific
type of behaviour. The terminology internal control is chosen to clarify that
this process may act on the whole of the domain O. Other choices for the
control function, e.g., controls that are only allowed to act on ∂O (boundary
controls), or internal controls that act on a subset Oc of the domain O, can
also be considered.

The effect that the control v(·) has on the system is modelled through
an operator B, which is usually called the control to state operator. In the
general theory of control, it is usually assumed that the control function v
“lives” in a space V (the control space), which is, in general, different from
the space H in which the solution of the system “lives” (the state space).
Therefore, the operator B : V → H transfers the action of the control v
from the control space to the state space. For simplicity of presentation, we
identify the control space V with an appropriate subset of the state space H.
This choice is feasible within the context of internal control and allows us to
set ideas involving as little technical complications as possible. The action
of the control v on the state of the system is thus modelled by the evolution
equation

u′ = MAu+ JA + GA ? u+ Bv. (2.49)

The problem of controllability can now be stated as follows: Given T > 0,
an initial condition u(0) = U0 and a final condition u(T ) = UT , can we
find a control procedure v∗(·) such that the solution of the system (2.49) with
v(·) = v∗(·) satisfies u(0) = U0 and u(T ) = UT ?

18Similar to the one that would arise if a linear Ohm’s law were adopted for j.
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2.4.8 Homogenisation problems in periodic media � Ch. 9

In practice, complex media may be spatially inhomogeneous, so that the
constitutive relation is of the form

d = Aoru+ Gd ∗ u,
with Aor = Aor(x) and Gd = Gd(t, x). In many applications of interest,
e.g., crystals, periodic gratings, etc., the spatial dependence of the medium
parameters can be periodic, i.e., there exists a vector ` (the period), such
that s(x+ `) = s(x), where s is a proxy for the functions Aor and Gd.

The spatial inhomogeneity of the medium may introduce interesting phe-
nomena, e.g., quenching of waves ([437]). One interesting class of problems
is when there is a periodic microstructure in the medium. Such situations
may be modelled by assuming that the function s has a spatial dependence
of the form s(xε ), where ε is a small parameter. The small parameter ε is
included to stress the fact that the coefficients of the medium present oscil-
lations on a small spatial scale. This is a reasonable model for the medium
microstructure.

For such media, the evolution of the fields is given by the Maxwell equa-
tions

(dε)′ = Muε + jε (2.50)

with constitutive relations of the form

dε = Aεor(x)uε + Gεd(x) ? uε , (2.51)

where uε = (Eε, Hε)tr, dε = (Dε, Bε)tr and Aε
or

(x) = Aor

(
x
ε

)
, Gε

d
(·, x) =

Gd

(
·, xε
)
. The Maxwell equations are further supplemented with a suitable

boundary condition, e.g., the perfect conductor boundary condition. In the
above equations the notation sε = sε(t, x), where s is a proxy for d, u is
used to show that for each choice of the parameter ε (which specifies the
length scale of spatial periodicity of the medium), we obtain a particular
field configuration.

An important question is what happens to this family of electromagnetic
fields as ε → 0, that is, in the limit of very fast oscillations in space of the
medium coefficients. Mathematically this amounts to considering the limit
as ε→ 0 of the sequence of functions {uε} = {uε(t, x)}, which are determined
as the solutions of the set of differential equations (2.50) with the constitutive
relations (2.51). The first issue to be studied is the existence of such a limit
and in particular in which topology do we expect the sequence {uε} to have
a limit. It turns out that this problem is not very well behaved in the sense
that in most cases of interest, the limit exists in a very weak sense, namely,
in the weak star topology19. The second issue to be studied is whether

19As a simple example, take the sequence of functions φε(x) = sin
(
x
ε

)
, which does

not converge in the usual topology of R as ε → 0. However, the integral
∫
I ψ(x)φε(x)dx

converges as ε→ 0, for any function ψ and any interval I. This convergence is identified
as the weak star convergence for the particular example. For a thorough discussion of this
topic, see, e.g., [97].
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this limit can be thought of as satisfying a system of differential equations
similar to the Maxwell equations. It can be shown that the limit satisfies
the Maxwell equations with a constitutive relation similar to (2.51) but now
with constant medium coefficients. This means that in the limit as ε→ 0 we
may replace the original spatially inhomogeneous medium by an “equivalent”
spatially homogeneous medium, at least as far as the electromagnetic field
properties are concerned. This approach is called homogenisation. It is very
useful in a number of applications since it provides methods that allow us to
compute the constant coefficients of the homogenised medium. Further, it is
also useful for numerical treatment of these equations since it is extremely
difficult and sometimes impossible to numerically approximate PDEs with
changing coefficients on a fast scale.

The problem of homogenisation is meaningful also in the time-harmonic
case, where we no longer monitor the temporal evolution of the fields, which
is assumed to be time periodic with period 2π

$
, but the spatial properties of

the fields as influenced by the microstructure of the medium.

2.4.9 Some aspects of scattering theory � Ch. 10

Broadly speaking, scattering theory can be thought of as the study of the
interaction of an propagating wave with an inhomogeneous medium. In de-
veloping a scattering theory, a comparison is made between the solutions
of a perturbed system and the solutions of an unperturbed system. The
asymptotic behaviour of the two systems is investigated as the time tends
to ±∞ with the aim of determining whether or not the perturbed system
appears to behave like the unperturbed system in the distant past or in the
distant future. In this framework, under certain conditions, a relatively sim-
ple scattering theory involving achiral materials (unperturbed system) can
be modified to accommodate problems involving chiral materials (perturbed
system); this is the subject of Chapter 10.

2.4.10 Nonlinear problems � Ch. 11

The spatiotemporal evolution of the fields is given by the Maxwell equations
where the constitutive relations d = Lu are now nonlinear and of the form
introduced in Section 2.3.5.

Using the notation introduced earlier (see Section 2.3.5 and in particular
equation (2.24)), we may write the Maxwell system in a more compact form
as

(A0u+ G0 ? u+ G0,n` ? N(u)u)′ = Mu+ j ,

with initial condition u(0) = u0 and appropriate boundary conditions (e.g.,
the perfect conductor boundary conditions).

This modification will turn the Maxwell system into a system of nonlinear
partial differential equations. The mathematical theory of nonlinear PDEs is
considerably more involved than that of linear systems, and the solutions of
the former present new and exciting phenomena, e.g., blow-up phenomena,
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special classes of propagating wave solutions, etc. While some works on
such systems, using formal asymptotics, predict the existence of interesting
soliton-like solutions, to the best of our knowledge there are no other rigorous
mathematical results in this direction.

2.4.11 Random media problems � Ch. 12

The evolution of the electromagnetic fields in random media will be mod-
elled by the Maxwell equations complemented by the random constitutive
relations introduced in Section 2.3.4. In these equations we will also allow
the external sources terms J to be subject to some randomness, treating
them as random fields. This leads to the Maxwell equations, suppressing as
usual the x-dependence, in the form

(Aor,ωu+ Gω ? u)′ = Mu+ jω , (2.52)

where now jω = j(t, x, ω) is a random process defined on a probability space
(Ω,F , P ). An important aspect of the problem is the choice of a conve-
nient model for the randomness. There are two major classes of problems,
presenting qualitatively different behaviour, depending on the choice of the
random forcing term jω,

. jω is of finite variation with respect to time,

. jω is of infinite variation with respect to time.

Both cases are equally important in modelling. As the first case is intu-
itively easier to understand, we focus on the interpretation of the second.
Assume that we wish to model experimental uncertainty resulting from the
accumulation of a large number of independent errors, identically distributed
and each having finite statistical moments up to the second. Then, using ar-
guments based on the central limit theorem, we expect Gaussian properties
for the random fields modelling these errors. Consider the external source
j(t, x, ω) for instance: we assume that this may be decomposed into two con-
tributions, one being the average behaviour of the random source and the
other being the purely random fluctuations around this average behaviour.
By average behaviour we understand some sort of mathematical expectation
of the source term j(t, x, ω); this will be expressed shortly in a more rig-
orous mathematical fashion as EP [j(t, x, ω)], where EP [·] is the expectation
operator over the probability measure P . The random fluctuation terms are
expected to average to 0, i.e., they have vanishing expectation. This reflects
the fact that we may observe realisations of the source terms exceeding the
average behaviour by z and realisations receding the average behaviour by
−z with the same probability.

We now assume that the fluctuations part of j(t, x, ω) can be modelled as
a white noise type of process with respect to the temporal variation, which
presents possible spatial correlations. Formally, if jf`(t, x, ω) denotes the part
of j(t, x, ω) corresponding to the fluctuations, our modelling assumption for
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the randomness is that

EP [jf`(t, x, ω) jf`(t
′, x′, ω)] = %(x, x′) δ(t− t′) ,

where %(x, x′) is a kernel function representing the spatial correlations of the
fluctuations and δ is the Dirac delta function. A stochastic process that may
satisfy, formally, these assumptions is the temporal derivative of a stochas-
tic process, the Wiener process (or Brownian motion) (see, e.g., [224]), or
rather its infinite-dimensional version, W (t, ω), called the Q-Wiener process
(see, e.g., [120] or Appendix B). This is a Banach space - valued stochastic
process, with almost surely continuous paths, and independent increments
that are distributed by the normal distribution with mean 0 and variance
(t − s)Q, where Q is a trace class operator that gives the structure of the
spatial correlations of the fluctuations and t− s is the time increment. This
stochastic process is a very reasonable model as it is based on the assump-
tion of normality of random deviations from the “mean” deterministic fields,
a fact that can be supported by statistical arguments based on the law of
large numbers. For an introduction to random variables on Banach spaces
and the definition of the Q-Wiener process the reader may consult Appendix
B, and in particular Section B.4.

Therefore, we consider the random source to be of the form

j(t, x, ω) = j(t, x) + Q
d

dt
W (t, ω), (2.53)

where by j(t, x) we denote the “average” source and the second term mod-
els the fluctuations around this average. Q is the spatial autocorrelation
operator for the source term j(t, x, ω) and is related to Q, the spatial auto-
correlation operator for the Wiener process. However, we must stress that
the expression of the random source in equation (2.53) is purely formal! It is
well known that the temporal derivative of the Wiener process can be defined
nowhere for almost all t and almost surely with respect to the probability
measure P . The temporal derivative can be defined at best in terms of the
theory of distributions.

The Maxwell equations with random constitutive relations and using the
random field j(t, x, ω) for the source term are random evolution equations
the solutions of which will be random fields. If we assume that j(t, x, ω)
is of bounded variation with respect to t, then (2.52) can be treated as a
partial integrodifferential equation with random coefficients, the solution of
which is defined pointwise in ω, and which may be considered a random
process itself. In this case one may extend the techniques employed for
the study of deterministic evolution equations so as to treat (2.52). If we
adopt the model (2.53) for the random source term, the nondifferentiability
of the Wiener process calls for a special treatment of the random evolution
equation. We first rewrite the random Maxwell equations in integral form
as

d(t, x, ω)− d(0, x) =

∫ t

0

Mu(s, x, ω)ds+

∫ t

0

j(s, x)ds+

∫ t

0

QdW (s). (2.54)



rsy-book-final December 7, 2011

34 CHAPTER 2

If necessary, the above can be supplemented with Gauss’s laws, assuming
the charge density to be a random field as well. The rigorous mathematical
treatment of the term

∫ t
0

QdW (s) has to be done in terms of the theory of the
Itō integral. This is an integral designed to handle the problem of integrat-
ing a stochastic process over the paths of a Wiener process. Since the paths
of the Wiener process have almost surely infinite variation, a theory of inte-
gration based on the Riemann-Stieltjes integral is not sufficient to deal with
the rigorous modelling of the cumulative effects of the randomness on the
electromagnetic fields. Instead, one has to exploit the fact that the Wiener
process has finite quadratic variation and construct an integral based on the
quadratic variation of the integrator. This theory, which is an infinite di-
mensional extension of Itō’s theory of stochastic integration, finds important
applications in a number of modelling situations. For a brief introduction
to this theory the reader can consult Appendix B and in particular Section
B.5. With the interpretation of the stochastic integral as an Itō integral,
the random Maxwell equations become a set of stochastic partial differential
equations (SPDEs).

We rewrite now the system in more compact form. Under the standing
assumption, as in the deterministic case, that Aor,ω is an invertible matrix
almost surely in P we express (2.54) as the stochastic integrodifferential
equation

u(t) + (K ? u)(t) = A−1
or,ωu(0) +

∫ t

0

MAu(s) ds+

∫ t

0

JA(s) ds+

∫ t

0

QdW (s),

where

K = A−1
or,ω

Gd, MA = A−1
or,ω

M, and JA = A−1
or,ω

j.

Assuming the differentiability with respect to time of the convolution ker-
nel20, this is equivalent to the integral equation

u(t) = u(0) +

∫ t

0

MA u(s) ds+

∫ t

0

(∫ s

0

GA(s− r)u(r) dr

)
ds

+

∫ t

0

JA(s) ds+

∫ t

0

QA(s, ω) dW (s),

(2.55)

where GA = −A−1
or,ω

G′
ω

and QA = A−1
or,ω

Q. In the above equations the integrals
with respect to t are considered in the Riemann-Stieltjes sense, while the
integrals with respect to the Wiener process are considered in the Itō sense.

In more general models, QA can be an operator-valued stochastic process
that models the effect of spatial correlations of the fluctuating terms. Let
us note that QA either may be independent of the electromagnetic field or
may be a function of the electromagnetic field (linear or nonlinear). The
first case, especially if GA is not a random process, is called the additive
noise case, whereas the second case is called the multiplicative noise case.

20So that K ? u =
∫ t
0 (K′ ? u)(s)ds, where we have assumed without loss of generality

that Gd(0, x) = 0.
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The boundary condition is considered to be the perfect conductor boundary
condition, as usual. In order to simplify the notation, we sometimes write
the above integral equation in differential form as

du(t) =
(
MAu(t) + (GA ? u)(t) + JA

)
dt+ QA dW (t) . (2.56)

The evolution equation for the electromagnetic fields is in the form of a
stochastic integrodifferential equation of Volterra type. Similar issues as
those treated in the deterministic case concerning well posedness arise also in
the stochastic case, where of course different methods and techniques have to
be employed. Furthermore, important issues concerning how the randomness
in the sources and/or the medium affects the behaviour of observed fields
arise, e.g., how are the spatial autocorrelation properties of the fields related
to those of the sources, how is the regularity of the solutions affected by the
regularity of the sources, etc. Such problems are treated in Chapter 12.

Remark 2.4.6 (Random vs stochastic)

. random The class of models for random media of the form (2.52)
where the temporal part of the random fields involved (e.g., jω) is of
bounded variation and there is possibly random spatial structure in the
medium allows the evolution equations to be treated in the usual sense,
i.e., in terms of the Riemann-Stieltjes or Bochner integration, as evolu-
tion equations with random coefficients. Such problems will be called
random problems in what follows. In this case the solutions inherit
the temporal regularity of the source terms, i.e., they are of bounded
variation in time. Random problems find important applications in,
e.g., the homogenisation of random media (see Section 2.4.13).

. stochastic The class of models where the randomness in the medium
is introduced by a process whose temporal part displays unbounded
variation, e.g., of the form (2.53), is possibly the most demanding case
from the mathematical point of view as it requires the full arsenal of
stochastic analysis for its treatment. Within this class of problems,
we may either consider a well-behaved spatial structure of the noise
terms (as modelled by the spatial autocorrelations operator Q) or a
white noise structure in space as well, an assumption that leads to
electromagnetic fields with rather rough spatial structure. We will use
the terminology stochastic problems for this class. In this case the
solutions inherit the pathological temporal behaviour of the forcing
term, and in certain cases this has effects also on the spatial regularity.

2.4.12 Stochastic controllability � Ch. 13

The controllability problems presented in Section 2.4.7 have natural coun-
terparts for the stochastic Maxwell equations. However, the introduction
of noise introduces complications related to the measurability of the control
procedure with respect to the filtration generated by the Wiener process,
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thus calling for an approach that is different from the one employed in the
deterministic case. In Chapter 13 we treat this problem offering two al-
ternatives, one related to an approximate controllability approach based on
the approximation of the final target state and one based on the theory of
backward stochastic evolution equations (BSEEs).

2.4.13 Homogenisation problems in random media � Ch. 14

Often, complex electromagnetic media do not have a deterministic periodic
structure but rather a statistical type of periodicity, in the sense that the
statistical properties of the medium are invariant when one performs specific
translations in space. Such cases may arise, for instance, when we consider
media with a crystalline structure but with random imperfections, etc. If
the medium exhibits some randomness, then the concept of periodicity is
too restrictive and must be replaced by a more general condition that allows
us to calculate limits of the form limL→∞

1
2L

∫
2L
E(x, ω) dx. This concept is

the concept of ergodicity.
Consider a linear random complex medium, modelled by constitutive re-

lations of the form

dω = Aor,ωuω + Gω ? uω.

For simplicity the randomness is assumed to be spatial only. In the above
uω = u(·, ω) is a general notation for a random field u : Ω → V , where
(Ω,F , P ) is a probability space and V is a properly selected function space.
The probability space (Ω,F , P ) is a model for the spatial randomness of the
medium; we will return to specific examples later on. The random nature
of the medium is used to model imperfections of the medium due to its
construction, experimental mis-specifications of the medium properties, etc.

We will consider the following framework. Let (Ω,F , P ) be a probabil-
ity space and G be a group on Ω such that the probability measure P is
preserved under the action τ of this group, i.e., P (τA) = P (A) for every
A ∈ F . The probability space (Ω,F , P ) is to be interpreted as follows:
Each realisation ω corresponds to a particular configuration of the medium.
In other words, each experiment we perform on a particular medium corre-
sponds to a particular choice of ω ∈ Ω. However, it is not known beforehand
and with certainty which medium is to be realised when the experiment is
performed. The probability that a particular medium is realised is given by
the probability measure P .

A particular case of interest is Ω = R3 (i.e., each ω is identified with a
point x ∈ R3), F = B(R3) is the Borel σ-algebra, and P is any probability
measure on F . Then a typical choice is G = (R3,+), the usual translation
group with group action τy = x + y. The preservation of the probability
measure under the action of the group now reads

P (τyA) = P (A), ∀A ∈ F , ∀y ∈ R3.

We assume certain conditions on the random coefficients. These are the
conditions of ergodicity and stationarity. These properties guarantee that,
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in a statistical sense, parts of the material located at different positions
will present the same properties, i.e., that the statistical properties of the
medium are invariant under translations which are to be understood as the
transformation τx. This fact, as we shall see shortly, allows us to look at
average properties of the material at large scales and obtain nice expressions
for these quantities. In fact, by the ergodic theorem (see, e.g., [67]) we may
obtain that

F
(x
ε
, ω
)
⇀ E[F ], as ε→ 0 , a.s. in L∞(R3) ,

where21 E is the expectation over the measure P . The ergodic hypothesis
implies that instead of looking at an ensemble average of media and averaging
the properties of the medium on the ensemble average, we may consider a
single realisation of the medium whose spatial dimensions are large and
sample its properties by traversing this single realisation for large enough
distances.

This approach is relevant for a variety of situations, e.g., for a medium
exhibiting random imperfections whose numbers and centres are randomly
distributed with the Poisson distribution (for details and other examples,
see [344], [408]). It is important to note that deterministic periodic media
fall easily within this general framework by taking Ω as the unit torus T
in Rd, the meaning of ω here being that we may consider any point in the
unit torus (unit cell of the medium) as the origin of the coordinate system,
chosen randomly according to the Lebesgue measure on the unit torus (see
[344]).

The evolution of electromagnetic fields in this medium is given by the
Maxwell equations in the usual form

(Aεor,ω
uε + Gε

ω
? uε)′ = Muε + JA , (2.57)

in some domainO ⊂ R3, complemented with the perfect conductor boundary
condition

n× uε1 = 0, x ∈ ∂O,
where now all the involved quantities are considered random fields and the
superscripts ε have the same meaning as in Section 2.4.8. We consider here
the random terms to be of finite variation, so that (2.57) is understood as
a differential equation with random coefficients rather than as a stochastic
partial differential equation (see Remark 2.4.6).

The question to be addressed here is similar to the question addressed
in Section 2.4.8 for the deterministic periodic case, i.e., (a) whether and
in which sense do the limits of the sequence of random fields {uε}, {dε}
exist and (b) do the limits of these fields u∗ and d∗ satisfy a differential
equation similar in form to the Maxwell equation (2.57) and, if so, with
what constitutive relations? We shall see in Chapter 14 that the answer
to both questions is positive, and there exists a homogenised medium the
coefficients of which may be determined using techniques from ergodic theory
and elliptic homogenisation theory.

21The abbreviation a.s. stands for almost surely.
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Chapter Three

Spaces and Operators

3.1 INTRODUCTION

Let O be an open set in RN such that it is locally on one side of its bound-
ary Γ := ∂O, which is supposed to be bounded and Lipschitz. We shall be
interested mainly in the case of N = 3, so in the following unless explic-
itly stated otherwise, we are considering this case. Further, without loss of
generality, we suppose that Γ is connected (for otherwise, one could work
separately at each connected component). Such a set O will be referred to
as “regular” in what follows. Let n denote the outward unit normal vector
to Γ. In addition, let Oe := RN \ O. By N0 we denote the set N ∪ {0}.

Recall that if T is a topological space and x, y ∈ T , a path from x to y is
a continuous function f : [0, 1] → T such that f(0) = x and f(1) = y. T is
pathwise connected if there exists a path joining any two points in T . Finally,
T is simply connected if it is pathwise connected and every path between
two points x, y ∈ T can be continuously transformed, staying within T , into
every other path while preserving the two end points. In three dimensions,
let T = O ⊆ R3: a typical example of a simply connected set is any convex
O, while an example of a nonsimply connected set is the torus. In this work
we will restrict ourselves to simply connected domains; however, many of
the results may be generalised to nonsimply connected ones.

This chapter1 is included for the convenience of the reader and consists
mainly of definitions and various properties (without proofs) of spaces and
operators used in this book; unless otherwise stated, for a full treatment of
the contents of this chapter one can consult [91], [126]; see also [135], [324].
A large amount of related material can be also found in [79], [171].

3.2 FUNCTION SPACES

By Ck(O), k ∈ N, we denote the space of k-times continuously differentiable
functions on O, and by Ck0 (O) the space of k-times continuously differ-
entiable functions on O with compact support. By Ckb (O) we denote the

1We are fully aware that this chapter is somewhat “dry”, but it is clear that otherwise
a whole book should be written; we have no intention of undertaking such a burden,
especially since the excellent books [91] and [126] are certainly much more than adequate.
Nevertheless, we believe that it is convenient for the reader to have at her or his disposal
the material of this chapter collected in one place.
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space2 of Ck(O) functions whose derivatives of order up to and including k
are bounded in O, which is a Banach space with an appropriate norm (see
[1]). By Ck,α(O), α ∈ (0, 1) we denote the space of k-times differentiable
functions with Hölder continuous derivatives in O, by C0,1(O) the space of
Lipschitz functions in O, while by C∞0 (O) (alternatively denoted by D(O))
the space of C∞(O) functions with compact support in O, and by C0,1

0 (O)
the space of restrictions to O of Lipschitz functions with compact support
in R3. In addition, by Ct(∂O) we denote the space of continuous functions
on the surface ∂O. Finally, D′(O) is the set of distributions in O.

3.2.1 Lebesgue spaces

In this section all definitions are given in the general case where O ⊂ RN .
By Lp(O) we denote the usual space of p integrable functions u : O → R;
endowed with the norm

||u||Lp(O) =

(∫
O
|u(x)|p dx

)1/p

,

it is a Banach space for p ≥ 1. The case where p = ∞ corresponds to the
case of essentially bounded functions and the norm is the essential supre-
mum3 of the function on O. The particular case where p = 2 corresponds
to a Hilbert space with inner product (u, v) =

∫
O u(x)v(x) dx. For complex-

valued functions, the inner product is replaced by (u, v) =
∫
O u(x)v(x) dx.

For vector-valued functions u : O → R3, which is often the case of interest in
electromagnetic theory, we will need the function spaces (Lp(O))3. Of par-
ticular interest is the case p = 2, which is again a Hilbert space, with inner
product (u, v) =

∫
O u(x) ·v(x) dx, where “ · ” denotes the standard dot prod-

uct in R3. The extension to complex valued vector fields is straightforward.
The meaning of the symbols Lp(O,R3) and Lp(O,C3) is obvious.

Let p ∈ (1,∞). The conjugate exponent p′ of p is defined by 1
p + 1

p′ = 1.

In the case of p = 1, set p′ := ∞. The space Lp
′
(O) is the dual space of

2This space is larger than Ck(O) since its elements are not necessarily uniformly con-
tinuous in O.

3The concept of essential supremum (respectively, essential infimum) is related to the
notion of supremum (respectively, infimum); the former is more relevant in measure theory,
where one often deals with statements that are not valid everywhere (i.e., for all elements in
a set), but rather almost everywhere (i.e., except on a set of measure zero). To be precise,
let S be a σ-algebra over a set X and µ : S → R ∪ {±∞} be a measure; in the measure
space (X,S , µ) let f : X → R be a not necessarily measurable function. A real number a
is called an upper bound for f if f(x) ≤ a for all x ∈ X, that is, if {x ∈ X : f(x) > a} = ∅.
In contrast, a is called an essential upper bound if the set {x ∈ X : f(x) > a} is contained
in a set of measure zero, that is to say, if f(x) ≤ a for almost all x ∈ X. Then, in the
same way as the supremum of f is defined to be the smallest upper bound, the essential
supremum is defined as the smallest essential upper bound. More formally, the essential
supremum of f is defined by ess sup f = inf{a ∈ R : µ({x : f(x) > a}) = 0} if the
set of essential upper bounds, {a ∈ R : µ({x : f(x) > a}) = 0}, is nonempty, and
ess sup f = +∞ otherwise.
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Lp(O), with duality pairing (see Section A.1 in Appendix A):

〈v, w〉
Lp
′
(O), Lp(O)

=

∫
O
v w dx, for v ∈ Lp

′
(O), w ∈ Lp(O).

These spaces are related by the Lebesgue embedding theorem according to
which if O has finite Lebesgue measure and 1 ≤ q < p <∞, then

L∞(O) ⊂ Lp(O) ⊂ Lq(O) ⊂ L1(O).

3.2.2 Sobolev spaces

In this section all definitions are given in the general case where O ⊂ RN
is a nonempty open set. By Wm,p(O), m ∈ N0, p ∈ [1,∞], we denote the
standard Sobolev spaces defined by

Wm,p(O) = {u ∈ Lp(O) : ∂αu ∈ Lp(O) for all |α| ≤ m} ,

where the multi-index α = (α1, . . . , αN ) ∈ (N0)N , |α| =
∑N
i=1 αi, and

∂αu = ∂|α|u
∂x
α1
1 ...∂x

αN
N

. These spaces contain C∞0 (O), and in the case in which

O is bounded they also contain C∞(O). When endowed with the norm

||u||Wm,p(O) =

 ∑
|α|≤m

∫
O
|∂αu|p dx

1/p

,

the Sobolev spaces become Banach spaces. For p ∈ (1,∞) the spaces
Wm,p(O) are reflexive, while for p ∈ [1,∞) they are separable. For p = 1,∞,
the corresponding spaces are not reflexive, while for p =∞ the corresponding
space is not separable. In the special case p = 2 these spaces become Hilbert
spaces, with their norms generated by (obviously defined) inner products.
In particular, we have

W 0,p(O) = Lp(O) ,

Hm(O) := Wm,2(O) .

Of interest concerning the behaviour of functions satisfying homogeneous
Dirichlet boundary conditions on a domain are the spaces

Wm,p
0 (O) = the closure ofC∞0 (O) in theWm,p(O) norm.

These functions satisfy the condition u = 0 on the boundary in the sense of
traces. A usual notation for the special case p = 2 is Hm

0 (O). The extension
of Sobolev spaces for vector fields in O is straightforward.

A useful result connecting the Lp(O) norm of a function with those of its
derivatives is the celebrated Friedrichs’ inequality:

Theorem 3.2.1 Let O be a bounded subset of RN with diameter d. Suppose
that u : O → R lies in the Sobolev space Wm,p

0 (O). Then, for any multi-index
α, we have

||u||pLp(O) ≤ d
mp

∑
|α|=m

||∂αu||pLp(O) .
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The following embedding theorem is very useful in applications.

Theorem 3.2.2 (Sobolev embedding theorem) Assume that O is a do-
main (not necessarily bounded) with C0,1 boundary and let j,m ∈ N0, p ∈
[1,∞).

(i) Let mp < N . Then W j+m,p(O) ⊂W j,q(O) for q ∈ [p,N p/(N−mp)].
If O is bounded, then the above embedding holds additionally for q ∈
[1, p).

(ii) Let mp = N . Then W j+m,p(O) ⊂ W j,q(O) for q ∈ [p,∞). If O is
bounded, then the above embedding holds additionally for q ∈ [1, p). If
in particular p = 1, the embedding holds for q =∞ as well.

(iii) Let mp > N . Assume that one of the following cases holds:

(a) N > (m− 1)p and α ∈ (0,m− (N/p)].

(b) N = (m− 1)p and α ∈ (0, 1).

(c) N = m− 1, p = 1 and α ∈ (0, 1].

Then W j+m,p(O) ⊂ Cj,α(O).

To define the spaces W s,p(O) for s ∈ R we first define, for 0 < ν < 1, the
so-called Hölder seminorms

|u|ν,p,O :=

(∫
O

∫
O

|u(x)− u(y)|p

|x− y|N+νp
dx dy

)1/p

, 1 ≤ p <∞ ,

|u|ν,∞,O := sup
x,y∈O

|u(x)− u(y)|
|x− y|ν

.

For s = m+ ν, 0 < ν < 1, we define

W s,p(O) = {u ∈Wm,p(O) : |∂αu|ν,p,O <∞, for |α| = m} .
W s,p(O) becomes a Banach space when equipped with the norm

‖u‖W s,p(O) =

‖u‖pWm,p(O) +
∑
|α|=m

|∂αu|ν,p,O

1/p

.

In particular, we have

Hs(O) := W s,2(O) .

As above, for every s > 0, we define

Hs
0(O) = the closure of C∞0 (O) in the H s(O) norm,

and

H−s(O) = the dual space of Hs
0(O) .

To define Hs on Γ, assume first that Γ is of the special form

Γ0 = {(y, y(y)) : y ∈ RN−1} ,
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where y : RN−1 → R is a Ck−1,1 function4 (k ∈ N). Define

uy(y) := u(y, y(y)), y ∈ RN−1 .

Then

Hs(Γ0) := {u ∈ L2(Γ0) : uy ∈ Hs(RN−1)} , for 0 ≤ |s| ≤ k .

Equipped with the inner product (u, v)Hs(Γ0) := (uy, vy)Hs(RN−1), H
s(Γ0) is

a Hilbert space.
For 0 ≤ |s| ≤ k,

H−s(Γ0) is the dual space of Hs(Γ0) .

Now consider the general case, in which Γ is assumed to be a Ck−1,1

boundary; then there exist finite families {Wj} and {Oj} such that each
Wj is an open set in RN and Γ ⊂ ∪Wj , each Oj can be transformed by a
rotation plus a translation to a set having a boundary of the form of Γ0, and,
for each j, Wj ∩ O = Wj ∩ Oj . Hence we can choose a partition of unity5

{ψj} associated with the cover {Wj}. Let

ψ̃ju :=

{
ψju, in Wj

0, in Oj \Wj .

Therefore we may define

u ∈ Hs(Γ) if and only if ψ̃ju ∈ Hs(∂Oj) .

Further, we define

‖u‖Hs(Γ) :=
∑
j

‖ψ̃ju‖Hs(∂Oj) .

This norm is independent of the choice of the partition of unity. Now, for
0 ≤ s ≤ k,

H−s(Γ) := the dual space of Hs(Γ) .

Finally, we define

Hs
0(Γ) = {φ ∈ Hs(Γ) : 〈1, φ〉H−s(Γ), Hs(Γ) = 0} ,

where, 〈·, ·〉H−s(Γ), Hs(Γ) is the duality pairing between H−s(Γ) and Hs(Γ).

The Sobolev embedding theorem may be generalised for fractional order
Sobolev spaces.

Theorem 3.2.3 Let O ⊂ RN be a bounded domain with Lipschitz boundary,
s > 0, 1 < p < ∞ and r := s − N/p + N/q. Under one of the following
assumptions

4The case k = 1 refers to Lipschitz boundaries.
5ψj ∈ Ck−1,1

0 (Wj), such that
∑
j ψj(x) = 1 for all x ∈ Γ.
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(i) r ≥ 0, p < q,

(ii) r > 0 and r /∈ N,

(iii) r ≥ 0 and 1 < p ≤ 2,

we have the embedding W s,p(O) ⊂W r,q(O).

Remark 3.2.4 This theorem holds for O = RN as well (see, e.g., [1]).

Regarding Sobolev spaces, one can consult, e.g., [1], [262], [406].

3.2.3 Lebesgue-Bochner spaces

In this section we consider functions from an interval I := [0, T ] to a vector
space V , u : I → V .

For 1 ≤ p < ∞, a Lebesgue-Bochner space Lp(I, V ) is the equivalence

class of Bochner integrable6 functions u : I → V such that
∫ T

0
||u||pV dt <∞.

This is a Banach space when equipped with the norm

||u||Lp(I,V ) =

(∫ T

0

||u||pV dt

)1/p

.

If p =∞, we must modify the norm to

||u||L∞(I,V ) = ess supt∈I ||u(t)||V .
The following results concerning Lebesgue-Bochner spaces are useful.

Theorem 3.2.5 Lp
′
(I, V ′)) ⊆ (Lp(I, V ))′ with equality if V ′ is separable.

The duality pairing between the two spaces is defined as

〈v, u〉Lp′ (I,V ′),Lp(I,V ) =

∫ T

0

〈v(t), u(t)〉V ′,V dt .

The Young inequality, as well as certain interpolation inequalities, may
be generalised in the context of Lebesgue-Bochner spaces.

Theorem 3.2.6 Let p1, p2, q1, q2 ∈ [1,+∞], λ ∈ [0, 1], and 1
p = λ

p1
+ 1−λ

p2
,

1
q

= λ
q1

+ 1−λ
q2

. Then

||v||Lp(I,Lq(O)) ≤ ||v||λLp1 (I,Lq1 (O)) ||v||
1−λ
Lp2 (I,Lq2 (O)) .

Remark 3.2.7 The Lebesgue-Bochner spaces will be used in general in the
treatment of time-dependent problems, where the space V may be either a
Lebesgue space, a Sobolev space, or any of the spaces considered in Section
3.2.5 or 3.4.

Standard references for these spaces and their properties are, e.g., [262]
and [373].

6See Section A.3.2 in Appendix A.
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3.2.4 Sobolev-Bochner spaces

We now turn to the generalisation of Sobolev spaces in the context of
Lebesgue-Bochner spaces.

The space W 1,p,q(I, V1, V2), V1 ⊂ V2, is defined as the space

W 1,p,q(I, V1, V2) = {u : u ∈ Lp(I, V1), u′ ∈ Lq(I, V2)} ,
where u′ is the distributional derivative, which is the linear operator defined

by u′(φ) = −
∫ T

0
u(t)φ′(t) dt for all φ ∈ D(I). This is a Banach space when

equipped with the norm

||u||W 1,p,q(I,V1,V2) = ||u||Lp(I,V1) + ||u′||Lq(I,V2) .

The choice V1 = V2 often appears in applications.
The following result is useful.

Theorem 3.2.8 Assume that p, q ≥ 1 and that V1 ⊂ V2 continuously. Then

(i) W 1,p,q(I, V1, V2) ⊂ C(I, V2) continuously,

(ii) C1(I, V1) ⊂W 1,p,q(I, V1, V2) densely.

(iii) Let V ⊂ H ⊂ V ′ be a Gelfand triple7. Then W 1,p,p′(I, V, V ′) ⊂
C(I,H) continuously, where p′ is the conjugate exponent of p, and
the integration by parts formula

(u(t2), v(t2))−(u(t1), v(t1)) =

∫ t2

t1

(
〈u′(t), v(t)〉V ′,V +〈u(t), v′(t)〉V ′,V

)
dt

holds for all u, v ∈W 1,p,p′(I, V, V ′) and all t1, t2 ∈ I.

Remark 3.2.9 Sobolev-Bochner spaces will be used in the treatment of
time-dependent linear or nonlinear problems. Similar remarks as in Remark
3.2.7 hold here as well.

For more details, one may consult [373].

3.2.5 Spaces of random fields

Stochastic problems involve random fields, which may be understood as
stochastic processes indexed by a multidimensional parameter (typically
(t, x) ∈ R+×R3). These random fields involve random variables with values
on function spaces (typically spaces related to the function spaces described
in Section 3.4 or 3.9.1) that have well-defined statistical moments.

Consider a probability space (Ω,F , P ) with a normal filtration {Ft}, t ≥
0. The expectation of the random field u is defined by

E[u] =

∫
Ω

u dP ,

7See Section A.1 in Appendix A.
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where the integral is to be understood in the sense of the Bochner integral
(see, e.g., [380]). In similar fashion we may define the statistical moments of
the random fields, for instance, the pth moment is defined by

E[||u||pH] :=

∫
Ω

||u||pH dP ,

where we consider the random field u as taking values in a function space H.
Of particular importance in the study of stochastic evolution equations is

the space of square integrable H-valued F -measurable random variables,

L2(Ω,F , P ;H) = {u : Ω→ H : u ∈ m-F and EP [||u||2H] <∞},
where the notation u ∈ m-F means that u is measurable with respect to
F . This space may be understood as a special case of the Lebesgue-Bochner
space, defined over the probability measure P . In cases where the σ-algebra
F or the probability measure P are fixed, we may omit the explicit depen-
dence on them in the notation of the space; in such cases we use the notation
L2(Ω, P ;H) or L2(Ω;H), respectively.

We will also employ the space of all continuous (in mean square) and
square integrable predictable processes

C([0, T ],Ω,PT , P ;H) = {Y ∈ C([0, T ];L2(Ω,H) : Y ∈ m-PT }.
This space equipped with the norm

‖Y ‖C = sup
t∈[0,T ]

(
E
[
‖Y (t)‖2H

])1/2
is a Banach space. In cases where the probability space is fixed, we suppress
the explicit dependence on Ω, PT , P and write C([0, T ];H).

Standard references for these spaces and their properties are, e.g., [120],
[168], and [352].

3.3 STANDARD DIFFERENTIAL AND TRACE OPERATORS

As most of the function spaces used in mathematical electromagnetic theory
are related to the action of the fundamental operators of vector analysis on
vector-valued functions, let us recall the definitions of the basic linear8 and
trace operators that are essential in electromagnetism.

3.3.1 Differential operators

. grad : D′(O) −→ (D′(O))3 , u 7→ gradu :=
(
∂u
∂x1

, ∂u∂x2
, ∂u∂x3

)tr
,

. div : (D′(O))3 −→ D′(O) , v 7→ div v := ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
,

. curl : (D′(O))3 −→ (D′(O))3 , w 7→ curlw :=
(
∂w3

∂x2
− ∂w2

∂x3
, ∂w1

∂x3
−

∂w3

∂x1
, ∂w2

∂x1
− ∂w1

∂x2

)tr
.

8The vector analysis symbols are often used, namely, ∇u, ∇ · v and ∇× w, instead of
gradu, div v and curlw, respectively. In this book we employ the latter.
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These operators can be restricted to Ck(O) and C∞0 (O). The actions of
these operators on various function spaces of interest can be summarised in
the following diagrams:

D′(O)
grad−→ (D′(O))3 curl−→ (D′(O))3 div−→ D′(O) ,

Ck+3(O)
grad−→ (Ck+2(O))3 curl−→ (Ck+1(O))3 div−→ Ck(O) , k ∈ N ,

C∞0 (O)
grad−→ (C∞0 (O))3 curl−→ (C∞0 (O))3 div−→ C∞0 (O) .

It can be easily verified that curl gradu = 0 and div curlw = 0 .

3.3.2 Trace operators

Trace theory connects the properties of functions defined in the interior of
a domain O with their properties on its boundary Γ. Recall that for any
vector field v : O → R3, we have that

v|Γ = (n · v|Γ)n+ (n× v|Γ)× n,

where n is the outward normal. This motivates the definition of the following
operators, which are of fundamental importance in trace theory:

. The normal trace operator γn : v 7→ n · v|Γ .

. The tangential trace operator γτ : v 7→ n× v|Γ .

. The tangential components trace operator πΓ : v 7→ (n× v|Γ)× n .

The rigorous definition of these operators under weaker assumptions in var-
ious function spaces is the main objective of trace theory.

3.3.3 Integral identities

For sufficiently smooth vector fields u, v,w and scalar φ, the following integral
identities hold.

3.3.3.1 The divergence theorem∫
O

div v dx =

∫
Γ

γn(v) ds .

3.3.3.2 Green’s formulae∫
O
u · gradφdx+

∫
O

div uφdx =

∫
Γ

γn(u)φds =: 〈γn(u), φ〉 ,∫
O

curl v ·w dx−
∫
O
v · curlw dx =

∫
Γ

γτ (v) · πΓ(w) ds =: 〈γτ (v), πΓ(w)〉 .
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Note that in the above equations we use the same notation for two different
objects, namely, the surface integral of the product of two scalar quantities
and the surface integral of the dot product of two vectors. The right-hand
sides of the above will be used to define duality pairings between function
spaces containing vector or scalar fields, less regular than what is required
for the classical definition of the above integrals.

3.3.3.3 Jump relations

Let O be a bounded open set in R3 with an adequately smooth boundary
Γ, and let Γ± be its exterior (i.e., from Oe) and interior face (i.e., from O),
respectively. The (exterior) normal n to Γ is oriented from Γ− to Γ+. Let φ
be a scalar function and u a vector function, defined on R3 \ Γ of sufficient
regularity on each side, O, Oe of Γ, having limits up to Γ. The jump of s
across Γ is denoted by

[s]Γ := s|Γ− − s|Γ+ ,

with s|Γ± being the limit of s as x→ Γ±, respectively, where s is either φ or
u .

Then the following jump relations, easily derived from Green’s formulae,
hold (see [91]):∫

R3

gradφ · v dx =

∫
O

gradφ · v dx+

∫
Oe

gradφ · v dx−
∫

Γ

[φ]Γ n · v ds(x),∫
R3

div uψ dx =

∫
O

div uψ dx+

∫
Oe

div uψ dx−
∫

Γ

[n · u]Γ ψ ds(x),∫
R3

curl u · v dx =

∫
O

curl u · v dx+

∫
Oe

curl u · v dx−
∫

Γ

[n× u]Γ · v ds(x),

for v ∈ (C∞0 (R3))3 and ψ ∈ C∞0 (R3).
The derivatives in the integrals on the left-hand sides of the above relations

are to be understood in the distributional sense because of the discontinuities
of φ or u across Γ, while on the right-hand side they are to be understood
in the classical sense.

3.3.4 The tangential differential operators

For a sufficiently smooth scalar function φ : Γ → R, we consider an appro-
priate extension Φ : O → R such that Φ|Γ = φ, and define the following:

Gradφ := πΓ (gradΦ).

For a sufficiently smooth vector field v : Γ→ R3 we consider an appropriate
extension V : O → R3 such that V |Γ = v and define the following:

Curl v = γn(curlV ).

Note that the operator Curl maps a vector field into a scalar function.
By Green’s formulae it can be shown that the above two definitions are

independent of the choice of the particular extension.
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Using the above definition we can define, using duality, the following tan-
gential operators:

〈
−→

Curl φ , v 〉 := −〈φ ,Curl v 〉 , for all regular vector fields9 v.

〈Div v , φ 〉 := −〈v ,Gradφ 〉 , for all regular scalar functions10 φ.

3.4 FUNCTION SPACES FOR ELECTROMAGNETICS

3.4.1 The space H(div,O)

H(div,O) = {u ∈ (L2(O))3 : div u ∈ L2(O)}.

When endowed with the (graph) norm

||u||H(div,O) =
(
||u||2(L2(O))3 + ||div u||2L2(O)

)1/2

it is a Hilbert space. The associated inner product is defined by

(u, v)H(div,O) =

∫
O
u · v dx+

∫
O

(div u) (div v) dx.

If O is bounded, then

H(div,O) = closure of (C∞(O))3 in the norm of H(div,O).

Furthermore, (C0,1
0 (O))3 and (C∞0 (O))3 are dense in H(div,O), and there

is a continuous extension from H(div,O) into H(div,R3).

3.4.2 The space H0(div,O)

H0(div,O) = closure of (C∞0 (O))3 in the norm of H(divO).

If O is bounded, then

H0(div,O) = {u ∈ H(div,O) : u · n|Γ = 0}.

3.4.3 The spaces H(div0,O) and H0(div0,O)

H(div0,O) =
{
u ∈ (L2(O))3 : div u = 0

}
.

H0(div0,O) := {u ∈ H(div0,O) : u · n = 0 on Γ}.

9The symbol 〈·, ·〉 on the left-hand side corresponds to the surface integral of the dot
product of the involved vector fields, whereas the symbol 〈·, ·〉 on the right-hand side
corresponds to the surface integral of the (usual) product of the involved scalar fields.

10The symbol 〈·, ·〉 on the left-hand side corresponds to the surface integral of the
(usual) product of the involved scalar fields, whereas the symbol 〈·, ·〉 on the right-hand
side corresponds to the surface integral of the dot product of the involved vector fields.
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3.4.4 The space H(curl,O)

H(curl,O) = {u ∈ (L2(O))3 : curlu ∈ (L2(O))3}.

When endowed with the (graph) norm

||u||H(curl,O) = (||u||2(L2(O))3 + ||curlu||2(L2(O))3)1/2

it is a Hilbert space. The associated inner product is defined by

(u, v)H(curl,O) =

∫
O
u · v dx+

∫
O

curlu · curl v dx.

An alternative characterisation of H(curl,O) is

H(curl,O) = closure of C∞(O)) in the H(curl,O) norm,

which is a density result.
Furthermore, (C0,1

0 (O))3 and (C∞0 (O))3 are dense in H(curl,O), and there
is a continuous extension from H(curl,O) into H(curl,R3).

3.4.5 The space H0(curl,O)

H0(curl,O) = closure of (C∞0 (O))3 in the norm of H(curl,O).

If O is bounded, then

H0(curl,O) = {u ∈ H(curl,O) : n× u|Γ = 0}.

3.4.6 The spaces H(curl0,O) and H0(curl0,O)

H(curl0,O) =
{
u ∈ (L2(O))3 : curlu = 0

}
.

H0(curl0,O) := {u ∈ H(curl0,O) : u× n = 0 on Γ}.

3.4.7 The spaces H(curl, div,O), H0(curl, div,O) and H(curl, div0,O)

H(curl, div,O) := H(curl,O) ∩H(div,O)}.

H0(curl, div,O) := H0(curl,O) ∩H0(div,O).

H(curl, div0,O) := {u ∈ H(curl,O) : div u = 0}.

When endowed with the norm(
|| u ||2(L2(O))3 + || curlu ||2(L2(O))3 + || divu ||2L2(O)

)1/2

,

H(curl, div,O) is a Hilbert space. Moreover11, H(curl, div,O) ⊂ (H1
loc(O))3,

and the following identification holds:

(H1
0 (O))3 = H0(curl, div,O).

11For the definition of H1
loc(O), see Section 3.4.12 below.
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3.4.8 The spaces H1(div,O), H1(curl,O)

H1(div,O) = {u ∈ (H1(O))3 : div u ∈ (H1(O))3}.

H1(curl,O) = {u ∈ (H1(O))3 : curlu ∈ (H1(O))3}.

3.4.9 Spaces of normal and tangential fields

Ct(Γ) := {v ∈ (C(Γ))3 : v · n = 0 on Γ} .

L2
t (Γ) := {v ∈ (L2(Γ))3 : v · n = 0 on Γ} .

L2
n(Γ) := {v ∈ (L2(Γ))3 : n× (n× v) = 0 on Γ} .

H1
t (O) := {v ∈ H1(O) : v · n = 0 on Γ} .

H1
n(O) := {v ∈ H1(O) : n× (n× v) = 0 on Γ} .

Hs
t(Γ) := {v ∈ (H s(Γ))3 : n · v = 0 on Γ}, s ∈ R.

H−st (Γ) is the dual space ofHs
t(Γ), withL2

t (Γ) as a pivot space12.

3.4.10 The spaces H−1/2(div,Γ) and H−1/2(curl,Γ)

Let O be a regular open set with C1,1 boundary Γ. We define

H−1/2(div,Γ) = {v ∈ (H−1/2(Γ))3 : n · v = 0 , Div v ∈ H−1/2(Γ)}.

H−1/2(curl,Γ) = {v ∈ (H−1/2(Γ))3 : n · v = 0 , Curl v ∈ H−1/2(Γ)}.

These are both Hilbert spaces. These spaces are related in the sense that if
v ∈ H−1/2(div,Γ), then n × v ∈ H−1/2(curl,Γ), and if v ∈ H−1/2(curl,Γ)
then n× v ∈ H−1/2(div,Γ).

The space H−1/2(div,Γ) is the dual space of H−1/2(curl,Γ), with L2
t (Γ)

the pivot space, and the following duality property holds:

〈n× u, v〉 = −〈u, n× v〉 , ∀u, v ∈ H−1/2(curl,Γ),

as verified by Green’s formulae.

3.4.11 The spaces H1/2(div,Γ) and H1/2(curl,Γ)

H1/2(div,Γ) = {v ∈ (H1/2(Γ))3 : n · v = 0 , Div v ∈ H1/2(Γ)}.

H1/2(curl,Γ) = {v ∈ (H1/2(Γ))3 : n · v = 0 , Curl v ∈ H1/2(Γ)}.

12See Section A.1 in Appendix A.
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3.4.12 Spaces of locally square integrable functions

In the framework of exterior problems we will often make use of the spaces

L2
loc(Oe) = {u : u ∈ L2(Q ∩ Oe) for every cube Q ⊂ R3}.

L2
loc(curl,Oe) = L2

loc(Oe) ∩ {u : curlu ∈ L2
loc(Oe)}.

L2
loc(curl curl,Oe) = L2

loc(curl,Oe) ∩ {u : curl curlu ∈ L2
loc(Oe)}.

The meaning of, e.g., H1
loc(Oe) is then clear.

We will further need the following spaces:

H1
Div(O) = {u ∈ H1(O) : Div(n× u) ∈ H1/2(Γ)}.

H1
Div, loc(Oe) = {u ∈ H1

loc(Oe) : Div(n× u) ∈ H1/2(Γ)}.

H1
Div, loc(Γ) = {u ∈ H1/2

t (Γ) : Divu ∈ H1/2(Γ)}.

3.5 TRACES

In what follows we collect some results concerning traces. For details, readers
may consult [91], [126], [334].

In Section 3.3.2 the trace operators γn, γτ , πΓ were defined formally,
for sufficiently smooth functions (e.g., in C∞(O)). These operators have
continuous extensions in function spaces consisting of vector fields of less
regularity. Next we summarise the properties of these continuous extensions.

3.5.1 Properties of the normal trace operator γn

Proposition 3.5.1 Assume that O is locally on one side of its boundary Γ,
with Γ bounded and Lipschitz. Then

(i) γn : H(div,O)→ H−1/2(Γ) is continuous and onto.

(ii) ker γn = H0(div,O).

3.5.2 Properties of the tangential trace operator γτ

Proposition 3.5.2 Assume that O is locally on one side of its boundary Γ,
with Γ bounded and Lipschitz. Then

(i) γτ : H(curl,O)→ (H−1/2(Γ))3 is continuous but not necessarily onto.

(ii) ker γτ = H0(curl,O).

Proposition 3.5.3 In addition to the assumptions of Proposition 3.5.2 as-
sume further that13 Γ is C1,1. Then the following mappings are continuous
and onto:

13It is not known whether this regularity condition is optimal [91]. This comment
applies wherever C1,1 regularity is assumed in this section.



rsy-book-final December 7, 2011

52 CHAPTER 3

(i) γτ : H(curl,O)→ H−1/2(div,Γ).

(ii) γτ : H1(curl,O)→ H1/2(div,Γ).

(iii) γτ : H(curl, div0,O)→ H−1/2(div,Γ).

3.5.3 Properties of the tangential components trace operator πΓ

Proposition 3.5.4 Assume that O is locally on one side of its boundary Γ,
with Γ bounded and Lipschitz. Then

(i) πΓ : H(curl,O)→ (H−1/2(Γ))3 is continuous.

(ii) ker πΓ = H0(curl,O).

Proposition 3.5.5 In addition to the assumptions of Proposition 3.5.4 as-
sume further that Γ is C1,1. Then the following mappings are continuous
and onto:

(i) πΓ : H(curl,O)→ H−1/2(curl,Γ).

(ii) πΓ : H1(curl,O)→ H1/2(curl,Γ).

(iii) πΓ : H(curl, div0,O)→ H−1/2(curl,Γ).

Remark 3.5.6 ([91]) For the exterior domain Oe, with Γ ∈ C1,1, the
trace mappings γτ , πΓ defined on Hloc(curl,Oe) := {v ∈ L2

loc(Oe,C3) : v ζ ∈
H(curl,Oe), ∀ζ ∈ C∞0 (R3)} are also continuous and onto.

3.6 VARIOUS DECOMPOSITIONS

3.6.1 Orthogonal decompositions of (L2(O))3

Proposition 3.6.1 Let O be a connected open set in R3, with a Lipschitz
boundary Γ. Then we have the following orthogonal decompositions:

(i) (L2(O))3 = gradH1(O)⊕H0(div0,O).

(ii) (L2(O))3 = gradH1
0 (O)⊕H(div0,O).

(iii) (L2(O))3 = gradH1
0 (O)⊕ curl (H1(O))3.

(iv) (L2(O))3 = gradH1(O)⊕ curl (H1
0 (O))3.

The above decompositions are customarily called Helmholtz decomposi-
tions. The typical form in which they are most often used is the following:
consider, for example, the third case above; we can then uniquely decompose
each element u ∈ (L2(O))3 as u = grad p + curlw, where p ∈ H1

0 (O) and
w ∈ (H1(O))3.

Remark 3.6.2 These decompositions have generalisations for nonsimply
connected domains, which are usually referred to as Hodge decompositions
(see, e.g., [91]).
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3.6.2 Decompositions in terms of normal and tangential spaces

For the definitions of the relevant spaces, see Section 3.4.9.

Proposition 3.6.3 The following orthogonal decomposition is true:

(L2(Γ))3 = L2
t (Γ)⊕ L2

n(Γ) .

Remark 3.6.4 If O is regular in the sense defined above, we cannot have a
similar decomposition for (H1/2(Γ))3. But if O is C1,α for α ∈ (1

2
, 1), then

(H1/2(Γ))3 = H
1/2
t (Γ)⊕H1/2

n (Γ) ,

while, by duality, an analogous decomposition is true for (H−1/2(Γ))3.

3.7 COMPACT EMBEDDINGS

Compact embeddings (denoted by
c

↪→) are certainly of sine qua non im-
portance in establishing the solvability of boundary value problems. The
embedding X

c

↪→Y is compact if the injection J : X → Y is a compact op-
erator. This allows turning, up to subsequences, a weak convergence in X
into a strong convergence in Y (see Section A.2 in Appendix A).

We list here some compactness results, starting with the compactness
version - bearing the name Rellich-Kondrachov theorem - of the famous
Sobolev embedding theorem.

Theorem 3.7.1 (Rellich-Kondrachov theorem) Let O ⊂ RN be a (not
necessarily bounded) domain with Lipschitz boundary Γ, and let O0 ⊆ O be
any bounded subdomain of O. Let m ∈ N, j ∈ N0 and p ∈ [1,∞).

(i) If mp ≤ N , then

(a) W j+m,p(O)
c

↪→W j,q(O0) for mp < N and q ∈ [1, Np/(N −mp)).
(b) W j+m,p(O)

c

↪→W j,q(O0) for mp = N and q ∈ [1,∞).

(ii) If mp > N , then

(a) W j+m,p(O)
c

↪→W j,q(O0), q ∈ [1,∞).

(b) W j+m,p(O)
c

↪→Cj(O0) .

(c) W j+m,p(O)
c

↪→Cj,α(O0) , α ∈ (0,m− n/p).

Remark 3.7.2 If O is an arbitrary domain in RN , all the above embeddings
are compact, provided that W j+m,p(O) is replaced by W j+m,p

0 (O). In the
case where O is an unbounded domain, compact embeddings of Wm,p

0 (O)
are studied in [1].
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Corollary 3.7.3 For N = 3, it holds that H1(O)
c

↪→Lq(O) for q ∈ [1, 6].

Regarding fractional order spaces, one of the many existing compact em-
beddings results is [309].

Theorem 3.7.4 Let O ⊂ RN be a bounded domain with Lipschitz boundary
Γ. If 0 ≤ s1 < s2 <∞, then Hs2(O)

c

↪→Hs1(O) .

One of the main differences between the spaces (H1(O))3 and H(curl,O),
for regular bounded O, is that the embeddings into (L2(O))3 of H(curl,O),
H(div,O), H(curl, div,O), and their intersections with ker curl or ker div
are not compact, since all these spaces contain the space H(O) := {u ∈
(L2(O))3 : curlu = 0, div u = 0}, which is an infinite-dimensional closed
subspace of (L2(O))3. Nevertheless, there are related compact embeddings
(see [91]):

Theorem 3.7.5 Let O ⊂ R3 be a bounded domain with Lipschitz boundary
Γ. Then

(i) {u ∈ H(curl, div,O) : n× u|Γ ∈ (L2(Γ))3} c

↪→(L2(O))3,

(ii) {u ∈ H(curl, div,O) : n · u|Γ ∈ L2(Γ)} c

↪→(L2(O))3,

(iii) {u ∈ H(curl,O) : div(ζ u) ∈ L2(O) , n× u|Γ ∈ (L2(Γ))3} c

↪→(L2(O))3,

(iv) {u ∈ H(curl,O) : div(ζ u) ∈ L2(O) , n · u|Γ ∈ L2(Γ)} c

↪→(L2(O))3,

(v) {u ∈ H(curl,O) :
∫
O (ζ u · gradψ) = 0 , ∀ψ ∈ H1(O)} c

↪→(L2(O))3,

(vi) {u ∈ H0(curl,O) : div(ζ u) = grad(ζ ζ̃) · curlu ∈ L2(O)} c

↪→(L2(O))3,

where ζ in cases (iii), (iv), (v), (vi)and ζ̃ in case (vi), are positive, bounded
away from 0, real-valued functions in L∞(O).

3.8 THE OPERATORS OF VECTOR ANALYSIS REVISITED

3.8.1 The operators on function spaces

The action of the grad, curl, and div, operators in function spaces is sum-
marised in the following de Rham diagrams:

H1(O)
grad−→ H(curl,O)

curl−→ H(div,O)
div−→ L2(O).

H1
0 (O)

grad−→ H0(curl,O)
curl−→ H0(div,O)

div−→ L2(O).

The ranges of the operators grad, curl, and div are closed in the correspond-
ing L2(O) spaces.
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3.8.2 Regularity

Let O be open and bounded in R3, with Γ being Ck+1,1 regular. The fol-
lowing regularity results (see [126]) hold.

Proposition 3.8.1 If, u ∈ (L2(O))3, curlu ∈ (Hk(O))3,divu ∈ Hk(O),
and either γn(u) ∈ Hk+1/2(Γ) or γτ (u) ∈ (Hk+1/2(Γ))3, then u ∈ (Hk+1(O))3 .

3.8.3 Integral formulae revisited

Green’s integral formulae can be generalised (see, e.g., [91], [324]). Some of
the mostly used generalisations are:∫

O u·gradφdx+
∫
O div uφdx = 〈γn(u)φ〉 , ∀u ∈ H(div,O) , φ ∈ H1(O).∫

O curl v ·w dx−
∫
O v · curlw dx = 〈γτ (v), πΓ(w)〉 , ∀v,w ∈ H(curl,O) .

3.8.4 Jump relations

The jump relations of Section 3.3.3.3 also hold in the following setting (see
[91]), φ|O ∈ H1(O) and φ|Oe ∈ H1

loc(Oe), or u|O ∈ H(div,O) and u|Oe ∈
Hloc(div,Oe), or u|O ∈ H(curl,O) and u|Oe ∈ Hloc(curl,Oe).

3.8.5 The kernels of curl and div

Let ker and ran denote the kernel and range of an operator, respectively. The
kernels of curl and div are characterised by the celebrated Poincaré lemma:

Lemma 3.8.2 (Poincaré lemma)

ker curl = ran grad = gradH1(O) .

ker div = ran curl = curl (H1(O))3 = curlH(curl,O) .

Related results can be proved when boundary conditions are involved. In
particular

H0(curl0,O) = gradH1
0 (O).

H0(div0,O) = curl (H1
0 (O))3 = curlH0(curl,O).

3.8.6 Properties of tangential differential operators

The definitions of Section 3.3.4 are formal; they become precise in the frame-
work of Sobolev spaces [91].

Proposition 3.8.3 The following mappings are continuous:

(i) Grad : H1/2(Γ)→ H
−1/2
t (Γ).

(ii) Div : H
1/2
t (Γ)→ H−1/2(Γ).
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(iii) Curl : H
1/2
t (Γ)→ H−1/2(Γ).

(iv)
−→

Curl : H1/2(Γ)→ H
−1/2
t (Γ).

3.9 THE MAXWELL OPERATOR

We collect in this section some key results concerning the Maxwell operator

M :=

(
0 curl
−curl 0

)
in various function space settings.

3.9.1 The spaces X, XM, XM

We will extensively use the following abbreviations:

X := (L2(O))3.

X := X× X = (L2(O))3 × (L2(O))3.

These are Hilbert spaces when equipped with the inner products

(φi, ψi)X =

∫
O
φi · ψi dx, i = 1, 2.

(φ, ψ)X =

∫
O

(φ1 · ψ1 + φ2 · ψ2) dx,

respectively, where φ = (φ1, φ2)tr, ψ = (ψ1, ψ2)tr, and the overbar denotes
complex conjugation.

The weighted versions of the above Hilbert spaces are often useful; the
inner products are then defined as

(φi, ψi)X,wi =

∫
O
wiφi · ψi dx, i = 1, 2 ,

(φ, ψ)X,w =

∫
O

(w1 φ1 · ψ1 + w2 φ2 · ψ2) dx ,

where w1 and w2 are appropriately chosen regular-weight functions. A con-
venient choice for these weights in electromagnetics is w1 = ε, w2 = µ.

Theorem 3.9.1 H(curl,O) and H0(curl,O) are dense subspaces of X.

Additionally, we consider

XM := H0(curl,O)×H(curl,O),

X1 := H0(curl,O) ∩H(div0,O),

X2 := H(curl,O) ∩H0(div0,O),
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XM := X1 × X2 .

Remark 3.9.2 Observe that the perfect conductor boundary condition is
absorbed in the first component of the above Cartesian products.

In the case of spatially dependent coefficients one may consider weighted
variants of the above spaces, e.g., usingH(divε0,O) = {v ∈ X : div(εv) = 0}
instead of H(div0,O).

3.9.2 Properties of M

The simplest case to consider is electromagnetic fields of finite energy and
work in an L2 setting. The proper definition of the Maxwell operator in this
case is M : D(M) = XM → X.

The following results are well known.

Theorem 3.9.3 Consider the operator M : D(M) = XM → X. Then

(i) The domain D(M) is dense in X and M is closed.

(ii) The operator M is skew adjoint, i.e., M∗ = −M and D(M) = D(M∗).

Consequently, Stone’s theorem (see Theorem A.8.10 in Appendix A) im-
plies the following:

Theorem 3.9.4 The operator M : XM → X is the generator of a unitary
group {TM(t)}t∈R on X.

This equivalently means that both M and −M are generators of strongly
continuous semigroups. More precisely, M generates (TM(t))t≥0, whereas −M
generates (TM(t)∗)t≥0. Observe, incidentally, that TM(t)∗ = TM(t)−1.

Remark 3.9.5 It is important to notice that −M actually appears in the
abstract evolution equation (2.10) after the change of variable t 7→ −t, which
corresponds to an inversion of time. Since we are studying causal models,
dealing with fields that vanish for t < 0, we actually use only the semigroup
TM(t) for t ≥ 0. However, the semigroup TM(t) for t < 0 is very useful
in certain settings, particularly in problems related to controllability (see
Chapter 8) and scattering theory (see Chapter 10).

Other choices are possible. For instance, when we are interested in con-
sidering divergence-free solutions, then we may define M : D(M) = XM → X.
In this case we have the following theorem.

Theorem 3.9.6 Consider the operator M : D(M) = XM → X. Then

(i) The domain D(M) is dense in X and M is closed.

(ii) The operator M is skew adjoint, i.e., M∗ = −M and D(M) = D(M∗).
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Using the same arguments as above, we obtain (see, e.g., [138]) Theorem
3.9.7.

Theorem 3.9.7 The operator M : XM → X is the generator of a unitary
group {TM(t)}t∈R on X.

Remark 3.9.8 The properties of the Maxwell operator, as described in The-
orems 3.9.4 or 3.9.7, are also valid in more general functional settings; for
instance, for 0 < p, q < ∞ the above theorem still holds (see, e.g., [426]) if
M is defined on

D(M) = U1 × U2 ,

U1 = {u1 ∈ (Lp(O))3, curlu1 ∈ (Lq(O))3, n× u1|∂O = 0} ,

U2 = {u2 ∈ (L2(O))3, curlu2 ∈ (L
p
p−1 (O))3} .

3.9.3 Modified Maxwell operators

It is often convenient to work with a modified version of the Maxwell operator
M, namely, with the operator MA defined by

MA = A−1
or

M,

where Aor is the 6× 6 matrix (see (2.12)):

Aor(x) =

(
ε(x) ξ(x)
ζ(x) µ(x)

)
,

ε, ξ, ζ and µ being 3× 3 matrices whose entries are measurable and essentially
bounded functions for x ∈ O. Under sufficient conditions on these matrices,
the modified Maxwell operator MA enjoys analogous properties as those of
M. In particular, the following result holds [205].

Theorem 3.9.9 Under Assumption 2.3.5 for Aor(x), MA : XM → X is the
generator of a strongly continuous group {TMA

(t)}t∈R on X.

Further, the above result (under additional regularity assumptions on Aor)
holds also in the following setting (see, e.g., [138]).

Theorem 3.9.10 The operator MA : XM → X is the generator of a strongly
continuous group {TMA

(t)}t∈R on X.

Remark 3.9.11 In a number of applications, instead of Aor we use its di-
agonal version A0 (see (2.13)). It is obvious how the above results can be
applied to the arising modified Maxwell operator A−1

0
M.

Remark 3.9.12 For an introduction to operator theory for electromagnet-
ics, see [126], [180], [278].
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Chapter Four

Well Posedness

4.1 INTRODUCTION

Time-harmonic problems constitute an important class within the theory of
electromagnetics in complex media. In treating such problems we assume
that the temporal evolution of these fields is periodic, with a fixed and pre-
scribed period $. This class covers a variety of important applications, such
as wave guide problems, scattering problems, etc. Under the assumption of
temporally periodic fields we may use the constitutive relations introduced
in Section 2.3.3, which do not contain the convolution terms. The absence
of the convolution terms simplifies the treatment of the Maxwell equations,
(PDEs) which in this case become partial differential equations depending
only on the spatial variables. As we shall see in this chapter, these differ-
ential equations, after proper reductions, can lead to problems that can be
treated using the theory of variational PDEs, and methods akin to those
used in elliptic problems.

In this chapter we present rigorous mathematical results concerning the
solvability and well posedness of time-harmonic problems for complex elec-
tromagnetic media, with a special emphasis on chiral media. The structure
of the chapter is as follows: In Section 4.2 we treat the solvability and
well posedness of the interior time-harmonic problem and in Section 4.3 we
present some results concerning eigenvalue problems in cavities filled with
complex electromagnetic materials. In Section 4.4 we study the behaviour
of the interior domain problem for a chiral medium in the limit of low chi-
rality, and we show that this problem converges in the appropriate sense to
the relevant problem for an achiral medium. This result may be interpreted
as a continuity result (with respect to the data). In Section 4.5 we present
some comments related to the well posedness and solvability of exterior prob-
lems1. Finally, in Section 4.6, using an appropriate finite-dimensional space
(namely, the one corresponding to finite element methods) and the varia-
tional formulation of the discretised version of the original boundary value
problem, we obtain numerical methods for the solution of the Maxwell equa-
tions for chiral media. We do not present the actual numerical methods but
furnish the analytic framework necessary for their implementation.

1These problems will be treated in detail in Chapters 5 and 6, where scattering problems
in homogeneous chiral media are studied.
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4.2 SOLVABILITY OF THE INTERIOR PROBLEM

In this section we consider the solvability of the interior time-harmonic prob-
lem, assuming nonconstant coefficients. In view of the Drude-Born-Fedorov
constitutive relations (see Section 2.3.3, equation (2.21), in the following we
drop the subscript “DBF” from all material parameters), and the Maxwell
equations in a domain O ⊂ R3 become

curlE = βγ2E + i$µ
(
γ
k

)2
H,

curlH = βγ2H − i$ε
(
γ
k

)2
E,

in O, (4.1)

where $ > 0 is the angular frequency,

k2 = $2εµ , γ2 = k2(1− β2k2)−1. (4.2)

These equations are complemented with the boundary condition

n× E = f, on ∂O, (4.3)

where2 f ∈ H−1/2(div, ∂O) is a prescribed electric field on ∂O.
If f = 0, then we have a homogeneous problem. This problem will have

nontrivial solutions for specific values of the frequency $ as long as the other
parameters of the problem are fixed. This is equivalent to an eigenvalue
problem that will reveal the resonant frequencies of O (the cavity problem).

Assume that we are away from such an eigenvalue. Then we will prove
that the interior problem is well posed. Our approach closely follows [11]
and [8]. See also [101]. Throughout this chapter we make the following
assumption (see [11]).

Assumption 4.2.1

(i) The boundary ∂O is of class C1,1.

(ii) The coefficients ε, µ and β are real valued and positive C2(O) functions.

(iii) The function α := µ−1(1−$2εµβ2) is positive in O.

The assumption α > 0 is plausible since the chirality parameter β is usu-
ally considered to be small. Furthermore, the above regularity requirements
can be relaxed.

Theorem 4.2.2 Assume that $ is not an eigenvalue of the cavity problem
(4.1). Then the boundary value problem (4.1)-(4.3) has a unique solution in
H(curl,O)×H(curl,O) for every f ∈ H−1/2(div, ∂O).

The proof is performed in the following steps.

STEP 1 In order to study the solvability of the interior problem, it is conve-
nient to rewrite the system in terms of the electric field only. To this end,

2For the definition of the trace space H−1/2(div, ∂O), see Section 3.4.10.
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we apply the curl operator on the first equation (4.1) (after multiplying both
sides by µ−1k2γ−2), and using well-known vector identities we find

curl
(
µ−1(1−$2εµβ2)curlE

)
= $2curl (βεE) + i$curlH. (4.4)

In the above, we have used the definition of k2 given in (4.2).
We now rewrite curlH in terms of the electric field E, using a linear

combination of (4.1), as

i$curlH = k2βµ−1curlE +$2εE. (4.5)

Substituting (4.5) into (4.4), we obtain a single equation for E,

curl (αcurlE) = $2(curl (βεE) + βεcurlE + εE). (4.6)

This equation has to be solved with the boundary condition (4.3).
We need to obtain an appropriate weak formulation for the system (4.6)

(or its equivalent form, (4.27)). To this end, we take the dot product of (4.3)
with a smooth vector function ψ, integrate over the domain O and use the
second Green’s formula3, obtaining∫

O
(αcurlE) · curlψdx+

∫
∂O

(n× αcurlE) · ((n× ψ)× n)ds(x) =

+$2

∫
O

(εE + curl (εβE) + εβcurlE) · ψdx.

By choosing properly the test function we may eliminate the boundary term.
This choice requires that the tangential component of the test function vanish
on the boundary ∂O; therefore ψ ∈ H0(curl,O) .

This argument motivates the introduction of the bilinear form

a(β)(·, ·) : H(curl,O)×H0(curl,O)→ C,
defined as

a(β)(E,ψ) := (αcurlE, curlψ)−$2 (εE, ψ)

−$2 (curl (εβE) , ψ)−$2 (εβcurlE,ψ) ,
(4.7)

where by (·, ·) we denote the inner product in the Hilbert space (L2(O))3.
Our aim is to express the interior problem as a variational problem in terms
of this bilinear form and use standard arguments from the theory of partial
differential equations (see, e.g., [363]) to provide solvability results.

In doing so, we need to take the following steps:

STEP 2 First reduce problem (4.1) to one with a homogeneous boundary
condition. We seek a solution of the form E = U +E0, where U ∈ (H1(O))3

is such that n × U = f for x ∈ ∂O. This reduces to the solvability of the
operator equation γτ (U) = f and is possible for every f ∈ H−1/2(div, ∂O)
by the properties of the tangential trace operator (see Proposition 3.5.3).
Substituting this into equation (4.6), we see that E0 satisfies the equation

curl (α curlE0)−$2(curl (βεE0) + βεcurlE0 + εE0) = F, (4.8)

3See Section 3.8.3.
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where

F := −curl (αcurlU) +$2(curl (βεU) + βεU + εU), (4.9)

with the homogeneous boundary condition

n× E0 = 0, x ∈ ∂O.
Since f ∈ H−1/2(div, ∂O), U must be in H(curl,O), so that in general,
F ∈ (H−1(O))3. In view of the bilinear form a(β)(·, ·) defined in (4.7) and
the duality pairing 〈·, ·〉 between H(curl,O) and (H−1(O))3, the weak form
of equation (4.8) can be written as

a(β)(E0, ψ) = 〈F,ψ〉. (4.10)

STEP 3 We now recall the Helmholtz decomposition (see Proposition 3.6.1
(ii)) and seek a field E0 in the form E0 = e+ gradφ, where e ∈ (H1

0 (O))3 ∩
H(div,O) and φ is an electrostatic potential φ ∈ H1

0 (O). Substituting this
expression into (4.10), we obtain (in terms of the bilinear form a(β)(·, ·)
defined in (4.7))

a(β)(e, ψ) + a(β)(gradφ, ψ) = 〈F,ψ〉,
which, using the vector calculus identities, reduces to

a(β)(e, ψ) + b(β)(φ, ψ) = 〈F,ψ〉, ∀ψ ∈ H0(curl,O) , (4.11)

in terms of the new bilinear form

b(β) : H1
0 (O)×H0(curl,O)→ C

defined by

b(β)(φ, ψ) := −$2

∫
O

(curl(εβgradφ) + εgradφ) · ψdx. (4.12)

This equation contains two unknown entities, the electromagnetic field e and
the electrostatic potential φ.
STEP 4 We eliminate first the electrostatic potential φ. We choose the test
function ψ as ψ = gradξ , ξ ∈ H1

0 (O) and substitute it into (4.11). For
this choice, curlψ = 0, so that we obtain a vanishing contribution from
the first term in the bilinear form a(β)(e, gradξ). We now integrate the
remaining terms by parts using the divergence formula, as well as the fact
that div curl v = 0. After some algebra, the remaining terms in (4.11) are

$2

(∫
O

div(εβcurle+εe)·ξdx+

∫
O
εgradφ·gradξ dx

)
=

∫
O
F ·gradξdx. (4.13)

If we choose e such that div(εβcurle+εe) = 0, or its equivalent weak form∫
O

( εβcurle+ εe ) · grad ξ dx = 0, ∀ξ ∈ H1
0 (O),

then equation (4.13) reduces to

$2

∫
O
εgradφ · gradξ dx =

∫
O
F · gradξ dx, (4.14)

which is the weak form for an elliptic equation for φ.
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Remark 4.2.3 The above procedure is equivalent to invoking a Helmholtz-
type decomposition of H0(curl,O) as

{u ∈ H(curl,O) : (εβcurlu+ εu, grad ξ) = 0 , ∀ ξ ∈ H1
0 (O)} ⊕ gradH1

0 (O);

see Lemma 4.5 in [324].

The solvability of the elliptic equation (4.14) for the electrostatic potential
is obtained by standard arguments based on the Lax-Milgram lemma (see
Section A.10 in Appendix A).

Lemma 4.2.4 Assume that $2 > 0 and that Assumption 4.2.1 is valid.
Then there exists a unique solution φ ∈ H1

0 (O) of (4.14) satisfying

||gradφ||(L2(O))3 ≤ c ||F ||(H−1(O))3 ≤ C ||f ||H−1/2(div,∂O) .

The first inequality is an immediate consequence of the Lax-Milgram lemma,
while the second follows from (4.9) and the properties of the tangential trace
operator.
STEP 5 We now turn to the determination of e. Having determined the
electrostatic potential φ with the use of Lemma 4.2.4, we substitute that back
into equation (4.8), or its equivalent weak form (4.10), and now determine
e by solving the problem

curl(αcurle)−$2(curl(εβe) + εβcurle+ εe) =

z +$2(curl(εβgradφ) + εgradφ) ,
(4.15)

which in variational form can be expressed as

a(β)(e, ψ) = (z, ψ) +$2(curl(εβgradφ), ψ) +$2(εgradφ, ψ) , (4.16)

for all ψ ∈ H0(curl,O). In the above problem, we have included the terms
related to U in the new source term z to ease notation.
STEP 6 The major technical problem we need to address is related to the
coercivity of the bilinear form a(β). To resolve this difficulty we need to
treat a(β) as the perturbation of a coercive form and then use the theory of
Fredholm operators to show the existence of a solution (see Section A.6 in
Appendix A).

Consider the bilinear form

a
(β)
+ (e, ψ) := (α curle, curlψ) +$2(εβ curle, ψ) +$2(ε e, ψ) , (4.17)

which by Assumption 4.2.1 is a coercive continuous form on H(curl,O) ×
H0(curl,O). Therefore, by the Lax-Milgram lemma, for any F ∈ (H−1(O))3

the variational problem

a
(β)
+ (e, ψ) = 〈F, ψ〉 (4.18)

has a unique solution.
STEP 7 We will show that the variational problem (4.16) can be treated as
a perturbation of the variational problem (4.18). We rewrite the variational

problem (4.16) in terms of the bilinear form a
(β)
+ as

a
(β)
+ (e, ψ)−$2(curl(εβe), ψ)− 2$2(εβcurle, ψ)− 2$2(εe, ψ) =

(z, ψ) +$2(curl(εβgradφ), ψ) +$2(εgradφ, ψ) .
(4.19)
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Define the function space N (β) as

N (β) = {u ∈ H(curl,O) : (εβcurlu+ εu, grad ξ) = 0, ∀ξ ∈ H1
0 (O)} (4.20)

and the operator K : (L2(O))3 → (L2(O))3 by Ke := ϕ where ϕ is the
solution of the variational problem

a
(β)
+ (ϕ,ψ) = −$2{(curl(εβe), ψ) + 2(εβcurle, ψ) + 2(εe, ψ)} (4.21)

for all ψ ∈ N (β).

Lemma 4.2.5 The operator K is compact.

Proof. First of all we notice that by the Lax-Milgram lemma, the operator K
is well defined. Then we notice that if e ∈ N (β), then Ke ∈ N (β). This can be
seen easily, formally at first, by taking the divergence of the above problem.
We notice first that if e ∈ N (β), then the divergence of the right-hand side
vanishes. The divergence of the left-hand side equals div(εKe + εβcurlKe),
so we conclude that Ke ∈ N (β). By the regularity of the solution of (4.21)
we see that for every e ∈ H0(curl,O) and hence, the above formal argument
becomes rigorous.

By Theorem 3.7.5 the embedding of N (β) into (L2(O))3 is compact4. By
the properties of the solution of (4.21) the operator K maps bounded subsets
of (L2(O))3 into bounded subsets of N (β); therefore, by the compactness of
the embedding it follows that it maps bounded sets into precompact sets.
Therefore the operator K is compact. 2

STEP 8 We now define the map G as follows: given φ, let Gφ be the solution
of the variational system

a
(β)
+ (G , ψ) = (z, ψ) +$2(curl(εβgradφ), ψ) +$2(εgradφ, ψ) (4.22)

for all ψ ∈ N (β). Again, by the coercivity of a
(β)
+ , G is well defined by the

Lax-Milgram lemma.
STEP 9 Combining (4.21) and (4.22), we see that we may rewrite (4.19) in
the form

a
(β)
+ (e, ψ) + a

(β)
+ (Ke, ψ) = a

(β)
+ (G , ψ), ∀ψ ∈ H0(curl,O),

and by the bilinear property of a
(β)
+ this is equivalent to the operator equation

(I + K) e = G . (4.23)

Since K is a compact operator, this equation is solvable by the standard
arguments of the Fredholm theory. According to the Fredholm alternative
(see Section A.6 in Appendix A), if the homogeneous equation Ke = 0 has
only the trivial solution, then for every G the inhomogeneous equation (I +
K) e = G has a unique solution depending continuously on G .

Thus the proof of Theorem 4.2.2 is complete. �

4In particular, for β = 0 this is statement 5 of Theorem 3.7.5, while for β 6= 0, it follows
from statement 4 of the same theorem due to the assumed regularity on ε.
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Remark 4.2.6 In this section we have employed the Drude-Born-Fedorov
constitutive relations (2.21). As we have mentioned, in the frequency do-
main, (2.21) are equivalent to the Tellegen constitutive relations (2.20).
Let us consider the more general than (2.20) but of similar structure bian-
isotropic constitutive relations (2.16). Adopting, as usual, the time conven-
tion e−i$t, the Maxwell system (in six-vector notation) becomes

Mũ = Ãorũ+ JA , (4.24)

where Ãor is the matrix given in (2.17). Under Assumption 2.3.12, for a
fixed frequency, the appropriate sesquilinear form is continuous, bounded
and coercive (with suitable coercivity constants depending on O and on
the L∞ norms of ξ and ζ) in H(curl,O). Hence the corresponding interior
problem has a unique solution. Let us note that the coercivity proof ([261])
in this framework is simpler than the one presented in this section for the case
when the Drude-Born-Fedorov constitutive relations (2.21) are considered.

Remark 4.2.7 In the paper of Ammari and Nédélec [11], the solvability
result for the interior problem is proved in a slightly different way, using a
mixed variational formulation5 and the generalisation of Babuška and Brezzi
of the Lax-Milgram lemma (see Appendix A). To follow this line, we must
rewrite the problem in a suitable weak form using properly selected bilinear
forms. As before, we assume that E has a decomposition in the form

E = U + e+ gradφ ,

where U ∈ (H1(O))3 and n×U = f for x ∈ ∂O, e ∈ H0(curl,O)∩H(div,O)
and φ ∈ H1

0 (O). In terms of the bilinear forms a, b defined in (4.7) and (4.12),
respectively, the boundary value problem (4.1) - (4.2) can be expressed in
weak form using the mixed formulation

a(β)(e, w) + b(β)(φ,w) = a(β)(U,w), ∀w ∈ H0(curl,O) ,

b(β)(ψ, e) = 0 ∀ψ ∈ H1
0 (O) .

The bilinear form a(β) satisfies a weaker coercivity property expressed by
the inequality

|a(β)(e, e)| ≥ C1||curle||(L2(O))3 − C2||e||2(L2(O))3 ,

which holds for every e, for some positive constants C1, C2. Furthermore, b
satisfies the inequality

|b(β)(ψ, gradψ)| ≥ C3||ψ||2(H1
0 (O))3

for every ψ, for some positive constant C3, so that the Babuška-Brezzi inf-
sup condition (see Appendix A, Section A.10) is satisfied for the linear form
b(β). By compact embedding theorems we can see that the kernel of the
form b(β) is compactly embedded6 in (L2(O))3, so that a(β) is a compact

5Concerning the use of mixed variational formulations of boundary value problems, see
[46].

6See Section 3.7.
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perturbation of a coercive form on the kernel of the form b(β). The Babuška-
Brezzi generalisation7 of the Lax-Milgram lemma in conjunction with the
Fredholm alternative8 yields the required result.

4.3 THE EIGENVALUE PROBLEM

We now make a few brief comments regarding the eigenvalue problem, i.e.,
finding $ such that the problem

curl(αcurlE)−$2(curl (βεE) + βεcurlE + εE) = 0, in O ,
n× E = 0, on ∂O ,

(4.25)

admits nontrivial solutions.
An equivalent formulation of (4.25) is as follows: Let L(β) : H0(curl,O)→

(H−1(O))3 be the operator9 that acts on a vector field v as

L(β)v := curl (αcurlv)−$2(curl (βεv) + βεcurlv + εv). (4.26)

In terms of this operator, problem (4.25) can be rewritten as

L(β)E = 0, (4.27)

which in turn can be written as

a(β)(E,ψ;$2) = 0, ∀ψ ∈ H0(curl,O)

in terms of the bilinear form a(β) defined in (4.7).

Remark 4.3.1 In this section we deviate slightly from the notation of Sec-
tion 4.2 by keeping explicitly $2 in the bilinear form, since we are interested
in determining those values of $2 for which nontrivial solutions of the prob-

lem exist. The same applies to all the other bilinear forms, e.g., a
(β)
+ and

b(β).

The full treatment of the spectral properties of the operator L(β) is a
rather involved subject that falls outside the scope of the present work. We
concentrate here on some specific results that will be useful in the develop-
ment of the material in this chapter. For simplicity, we assume that β is a
non-negative constant. Since chirality effects are usually considered as small
effects, we will assume that β is small; therefore, we will adopt a perturbative
approach to the eigenvalue problem.

We start by recalling a few facts concerning the operator L(0). This cor-
responds to setting β = 0 in the operator L(β) defined in (4.26) and is in
fact the interior achiral Maxwell operator, whose action on a vector field v
is given by

L(0)v = curl
(
µ−1 curl v

)
−$2ε v. (4.28)

7See Appendix A, Section A.10.
8See Appendix A, Section A.6.
9This operator is related to the bilinear form a(β) as follows: a(β)(E,ψ) =: 〈L(β)E,ψ〉,

for all ψ ∈ H0(curl,O).
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Our presentation follows that of [324]. Retracing the steps in Section 4.2
(setting β = 0) and invoking the Helmholtz decomposition10, we write any
solution as E = e + gradφ for e ∈ N (0) and φ ∈ H1

0 (O), where N (0) is the
function space defined in (4.20) by setting β = 0. This brings the problem
into the variational form

a(0)(e, ψ;$2) = 0, ∀ψ ∈ N (0),

which, by choosing ψ = e, leads by a straightforward application of Friedrichs’
inequality11 to the fact that $2 > 0.

We now rewrite the eigenvalue problem as

a
(0)
+ (e, ψ; 1) = −b(0)(e, ψ;$2 + 1), ∀ψ ∈ N (0),

and define the operator K : (L2(O))3 → (L2(O))3, which acts on a function
f , giving the solution of the system

a
(0)
+ (Kf, ψ; 1) = −b(0)(f ; 1), ∀ψ ∈ N (0).

Similar arguments to the ones applied in the relevant discussion of Section
4.2 lead us to the result that the operator K is compact. Furthermore, using
an equivalent norm of (L2(O))3, weighted by ε, this operator becomes a
self-adjoint operator.

In terms of the operator K, the eigenvalue problem assumes the form

Ke =
1

1 +$2
e,

and because of the properties of the operator K, the powerful results of the
Hilbert-Schmidt theory (see Appendix A, Section A.6) apply, to yield the
following:

Theorem 4.3.2 Let β = 0. There is an infinite discrete set of eigenvalues,
$2
j , j ∈ N, with the property limj→∞$

2
j =∞.

We now consider the case where β 6= 0. The following result holds (see,
e.g., [14]):

Lemma 4.3.3 There exist $ > 0 and β0 > 0 such that for any β ∈ [0, β0], 0
is not an eigenvalue of L(β) in O with the boundary condition n × · = 0 on
∂O.

Proof. It is straightforward to see that(
(L(β) − L(0))v, v

)
= −β2$2

∫
O
µ |curlv|2 dx

−β $2

∫
O
ε curlv · v dx+ β$2

∫
O
ε v curlv dx,

10See Section 3.6.1.
11See Theorem 3.2.1 in Section 3.2.2.
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from which it follows readily that

|( (L(β) − L(0))v, v)| ≤ C (β + β2) ||curlv||(L2(O))3 + c β ||v||(L2(O))3 ,

for appropriate constants c, C. Recalling the definition of the norm of the
space H0(curl,O) we see that the above estimate guarantees that the norm
of the operator L(β) − L(0) in H0(curl,O) tends to 0 as β → 0. The results
for the eigenvalue problem for the nonchiral interior Maxwell operator L(0),
in conjunction with the above observation, lead us to the stated result. 2

4.4 LOW CHIRALITY BEHAVIOUR

An interesting modelling question concerns the effect of chirality on the elec-
tromagnetic fields as predicted by the solutions of the Maxwell equation. In
particular, if we assume that the chirality effects as modelled by the chi-
rality parameter β are considered to be extremely weak, do we recover the
behaviour of the electromagnetic fields for the achiral medium? Mathemat-
ically, this corresponds to studying the limit of the solutions of the chiral
problem, which of course depends on the value of the parameter β as β → 0,
and finding out whether this limit coincides with the solution of the Maxwell
equations for the achiral medium. In this section we formulate this prob-
lem and provide a positive answer to it. This problem has been studied for
scattering problems in [14]; our approach is an adaptation of the methods
of [14] for the interior problem. As in the previous section, we assume for
simplicity that β is a non-negative constant.

Consider the interior boundary value problem for the DBF-equations

curlE(β) = βγ2E(β) + i $µ
1−β2$2εµH

(β),

curlH(β) = βγ2H(β) − i $ε
1−β2$2εµE

(β),
inO, (4.29)

with the boundary condition

n× E(β) = f (β) , on ∂O , (4.30)

where f (β) ∈ H−1/2(div, ∂O) is a known vector field. Let us denote the
above problem (consisting of (4.29), (4.30)) by P(β).

Consider, in addition, the interior boundary value problem for the Maxwell
equation

curl
(
µ−1 curlE(0)

)
−$2εE(0) = 0 , inO, (4.31)

with boundary condition

n× E(0) = f (0) , on ∂O . (4.32)

Let us denote the above problem (consisting of (4.31), (4.32)) by P(0).

The question we want to address can now be expressed in the following
way:
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If we assume that limβ→0 f
(β) = f (0), in H−1/2(div, ∂O), does

the solution of problem P(β) tend to the solution of P(0) in some
appropriate function space?

To answer this question we rewrite the problems P(β) and P(0) in terms
of the electric field only. Then, using the interior DBF operator (defined
in (4.26)), and the interior achiral Maxwell operator (defined in (4.28)) the
chiral and achiral problem become

L(β) E(β) = 0 (4.33)

and

L(0) E(0) = 0, (4.34)

respectively. It is our aim to compare the solutions of problem (4.33) and
(4.34) and to assess the effects of chirality on the electromagnetic field.

From (4.33) it follows that

β div (ε curlE(β)) + div (εE(β)) = 0 . (4.35)

We now decompose the electric field E(β) as:

E(β) = e(β) − v(β) − gradφ(β)

where

(i) e(β) is such that

div (ε e(β)) = 0 in O,
n× e(β) = 0 on ∂O .

(ii) φ(β) is a scalar function in H1
0 (O) defined as the unique solution to the

problem

div (ε gradφ(β)) = β div (ε curlE(β)) in O ,
φ(β) = 0 on ∂O .

(iii) v(β) is defined as the unique solution to the problem

curl curl v(β) +$2ε v(β) = 0 in O ,

n× v(β) = −f (β) on ∂O .

(iv) v(0) is defined as the unique solution to the same problem that v(β)

satisfies when v(β), w(β) and f (β) are, respectively, replaced by v(0),
w(0) and f (0) .

Regarding v(β) and v(0), we have the following lemma.

Lemma 4.4.1 There exists β0 > 0 such that for 0 < β ≤ β0, we have the
estimate

‖ v(β) − v(0) ‖2H(curl,O) ≤ C ‖ f
(β) − f (0) ‖2H−1/2(div,∂O),

where the constant C is independent of β.
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Proof. Subtract the equations for v(β) and v(0) to obtain an equation for the
difference v♦ := v(β) − v(0), of the form

curl curl v♦ − ε v♦ = 0, x ∈ O,
n× v♦ = −( f (β) − f (0) ), x ∈ ∂O.

Using the variational formulation and the estimates for the solution from
the Lax-Milgram lemma, we obtain the stated result. 2

The proof of the convergence of E(β) to E(0) as β → 0 is performed in
three steps.

Lemma 4.4.2 (STEP 1) There exists β0 > 0 such that the estimate

‖E(β) ‖H(curl,O) ≤ C
holds for any 0 < β < β0, where the constant C is independent of β and
E(β) is the unique solution of P(β).

Proof. (Sketch) The proof can be obtained following the steps in [14], where
a more complicated problem is treated. First, observe that equation (4.33)
can be expressed in terms of the bilinear form a (defined in (4.7)), but now
taking into account that β is a constant). Using this equation, we obtain
the identity (expressed in terms of a)

a(E(β) + v(β), E(β) + v(β)) = a(v(β), E(β) + v(β)) .

We now apply the elementary algebraic inequality

s1 s2 ≤ ρ s2
1 + ρ−1 s2

2 , for s1, s2 ∈ R and any ρ > 0

to the above identity twice to obtain

||curl (E(β) + v(β) )||(L2(O))3 ≤ C ||E(β) + v(β)||(L2(O))3 + c||v(β)||H(curl,O) ,

for suitable constants c, C. The second term on the right-hand side of the
above estimate is uniformly bounded with respect to β by Lemma 4.4.1. It
remains to show that the first term enjoys the same property. This claim
can be proved using reductio ad absurdum: consider a sequence βn → 0, and

let rn := E(βn)+v(βn)

||E(βn)+v(βn)|| , where || · || is the (L2(O))3-norm, and assume the

contrary, i.e., the existence of an unbounded subsequence of rn. Using the
same notation for the unbounded subsequence, we observe that rn satisfies
the equation

a(rn, ψ) =
1

||E(βn) + v(βn)||(L2(O))3

a(v(βn), ψ), ∀ψ ∈ H0(curl,O).

Therefore, rn solves the nonhomogeneous interior chiral Maxwell problem
with the nonhomogeneous term v(βn), and by the unique solvability of this
problem we see that since ||E(βn)+v(βn)||(L2(O))3 →∞, rn → 0 inH(curl,O),
at least up to a subsequence. By the regularity assumption on ε, div(ε rn)
is uniformly bounded in (L2(O))3 with respect to n. By Theorem 3.7.5 (iii)
we deduce that rn → 0 in (L2(O))3, which is of course a contradiction of
||rn|| = 1. 2
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Lemma 4.4.3 (STEP 2) The unique solution φ(β) of the problem

div (ε gradφ(β)) = β div (ε curlE(β)) in O
φ(β) = 0 on ∂O

converges to zero, H1
0 (O)-strongly. Furthermore, there exists β0 > 0 such

that we have

‖φ(β) ‖H1(O) ≤ C β
for any 0 < β < β0, where the constant C is independent of β.

Proof. The proof follows by multiplying div (ε gradφ(β)) = β div (ε curlE(β))

by φ(β), then integrating by parts over O and employing Lemma 4.4.2. 2

Lemma 4.4.4 (STEP 3) e(β) → E(0) + v(0) in H(curl,O), and the rate of
convergence is O(β).

Proof. It is convenient to further decompose e(β) ∈ H(curl,O) as

e(β) = z(β) + gradϕ(β) , (4.36)

where z(β) ∈ H(curl,O) satisfies

div (ε z(β)) = 0 in O , z(β) × n = 0 on ∂O , (4.37)

while ϕ(β) ∈ H1
0 (O).

Using the decomposition E(β) = e(β) − v(β) − gradφ(β) for e(β) in (4.33),
multiplying the arising equation by a test field inH0(curl,O), and integrating
over O, we can obtain a variational formulation for (4.33) as

a(β)(z(β), v) + b(β)(v, ϕ(β)) = −a(β)(v(β) + gradφ(β), v),

b(0)(z(β), ψ) = 0,
(4.38)

for all (v, ψ) ∈ H0(curl,O) × H1
0 (O), where we use the forms a(β), b(β)

(see Remark 4.2.7). Note that the second equation is the weak form of the
identity (4.37). Further, we introduce (z(0), ϕ(0)) ∈ H0(curl,O)×H1

0 (O) as
the unique solution of the variational problem

a(0)(z(0), v) + b(0)(v, ϕ(0)) = −a(0)(v(0), v),

b(0)(z(0), ψ) = 0,
(4.39)

for all (v, ψ) ∈ H0(curl,O) × H1
0 (O). It is known that the variational

system (4.39) is a saddle point formulation of the interior boundary value
problem for the Maxwell equations P(0). The form b(0) satisfies the inf-sup

condition12, and a(0) is a compact perturbation of the coercive form a
(0)
+ on

the kernel N (0) of b(0) given by

N (0) = {v ∈ H(curl,O) : div (εv) = 0 in O , v × n = 0 on ∂O} ,
which is compactly embedded13 in (L2(O))3. 2

A lengthy procedure (the details can be found in [14]) based on steps 1, 2
and 3 above leads to the desired result.

12See Appendix A, Section A.10.
13See Section 3.7.
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Theorem 4.4.5 Let E(β) and E(0) be the solutions of problems P(β) and
P(0), respectively. There exists β0 > 0 such that for 0 < β ≤ β0, the
following estimate holds:

‖E(β) − E(0) ‖H(curl,O) ≤ C1β + C2 ‖ f (β) − f (0) ‖H−1/2(div,∂O),

where the two strictly positive constants C1 and C2 are independent of β.

Proof. (Sketch) Define z♦ := z(β)− z(0), ϕ♦ := ϕ(β)−ϕ(0) as the differences
between components of the two solutions and a♦ = a(β)−a(0), b♦ = b(β)−b(0)

as the differences between the forms. Let

R := a(0)(v(0), v)− a(β)(v(β) + gradφ(β), v) + a♦(z(β), v) + b♦(v, ϕ(β)).

Straightforward algebraic manipulations show that z♦, ϕ♦ satisfy the mixed
problem

a(0)(v♦, v) + b(0)(v, ϕ♦) = R,

b(0)(z♦, ψ) = 0,
(4.40)

for all (v, ψ) ∈ H0(curl,O) × H1
0 (O). Lemmata 4.4.2 and 4.4.3 guarantee

that z(β) and ϕ(β) are uniformly bounded in β, and this gives us an estimate
of the order of magnitude of the right-hand side of the first equation of (4.40)
in terms of β and ||v(β)−v(0)||H(curl,O). Based on Lax-Milgram estimates for

the variational systems for the forms a(0), b(0), we obtain similar estimates for
z♦. Then the proof of the theorem is concluded using reductio ad absurdum
as before, i.e.; assume that the conclusion does not hold and ||z♦||H(curl,O) is

not O
(
β+ ||v(β)− v(0)||H(curl,O)

)
and has a subsequence converging to ∞ as

β → 0. Then theH(curl,O)-normalised sequences z♦/||z♦||, ϕ♦/||ϕ♦|| satisfy
variational problems the solutions of which guarantee that they are uniformly

bounded in β, which in turn guarantees that

(
z♦

||z♦|| ,
ϕ♦

||ϕ♦||

)
⇀ (z♦

∗ , ϕ
♦
∗) in

H(curl,O) × H1(O). The limit solves the homogeneous Maxwell problem
for β = 0, and by the uniqueness of this problem, it is identified with (0, 0).
Finally, as above, we exploit the compact embedding of N (0) in (L2(O))3 to
pass from weak to strong convergence. 2

4.5 COMMENTS ON EXTERIOR DOMAIN PROBLEMS

Throughout this section we consider that Assumption 4.2.1 holds appropri-
ately modified for Oe. The solvability of the exterior problem is settled by
the following result.

Theorem 4.5.1 The exterior chiral problem admits a unique solution.

This theorem can be established by two different approaches, sketched below.
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. approach based on the Calderón operator

Consider an exterior domain Oe with boundary ∂Oe. Using the DBF con-
stitutive relations, we see that the electromagnetic fields satisfy the Maxwell
equations in the form

curlE = βγ2E + i$µ
(
γ
k

)2
H,

curlH = βγ2H − i$ε
(
γ
k

)2
E,

in Oe, (4.41)

with boundary condition

n× E = f, on ∂Oe
and with one of the two Silver-Müller radiation conditions (written in terms
of E −Einc and H −H inc, where Einc, H inc are known fields). Noting that
since from the Maxwell equations, H can be expressed in terms of curlE,
the radiation condition may be re-expressed as∣∣∣∣x̂× curl(E − Einc)(x)− βγ2 x̂× (E − Einc)(x) + i

γ2

k
(E − Einc)(x)

∣∣∣∣ ≤ C

|x|2 ,

as |x| → ∞ uniformly in all directions x̂. Furthermore, without loss of
generality we will assume f = 0; if f 6= 0 we may always incorporate it in
the nonhomogeneous part of the boundary condition at infinity by a simple
reformulation of the problem.

Working in a similar manner as for the interior problem, we may eliminate
H from the above equations and obtain an equation for E only, of the form

L(β) E = 0 , (4.42)

with the above boundary condition on ∂Oe and at infinity.
Equation (4.42) can be treated by considering a sequence of approximate

problems. Let OR := Oe∩BR, where BR is a ball of radius R centred at the
origin. To obtain a variational formulation of this problem we take the dot
product with a test function ψ and integrate over the whole domain using
the integration by parts formula to obtain

a(β)(E,ψ) = (n× (α curlE), (n× ψ)× ψ)∂OR , (4.43)

where a(β) is the bilinear form introduced in equation (4.7), and by ( · , · )∂OR
we denote the L2 inner product on the surface ∂OR.

The boundary ∂OR consists of two components: ∂O and the surface of
the sphere BR, denoted by SR hereafter. We may consider test functions ψ
vanishing on ∂O, and this leaves us with the problem of connecting n×curlE
(or n ×H) on SR, with E in OR. This can be accomplished, for instance,
by the use of the exterior Calderón operator (or boundary component, or
admittance operator); for the Maxwell equations this is the analogue of the
celebrated Dirichlet-to-Neumann map (for details on the Calderón operator,
see, e.g., [91], [106], [132], [324], [334]). Let us recall here the definition and
main properties of the exterior14 Calderón operator.

14The interior Calderón operator can be analogously defined ([91]); special care is
needed in this case regarding whether $2 ε µ is an eigenvalue of a corresponding selfadjoint
operator.
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Consider the following auxiliary exterior boundary value problem: let
ε0, µ0 be, respectively, the permittivity and permeability of the free space.
Let m be a fixed vector in H−1/2(div, ∂O); m can be interpreted as a
magnetic current density. We want to find (Ee, He) ∈ Hloc(curl,Oe) ×
Hloc(curl,Oe) satisfying the equations

curlEe(x) = i$ µ0 H
e(x) , curlHe(x) = −i$ ε0E

e(x) , x ∈ Oe ,

the boundary condition

γ+
τ (Ee) = m, on ∂O ,

and one of the Silver-Müller radiation conditions (2.40) or (2.41), as |x| → ∞
uniformly over all directions x/|x|. Here γ+

τ denotes the trace operator (see
Chapter 3) from the exterior of ∂O. It is known ([91], [324]) that this achiral
problem has a unique solution.

Definition 4.5.2 Let Ee, He,m be as above. Then the exterior Calderón
operator is defined as

Ce : H−1/2(div, ∂O)→ H−1/2(div, ∂O) , m = n× Ee 7→ γ+
τ (He) = n×He .

Theorem 4.5.3 ([91]) The exterior Calderón operator has the following
properties:

(i) Ce is an isomorphism in H−1/2(div, ∂O), with (Ce)2 = −I.

(ii) Ce is an isomorphism in H1/2(div, ∂O) if ∂O is C∞.

(iii) Re
∫
∂O(Cem) · (n×m) ds > 0, for all m ∈ H−1/2(div, ∂O) ,m 6= 0.

(v) Ce is independent of the material properties inside O.

Finally, let us define the chiral exterior Calderón operator as

Ceβ = i$µ(1−$2εµβ2)
[
Ce − i$εβγ+

τ

]
.

The variational problem (4.43) thus becomes

a(β)(E,ψ) = 〈n× Ceβ(E − Einc), (n× ψ)× n〉∂OR .

Using a generalisation of the variational analysis of Section 4.2, we can show
the unique solvability of this problem; see also [11], [12] for a similar ap-
proach.

. A boundary integral operators approach

An alternative approach would be to reformulate the problem in terms of
boundary integral equations. These equations are in general complicated,
and may simplify if the boundary data assume special forms. One such
case is when (Einc, H inc) is assumed to be a known incident electromagnetic
wave. This important case corresponds to the scattering problem that will be
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considered in detail in the next two chapters. One way to tackle this problem
is to express the fields as a solution of the boundary integral equation(
E
H

)
=
( Einc

H inc

)
+curl K1

( n×H
n×H

)
+grad K2

( n×H
n×H

)
+K3

( n×H
n×H

)
,

where Kj , j = 1, 2, 3 are appropriate (matrix) boundary integral operators,
the exact form of which for the general case of spatially dependent coefficients
can be found in, e.g., [10]. For the special case of constant coefficients,
explicit forms for the above operators are given in Chapter 5. Using this
integral equation, the problem is once more brought into variational form,
which may be treated using the Lax-Milgram lemma and its generalisations.

Let us note that the low chirality behaviour of the solution of the exterior
problem can also be studied and leads to similar results as for the interior
problem (for details, one can consult [12]).

A detailed study of the exterior problem for the achiral Maxwell equations
in the space of bounded energy solutions (which, quoting Nédélec, is the
“poorest” space where the exterior problem has a unique solution) can be
found in the monograph [334].

4.6 TOWARDS NUMERICS

The variational formulation presented in this chapter for the study of the
problem of well posedness of the Maxwell equations may form the basis for
the numerical treatment of such problems. Since numerical approximations
of the solutions are essentially discretisations of the original problem and
may present discontinuities in the derivatives, we may no longer consider
them classical solutions of the equations; therefore, the (weak) variational
treatment is called for.

4.6.1 Discretised version of Lax-Milgram lemma

The starting point for numerical analysis is the weak formulation of the
problem as

a(u, v) = 〈f, v〉,

where a is a bilinear continuous and coercive form a : H×H→ C and H is an
appropriate Hilbert space and 〈·, ·〉 denotes the duality pairing between H′
and H. The existence of solutions is guaranteed by the Lax-Milgram lemma.
The numerical approximation consists in working with this problem using a
finite-dimensional subspace, Vh ⊂ H. We will return to this point in more
detail; however, for the time being consider the finite-dimensional subspace
Vh as containing discretisations of the functions in H and, as h → 0, the
functions in Vh approximate the functions in H as closely as possible. Since
Vh ⊂ H, we consider the variational problem

a(uh, vh) = 〈f, vh〉, ∀ vh ∈ Vh,
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which has a unique solution, uh ∈ Vh, by arguments similar to the ones
employed in the Lax-Milgram lemma. In fact, the finite-dimensional (or
discrete) version of this result is known as Céa’s lemma and provides the
simplest convergence estimate for the discretised problem to the original
problem in terms of

||u− uh||H ≤ C inf
vh∈Vh

||u− vh||H

(see, e.g., [324]). Céa’s lemma provides a quasi-optimal error estimate, since
the error is (up to the constant C) the best approximation error of u by an
element of the finite-dimensional subspace Vh.

4.6.2 Discretised version of mixed variational problems

The discretised version of the Lax-Milgram lemma has a generalised version
(see Appendix A, Section A.10) that allows for the numerical treatment of
the mixed variational problems. This has the advantage of allowing the
relaxation of the various coercivity assumptions. Assume that Vh ⊂ H and
Sh ⊂ S are two finite-dimensional subspaces of the Hilbert spaces H, S, and
consider the mixed variational problem:
Given f ∈ H′ and g ∈ S′, find u ∈ H and p ∈ S such that

a(u, φ) + b(φ, p) = 〈f, φ〉, ∀φ ∈ H,
b(u, ψ) = 〈g, ψ〉, ∀ψ ∈ S.

(4.44)

The discretised version of this problem is:
Given f ∈ H′ and g ∈ S′, find u ∈ H and p ∈ S such that

a(uh, φh) + b(φh, ph) = 〈f, φh〉, ∀φ ∈ Vh,
b(uh, ψh) = 〈g, ψh〉, ∀ψh ∈ Sh.

(4.45)

Assuming that a is uniformly coercive on a subset of Vh × Vh,

|a(uh, uh| ≥ C1||uh||2H, ∀uh ∈ Zh,

where Zh = {uh ∈ Vh, b(uh, wh) = 0, ∀wh ∈ Sh}, and that a discrete
Babuška-Brezzi condition,

sup
φh∈Vh

|b(φh, ph)|
||φh||H

≥ C2||ph||S ,

is satisfied, then as long as there exists a uh ∈ Vh such that b(uh, ψh) =
〈g, ψh〉 for all ψh ∈ Sh, the discretised mixed variational problem (4.45)
admits a unique solution. Furthermore, one may obtain error estimates for
the discretised problem in a form similar to that obtained by Céa’s lemma,

||u− uh||H ≤ C { inf
vh∈Zh(g)

||u− vh||H + inf
qh∈Sh

||p− qh||S},

where

Zh(g) = {uh ∈ Vh, : b(uh, ψh) = 〈g, ψh〉, ∀ψh ∈ Sh}.
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4.6.3 Discretisation of integral equations

Furthermore, the compact integral equation

(I + K)u = G

has a discretisation as

(I + Kh)uh = Gh,

which has a unique solution and admits the error estimate

||u− uh||H ≤ C {||G − Gh||H + ||(K− Kh)u||H}

as long as {Kh} is a collectively compact set15 of bounded operators con-
verging uniformly on K (see, e.g., [324]).

4.6.4 Finite elements

Having settled the point of the convergence of discretised versions of vari-
ational and integral equation problems on their continuous versions, it is
important to consider next the nature of the finite-dimensional spaces Vh.
One choice is to use as Vh =: Vn the span of an increasing number of lin-
early independent functions {φm ∈ H, m = 1, · · · , n}. Then as n → ∞ the
sequence of spaces Vn approximates H. This approach corresponds to the
Galerkin expansion, which will be treated in detail in later chapters. An-
other choice is the one corresponding to finite element methods. This choice
is often very useful for the numerical treatment of the Maxwell equations
in domains with complicated geometries, which arise often in applications.
We choose to present it very briefly here, as the numerical analysis of the
Maxwell equations is not among the goals of this book. The interested reader
is referred to the excellent books of Bossavit [68] and Monk [324].

A finite element approximation consists of breaking up the domain O into
the union of a finite number of simplices, and then approximating the fields
with polynomials on the approximation of the domain. A finite element
space consists then of the triplet (K,PK ,ΣK), where K ⊂ O is the simplex
approximation of the domain (in dimension 3 the simplices are tetrahedra),
PK is a set of polynomials, and ΣK is a set of linear functionals on PK
(ΣK : PK → R), which is needed for assessing the properties of the functions
in PK on various points of the domain, or quantities such as the mean value,
etc. For instance, a class of elements of ΣK may be `i : PK → R, defined
by `i(u) = u(ki) for any u ∈ PK , and a (prescribed) number of points
ki ∈ K ⊂ O. In practice, these functionals may be considered as providing
the value of the function u at prescribed (mesh) points {ki}, ki ∈ K ⊂ O,
i = 1, · · · , n. The value of the function u at intermediate points of O may
be provided by an interpolant (see, e.g., [324]).

15The set {Kh} of bounded linear operators, Kh : H→ H, is called collectively compact
if for each bounded set U ⊂ H, the image set {KhU} has compact closure (is relatively
compact).
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The numerical treatment of the Maxwell equations requires finite element
approximations of the space H(curl,O), which is the natural functional set-
ting for the variational treatment of such problems. This requires the so-
called curl-conforming edge elements proposed by Nédélec [335]. The defini-
tion of this set requires the definition of a subspace of homogeneous vector
polynomials of degree k, Sk = {π ∈ (P̃k)3, : x · π(x) = 0}, where by P̃k we
denote the set of polynomials of degree exactly k. We then define the space

Rk = (Pk−1)3 ⊕ Sk, (4.46)

where Pk−1 is the set of polynomials of order at most k− 1. This is a space
of vector polynomials of dimension dim(Rk) = 1

2k(k + 2)(k + 3).
We have the following definition ([324], Definition 5.30).

Definition 4.6.1 The space of curl-conforming finite elements is defined
as the triplet (K,Rk,ΣK), where K is the reference tetrahedron, Rk is the
space of vector polynomial functions defined in (4.46), and ΣK is the space
of linear functionals on Rk, associated with

(i) integrals of the fields along the edges of the element
∫
℘
u · ê q ds, where

℘ is an edge of K, ê is the unit vector in the direction of ℘, and
q ∈ Pk−1(℘),

(ii) integrals of the fields on the faces of the elements
∫
F
u · q dσ, where F

is a face of K, q ∈ (Pk−2(F ))3, and q · n = 0,

(iii) volume integrals of the fields,
∫
K
u · q dV , q ∈ (Pk−3(K))3.

The following theorem ([324], Theorem 5.37) guarantees that the finite
elements defined in Definition 4.6.1 provide a good approximation of the
elements of H(curl,O):

Theorem 4.6.2 The finite element defined in Definition 4.6.1 is

(i) H(curl,O)-conforming, i.e., the global finite element space is a sub-
space of H(curl,O), and

(ii) unisolvent, in the sense that specifying a value for each of the func-
tionals in ΣK uniquely determines a function in PK .

Even though the approximating functions, being polynomials, possess high
regularity in each constituent component of O, in the whole of O these
functions are less regular, and this is the regularity described by the term
“global”, in the above theorem.

The space Vh can then be defined as

Vh = {u ∈ H(curl,O) : u|K ∈ Rk ∀K ∈ τh},

where τh is a mesh approximating O.
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4.6.5 Discretised versions of the Maxwell equations

Using the finite-dimensional space Vh and the variational formulation of the
problems of this chapter, we may obtain numerical methods for the solution
of the Maxwell equations.

The numerical solution of the interior problem, for instance, starts from
the weak formulation of the problem in equation (4.10). In fact, we may
retrace the steps that were followed for the analytic treatment of this equa-
tion in Section 4.2, using the discretised versions of the respective problems
arising in each step, employing properly selected finite element spaces. Upon
invoking the Helmholtz decomposition (see step 3), we express the problem
in the form (4.11), which contains the electrostatic potential φ. As shown
in step 4, this is obtained through the weak formulation (4.14), which can
be treated numerically using the discretisation of the Lax-Milgram lemma
(Céa’s lemma), yielding an approximation φh for the electrostatic poten-
tial. This step requires a finite element space that provides a satisfactory
approximation for the elements in H1

0 (O).
We then proceed to the definition of the discretised compact operators Kh

through the solution of the discretised version of (4.21) (see step 7), and the
discretised maps Gh through the solution of the discretised version of (4.22)
(see step 8) setting ψ = ψh, where ψh belongs to the H0(curl,O) conforming
finite elements space (see Section 4.6.4) and φ = φh is the discretised ap-
proximation to the electrostatic potential. Finally, we solve the discretised
version of the integral operator equation (4.23) (see step 9)

(I + Kh) eh = Gh

(see Section 4.6.3), for the approximation eh of the electric field.
Alternatively, one may use the mixed variational formulation of the Max-

well system (see Remark 4.2.7) along with the discretised version of the
Babuška-Brezzi lemma (see Section 4.6.2). The eigenvalue problems may
be treated similarly. At every level the discretised versions of the equations
are reduced to linear algrebraic systems of equations, which may be treated
using standard methods of numerical linear algebra. We refer to Chapter 7
in [324] for a detailed treatment of various problems of the achiral interior
Maxwell system based on the variational formulation; these methods can be
extended to chiral media following the guidelines of the present section.

In [94], a weighted regularisation method for the time-harmonic Maxwell
equations with a perfectly conducting or impedance boundary condition in
composite materials is presented. The computational domain O is the union
of polygonal or polyhedral subdomains made of different materials. As a re-
sult, the electromagnetic field presents singularities near geometric singular-
ities, which are the interior and exterior edges and corners. The variational
formulation of the weighted regularised problem is given on the subspace
of H(curl,O) whose fields u satisfy wα div(εu) ∈ L2(O) and have vanishing
tangential trace or tangential trace in L2(∂O). The weight function w(x) is
equivalent to the distance of x to the geometric singularities, and the min-
imal weight parameter α is given in terms of the singular exponents of a
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scalar transmission problem. A density result is proved that guarantees the
approximability of the solution field by piecewise regular fields. Numerical
results for the discretisation of the source problem by means of Lagrange
finite elements of type P1 and P2 are given on uniform and appropriately
refined two-dimensional meshes. The performance of the method in the case
of eigenvalue problems is also addressed in that paper.
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Chapter Five

Scattering Problems: Beltrami Fields and Solvability

5.1 INTRODUCTION

This chapter deals with the solvability of time-harmonic electromagnetic
wave scattering by an obstacle: either the obstacle or the environment in
which it is embedded, or both, is (are) occupied by a chiral material. Re-
garding general references for scattering theory, we refer to the books [103],
[106], [218], [260], [303], [358], [410], [411], [412] and the book chapter [258].
The corresponding theory for an achiral obstacle and the surrounding envi-
ronment is well known and established: see [103], [106] and the references
therein.
We assume that the scatterer and its surrounding space are homogeneous:
this allows us to use boundary integral equation (we will use the standard
abbreviation BIEs for boundary integral equations) methods for the study
of the considered problems. We consider two kinds of problems: first, the
scattering of plane electromagnetic waves propagating in chiral space by a
perfectly conducting obstacle, and second, the scattering of plane electro-
magnetic waves by a penetrable obstacle; either the scatterer or the sur-
rounding space, or both, may be filled with a chiral material. Scattering by
a (chiral or achiral) obstacle in a chiral environment may seem somehow ex-
otic at a first glance, but it constitutes an attractive problem (from the point
of view of both theory and applications): some illustrative examples are tur-
bid chiral media, different classes of contrasting chiral media, the Bruggeman
homogenisation of chiral composites, and the method of moments for scat-
tering by a chiral obstacle in a chiral environment; see the references in [21].
In Section 5.2 we introduce the standard terminology regarding the types of
polarisation of electromagnetic waves, while in Section 5.3 we introduce the
notions of Beltrami fields and the celebrated Bohren decomposition. The
formulation of scattering problems in terms of both the electric and the
magnetic fields, as well as of the corresponding Beltrami fields, is presented
in Section 5.4. Then we address the problem of solvability of the boundary
value problems introduced in Section 5.4. This will be established in Section
5.7 by a BIE method; an introduction to BIEs is presented in Section 5.5. In
view of the Bohren decomposition, the electromagnetic field is decomposed
in terms of suitable Beltrami fields (Section 5.3); some of their properties are
studied in Section 5.6. In Section 5.7 it is proved that the perfect conductor
in a chiral environment problem has a unique weak solution, which is then
shown (given that the boundary of the scatterer is sufficiently smooth) to
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be a classical one. A similar approach ascertains unique solvability (except
for a discrete set of electromagnetic parameters of the scatterer) of the chi-
ral obstacle in a chiral environment problem. In Section 5.8 we present a
generalisation of Claus Müller’s uniquely solvable set of BIEs to the chiral
scatterer in an achiral environment problem. In Section 5.9 we study low
chirality approximations for the solutions to the problem considered in the
previous section; these approximations are the basis for the possibility of nu-
merical solution of the (complicated) chiral problem with the use of existing
sophisticated codes for the solution of the (simpler) achiral problem.

5.2 ELLIPTIC, CIRCULAR AND LINEAR POLARISATION OF

WAVES

In this section (based on [187] and [392]) we recall standard notions regarding
the types of polarization of electromagnetic waves.

An elliptically polarised electromagnetic wave has the form

E(x3, t) = ê1E0,x1
ei ((kx3−$t)+ϕ1) + ê2E0,x2

ei ((kx3−$t)+ϕ2) ,

and is described by three independent parameters, the magnitudes E0,x1
,

E0,x2
and the phase difference ϕ = ϕ1 − ϕ2.

We shall see that depending on the choice of the parameters, the end point
of ReE traces out an ellipse or a circle or a straight line in a fixed plane
perpendicular to k̂, the propagation unit vector in the direction of motion.
This justifies the terminology elliptic, circular and linear polarisation of the
wave, respectively.

Let us select one of the phase factors for x3 = t = 0 so that the wave
depends only on the phase difference ϕ. To simplify the algebra, we set
ϕ1 = 0 and ϕ2 = φ and consider the resulting form of E(x3, t) in terms of its
real and imaginary parts,

E(x3, t) = ê1 E0,x1
cos(kx3 −$t) + ê2 E0,x2

cos(kx3 −$t+ φ)+

i

(
ê1E0,x1

sin(kx3 −$t) + ê2E0,x2
sin(kx3 −$t+ φ)

)
.

Let

Ex1
(x3, t) := ê1E0,x1

cos(kx3 −$t)

and

Ex2
(x3, t) := ê2 E0,x2

cos(kx3 −$t+ φ) .

The equation of the curve we are looking for should depend neither on posi-
tion nor on time, so the (kx3 −$t) dependence must be eliminated. Using

E2 :=
Ex2

E0,x2

= cos(kx3 −$t) cosφ− sin(kx3 −$t) sinφ ,
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E1 :=
Ex1

E0,x1

= cos(kx3 −$t) ,

we obtain

E2 − E1 cosφ = − sin(kx3 −$t) sinφ .

Hence,

sin(kx3 −$t) = (1− E2
1)1/2 ,

whereby

E2 − E1 cosφ = (1− E2
1) sin2 φ .

So we end up with

E2
2 + E2

1 − 2E2E1 cosφ = sinφ ,

which is the equation of an ellipse rotated with respect to the Ex1
, Ex2

coordinate system by an angle ϑ given by

tan 2ϑ =
2E0,x1

E0,x2

E2
0,x1
− E2

0,x2

cosφ .

If the principal axes of this ellipse are aligned with the coordinate axes, i.e.,
if ϑ = 0, or equivalently, if φ = ±π/2,±3π/2,±5π/2, . . ., then we obtain
E2

2 + E2
1 = 1.

Additionally, if

E0,x1
= E0,x2

= E0 ,

we get

E2
x1

+ E2
x2

= E2
0 ,

which is a circle. If φ = −π/2,−3π/2,−5π/2, . . ., then

Ex1
= ê1E0 cos(kx3 −$t) , Ex2

= ê2E0 sin(kx3 −$t) .
Let z0 be an arbitrary point on the positive x3-axis. At t = 0 we have

Ex1
= ê1E0 cos kz0 , Ex2

= ê2E0 sin kz0 ,

while at t = kz0/$ we have

Ex1
= ê1E0 , Ex2

= 0 .

So E is rotating clockwise, as seen by an observer looking back at the source,
at an angular frequency $. This wave is right circularly polarised (RCP).
On the contrary, if φ = π/2, 3π/2, 5π/2, . . ., then E rotates counterclockwise
and the wave is left circularly polarised (LCP).

Further, if φ = 2mπ, m ∈ Z, then

Ex2
=
E0,x2

E0,x1

Ex1
,

while, if φ = 2(m+ 1)π, m ∈ Z, then

Ex2
= −E0,x2

E0,x1

Ex1
,

which are both straight lines with slopes ±E0,x2

E0,x1
, respectively. In this case,

E is linearly polarised.
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Remark 5.2.1 An alternative form of an elliptically polarised wave is

E(x3, t) = êLE0,L ei ((kx3−$t)+ϕL) + êRE0,R ei ((kx3−$t)+iϕR) ,

where

êL =

√
2

2
(ê1 − iê2) , êR = −

√
2

2
(ê1 + iê2) .

While the linear polarisation unit vectors ê1, ê2 are real, the circular unit
vectors êL, êR are complex.

5.3 BELTRAMI FIELDS - THE BOHREN DECOMPOSITION

5.3.1 Beltrami fields

A Beltrami field is a field that is everywhere (with the possible exception of
the region occupied by its source) parallel to its own rotation. So, such a
field U is a solution of the equation

curlU = λU, (5.1)

where the proportionality factor λ 6= 0 is, in general, a spatially varying
function. This concept arose early in the nineteenth century, and it naturally
appears in many branches of physics and mathematical physics. Beltrami
first introduced it in the study of hydrodynamics. An example of such a
flow is the Arnold-Beltrami-Childress (ABC) flow, which is used in chaotic
advection in fluid dynamics (see [343]). A Beltrami field can be thought of as
a specific solution of the three-dimensional Navier-Stokes (Euler) equations
for incompressible, viscous (inviscid) fluid flow with vorticity parallel to the
velocity field 1. Beltrami fields arise naturally in such diverse areas as quark
physics, gravitation research, and thermoacoustics; for related references, see
[268]. In electromagnetics, Beltrami fields appear in two frameworks: first,
in the early 1820s, in studies related to circularly polarised plane waves, and
more recently in the study of natural optical activity and the description
of the fields’ behaviour in chiral media. For the rôle of Beltrami fields in
this branch of electromagnetics and related references, see [268]. The second
is related to the concept of the force-free magnetic field which originated
in the early theories of superconductivity (mid-1930s) and appears in of
astrophysics and plasma physics. For some comments and related references,
see the monograph [268], and [72], [153], [249], [254], [269], [267], [441], [443],
[418]. Time-dependent Beltrami fields (where λ appearing in (5.1) is now a
function varying not only spatially but temporally as well) are also used in
the framework of the time domain analysis of electromagnetic fields; see [38],
[151], [269] and the references therein. Finally, Beltrami fields are related
to eigenvalue problems for the operator curl, which are important in various
applications and are of great mathematical interest; see [349], [442] and the
references therein.

1In this context, flows defined by Beltrami fields are often called Trkalian flows; see
[270].
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5.3.2 The Bohren decomposition

Let k2 = $2εµ and γ2 = k2(1− k2β2)−1. Consider the equations

curlE − i$µγ
2

k2 H − βγ2E = 0,

curlH + i$εγ
2

k2 E − βγ2 H = 0,

and write them as(
curlE
curlH

)
=
γ2

k2

(
βk2 i$µ
−i$ε βk2

)(
E
H

)
. (5.2)

Diagonalising the matrix in (5.2), we obtain(
curl (i η−1E +H)
curl (E + i η H)

)
=

(
k

1−kβ 0

0 − k
1+kβ

)(
i η−1 E +H
E + i η H

)
, (5.3)

where η = µ1/2ε−1/2 is the intrinsic impedance of the medium. Introducing
the fields

QL := i η−1 E +H , QR := E + i η H ,

we note that (5.3) is written as

curlQL = γL QL,

curlQR = −γR QR,
(5.4)

where

γL := k(1− kβ)−1 , γR := k(1 + kβ)−1 .

Note that γ2 = γLγR. From (5.4) we clearly have that both QL and QR

satisfy the vector Helmholtz equation

∆Qλ + γ2
λQλ = 0, λ = L,R ,

and we see that γL, γR are the wave numbers of the Beltrami fields QL, QR,
respectively. Let us additionally mention that if E,H are divergence free,
then QL, QR also satisfy this property.

Thus we obtain the Bohren decomposition of E, H into QL, QR

E = QL − i η QR,

H = QR − i η−1QL.
(5.5)

Remark 5.3.1 It is obvious that when β = 0 then γL = γR = k. From
(5.4), and if the two complex-valued wave numbers γL and γR have positive
real parts, we note that QL is a left-handed Beltrami field and QR is a right-
handed one, and when β 6= 0 they propagate with different speeds. This
is a manifestation of handedness. For details on the physical problem and
the appearing physical parameters, we refer to the monographs [273], [268],
[289] and the papers [142], [272].
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5.4 SCATTERING PROBLEMS: FORMULATION

Consider a bounded domain O ⊂ R3 with smooth boundary ∂O and its
exterior Oe = R3\O, which is assumed to be simply connected. In scattering
problems O will be referred to as the scatterer or the obstacle. O, Oe are
supposed to be filled with different media whose physical parameters will be
denoted by the subscripts i, e, respectively; so we use ε, µ, β, k, η, γL and
γR with the appropriate subscripts.

Assumption 5.4.1 ([268]) As far as the physical parameters are concerned,
we assume that

(i) εi, µi, βi, εe, µe, βe ∈ C.

(ii) Re ηi,Re ηe,Re γiL,Re γiR,Re γeL,Re γeR > 0.

(iii) Im ηi, Im ηe, Im γiL, Im γiR, Im γeL, Im γeR ≥ 0.

(iv) |keβe| < 1, |kiβi| < 1.

5.4.1 Incident fields

A given electromagnetic field Einc, H inc is incident on the obstacle O. The
form of the incident field depends on the type of material with which the
complement of O, Oe, is filled. In particular:
. If Oe is filled with an achiral medium, the incident wave has the form

Einc(x) = q e ike p·x, H inc(x) = −i η−1
e q e ike p·x, (5.6)

where q is the polarisation vector, p is the propagation unit vector (p ·q = 0),
ηe is the impedance, and ke is the wave number.
. If Oe is filled with a chiral medium, then the incident wave has the form

Einc(x) = qL e
iγeL pL·x + qR e

iγeR pR·x,

H inc(x) = −i η−1
e

(
qL e

iγeL pL·x + qR e
iγeR pR·x

)
,

(5.7)

with pL · qL = 0, pL × qL = −i qL, pR · qR = 0, and pR × qR = i qR ([10], [268]).
Under the above assumptions on pL, qL, it follows that

curl
(
qL e

iγeL pL·x
)

= γeL qL e
iγeL pL·x ,

curl
(
qR e

iγeR pR·x
)

= −γeR qR e
iγeR pR·x ,

i.e., that the incident fields Einc, H inc are combinations of an LCP plane
wave and an RCP plane wave, and they satisfy the Oe version of the chiral
Maxwell equations (see (5.11)) below). qL (resp. qR) is the polarisation
vector, pL (resp. pR) is the propagation unit vector, and γeL (resp. γeR) is
the wave number of this left (resp. right) circularly plane wave.

It is convenient to introduce the following notation:

If λ = L then mL = 1,while, if λ = R then mR = −1. (5.8)

We shall consider two kinds of scattering problems.
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5.4.2 The perfect conductor problem

In this case we assume that Oe is filled with a chiral material and that O
is a perfect conductor. The scattering problem reads: a given electromag-
netic wave of the form (5.7) propagating in Oe is incident on O. The total
electromagnetic field Et, Ht in Oe is given by

Et = Ee + Einc, Ht = He +H inc, in Oe, (5.9)

where Ee, He is the scattered field that is assumed to satisfy one of the
Silver-Müller radiation conditions

x̂×He(x) + η−1
e Ee(x) = o(|x|−1), |x| → ∞,

x̂× Ee(x)− ηeH
e(x) = o(|x|−1), |x| → ∞,

(5.10)

uniformly for all directions x̂ = x
|x| .

The total electromagnetic field Et, Ht satisfies the following modified form
of the Maxwell equations:

curlEt − i$µe
γ2

e

k2
e
Ht − βeγ2

e E
t = 0,

curlHt + i$εe
γ2

e

k2
e
Et − βeγ2

e H
t = 0,

in Oe, (5.11)

where γ2
e = γeLγeR and k2

e = $2εeµe. Let us note that ke is just shorthand
notation and not a wave number. In the present case, as for the standard
Maxwell equations, Et and Ht are divergence free. Since O is assumed to
be perfectly conducting, the following boundary condition must be satisfied:

n× Et = 0, on ∂O, (5.12)

where n is the unit outward normal vector to ∂O.
The problem (5.9)–(5.12) will be referred to as the perfect conductor prob-

lem in what follows. It is related to receiving as well as transmitting antennas
in various types of sheaths; see [24] and the references therein.

It is often useful to work with the electric field only; after eliminating the
magnetic field the above problem becomes

curl curlEt − 2βeγ
2
ecurlEt − γ2

eE
t = 0, in Oe, (5.13)

n × Et = 0, on ∂O, (5.14)

x̂× curlEe(x)− βeγ2
e x̂× Ee(x) + i

γ2
e

ke
Ee(x) = o(|x|−1), (5.15)

as |x| → ∞, uniformly in all directions x̂.
In view of Bohren’s decomposition (5.5) applied in Oe, the perfect con-

ductor problem can be expressed in terms of Beltrami fields as: find Qe
L
, Qe

R

satisfying the equations

curlQe
L

= γeL Q
e
L
,

curlQe
R = −γeRQ

e
R,

in Oe , (5.16)

the radiation conditions
x̂×Qe

L
(x) + iQe

L
(x) = o(|x|−1),

x̂×Qe
R
(x)− iQe

R
(x) = o(|x|−1),

|x| → ∞, (5.17)

and the boundary condition

n×Qe
L − i ηe n×Qe

R = n× Einc, on ∂O. (5.18)
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5.4.3 The transmission problem

Find electric fields Ei and Ee and magnetic fields H i and He that satisfy
the following equations:

curlEi = γ2
i βiE

i + i$µi

(
γi

ki

)2

H i,

curlH i = γ2
i βiH

i − i$εi

(
γi

ki

)2

Ei,

in O, (5.19)

curlEe = γ2
eβeE

e + i$µe

(
γe

ke

)2

He,

curlHe = γ2
eβeH

e − i$εe

(
γe

ke

)2

Ee,

in Oe, (5.20)

where γ2
i = γiLγiR and k2

i = $2εiµi, and the transmission conditions ([268])

n× Et = n× Ei and , n×Ht = n×H i, on ∂O, (5.21)

where n is the unit outward normal to ∂O. The total fields in Oe are given
by

Et = Ee + Einc, Ht = He +H inc, in Oe,

while the scattered fields Ee, He must satisfy one of the Silver-Müller radi-
ation conditions (5.10).

In view of Bohren’s decomposition (5.5) applied in O, the transmission
problem takes the form: given Einc, H inc, find Qi

L, Q
i
R and Qe

L, Q
e
R satisfying

the equations

curlQi
L

= γiL Q
i
L
,

curlQi
R = −γiR Q

i
R,

in O, (5.22)

and

curlQe
L = γeLQ

e
L,

curlQe
R

= −γeR Q
e
R
,

in Oe, (5.23)

with the radiation conditions

x̂×Qe
L
(x) + iQe

L
(x) = o(|x|−1),

x̂×Qe
R(x)− iQe

R(x) = o(|x|−1),
|x| → ∞, (5.24)

and the transmission conditions on ∂O
n× (Qi

L −Qe
L) + n× (−i ηiQ

i
R + i ηeQ

e
R) = n× Einc ,

n× (Qi
R −Qe

R) + n× (−i η−1
i Qi

L + i η−1
e Qe

L) = n×H inc .
(5.25)

Remark 5.4.2 A simple calculation (see, e.g., [273]) shows that when the
materials are chiral, no matter if the incident wave is only LCP (resp. RCP),
the scattered wave develops both LCP and RCP components. This applies
to both the perfect conductor problem and the transmission problem.
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Remark 5.4.3 In both the perfect conductor problem and the transmission
problems, stated in terms of the electromagnetic field (E,H), the governing
equations are coupled and the boundary or the transmission conditions are
uncoupled. On the other hand, when these problems are stated in terms of
the Beltrami fields (QL, QR), the equations for the field are uncoupled outside
∂O, but coupling occurs on ∂O through the boundary conditions. This
allows the statement of the perfect conductor problem and the transmission
problem as boundary integral equations.

Remark 5.4.4 The above transmission problem obviously covers the cases
of all possible combinations of (chiral or not) scatterer / (chiral or not) en-
vironment. These transmission problems will be respectively referred to as
the achiral scatterer in an achiral environment transmission problem (which
will not be considered at all in this book, since it does not refer to chiral me-
dia)2, the chiral scatterer in an achiral environment transmission problem,
the achiral scatterer in a chiral environment transmission problem, and the
chiral scatterer in a chiral environment transmission problem. The spectrum
of applications of the chiral scatterer in an achiral environment transmission
problem is wide; see [273], [268], [289] and the references therein. In this
work we shall refer often to the chiral scatterer in an achiral environment
transmission problem but not to the achiral scatterer in a chiral environ-
ment transmission problem, which deals with turbid chiral media, i.e., chiral
media with achiral particulate inclusions. Nevertheless, this problem has
applications in clinical medicine3 and planetary science4; see [23] and the
references therein. As for the chiral scatterer in a chiral environment trans-
mission problem, it is the basis for the Bruggeman homogenisation theory of
chiral composites and the study of heterogeneous systems constituted by chi-
ral particles in chiral fluids in physical chemistry; see [21] and the references
therein.

5.5 AN INTRODUCTION TO BIES

Since we are going to study the solvability of the above scattering problems
using BIE methods, in this section, for illustration purposes, we give an
outline of this method for the scalar Helmholtz equation. The corresponding
theory for the vector case, that is directly related to the Maxwell equations,
is very similar; see, e.g., [103].

The consideration of integral equations in relation to boundary value prob-
lems for elliptic differential equations has a long history. We very briefly
present the basic idea. For a concise yet much more complete introduc-
tion, see, e.g., [127], [197], [309]. In particular, a short historical survey is

2The theory of the achiral scatterer in an achiral environment transmission problem is
well developed and known; see, e.g., [103], [106].

3In determining the concentration of blood glucose.
4The atmosphere of Titan (the biggest satellite of Saturn) is expected to be charac-

terised by a chiral turbid medium.
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contained in [309]. Consider the Helmholtz equation

∆u+ k2u = 0 (5.26)

in either a bounded, simply connected domain O ⊂ R3, with boundary
∂O ∈ C2, or in its complement Oe in R3. It is well known that a classical
solution u ∈ C2(O) ∩ C1(O) (respectively, u ∈ C2(Oe) ∩ C1(Oe) can be
represented in terms of surface potentials via the first Green identity for the
Laplacian and the fundamental solution

Φ(x, y; k) =
ei k|x−y|

4π |x− y|
, x 6= y, (5.27)

of the Helmholtz equation. As usual, k ∈ C with Im k ≥ 0.
In the case of exterior problems the behaviour at infinity is required to satisfy
the Sommerfeld radiation conditions

u(x) = O(|x|−1) ,
∂u

∂|x|
(x)− iku(x) = o(|x|−1) , |x| → ∞ ,

or their weaker version

lim
R→∞

∫
|x|=R

∣∣∣∣ ∂u∂|x| (x)− iku(x)

∣∣∣∣2 ds = 0 .

The latter is due to Rellich and is used in the variational formulation of
exterior problems.
The aforementioned representation reads

u(x) = ±
(∫

∂O
Φ(x, y; k)

∂u

∂n
(y)ds(y)−

∫
∂O

u(y)
∂Φ(x, y; k)

∂ny
ds(y)

)
, (5.28)

with “+” for x ∈ O and “–” for x ∈ Oe, where ny denotes the exterior
normal to ∂O at y ∈ ∂O.

For given Cauchy data u|∂O and ∂u
∂n |∂O, the above representation formula

defines the solution of the Helmholtz equation everywhere in O, or in Oe,
respectively.
The surface potentials appearing in the representation formula are the single-
layer potential

Vkφ(x) :=

∫
∂O

Φ(x, y; k)φ(y)ds(y) , x ∈ O ∪Oe ,

and the double-layer potential

Wkϕ(x) :=

∫
∂O

∂Φ(x, y; k)

∂ny
ϕ(y)ds(y) , x ∈ O ∪Oe ,

where φ and ϕ are the corresponding densities.
Provided the corresponding limits exist, the boundary integral operators we
are going to employ are related to the limits of the boundary potentials from
either O on ∂O (x ∈ ∂O, z ∈ O),

Vkφ(x) := limz→x Vkφ(z),
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Kk(x)ψ(x) := limz→x Wkψ(z) + 1
2ψ(x),

K∗k(x)φ(x) := limz→x gradzVkφ(z) · nx − 1
2
φ(x),

Dk(x)ψ(x) := − limz→x gradzWkψ(z) · nx,

or from Oe on ∂O (x ∈ ∂O, z ∈ Oe),

Vkφ(x) := limz→x Vkφ(z),

Kk(x)ψ(x) := limz→x Wkψ(z)− 1
2
ψ(x),

K∗k(x)φ(x) := limz→x gradzVkφ(z) · nx + 1
2φ(x),

Dk(x)ψ(x) := − limz→x gradzWkψ(z) · nx,

The following standard expressions of these boundary integral operators are
essential. Let ∂O ∈ C2 and φ and ψ be continuous. Then the above
limits exist uniformly with respect to all x ∈ ∂O and all φ and ψ with
supx∈∂O |φ(x)| ≤ 1 , supx∈∂O |ψ(x)| ≤ 1. Further, these limits can be ex-
pressed as

(Vkφ)(x) =

∫
y∈∂O\{x}

Φ(x, y; k)φ(y)ds(y) , x ∈ ∂O ,

(Kkψ)(x) =

∫
y∈∂O\{x}

∂Φ(x, y; k)

∂ny
ψ(y)ds(y) , x ∈ ∂O ,

K∗k is the adjoint of Kk, i.e.,

(K∗kφ)(x) =

∫
y∈∂O\{x}

∂Φ(x, y; k)

∂nx
φ(y)ds(y) , x ∈ ∂O ,

while, for φ Hölder continuously differentiable with ||φ||C1,θ ≤ 1 , θ ∈ (0, 1),

(Dkφ)(x) = pv

∫
∂O

∂2Φ(x, y; k)

∂nx∂ny
(φ(y)− φ(x))ds(y) ,

where “pv” denotes the Cauchy principal value integral5. It is not hard to
see that the kernels of Vk,Kk and K∗k are weakly singular6 (with α = 1).

5Because of the strong singularity of the kernel the integral in the definition of Dk
has to be interpreted as a Cauchy principal value integral. Let us briefly recall (see, e.g.,
[305]) the definition in a simple case: let f ∈ C0,θ([a, b]) and x ∈ (a, b). The Cauchy

principal value integral is defined as pv
∫ b
a
f(t)
x−tdt := limε→0

(∫ x−ε
a

f(t)
x−tdt+

∫ b
x+ε

f(t)
x−t dt

)
. If

f ∈ C1([a, b]), we have that pv
∫ b
a
f(t)
x−tdt = f(a) ln(x−a)−f(b) ln(b−x)+

∫ b
a f
′(t) ln |x−t|dt.

Further, if f ∈ C1,θ([a, b]), we have d
dx

(
pv
∫ b
a
f(t)
x−t dt

)
=

f(a)
x−a +

f(b)
b−x + pv

∫ b
a
f ′(t)
x−t dt.

6Consider the Banach space C(∂O) of complex-valued functions on ∂O equipped with
the maximum norm, and the boundary integral operator C : C(∂O)→ C(∂O) defined by
(Cφ)(x) :=

∫
∂O k(x, y)φ(y) ds(y) , x ∈ ∂O . The kernel k is said to be weakly singular if

it is defined and continuous for all x, y ∈ ∂O, x 6= y, and there exist positive constants c
and α ∈ (0, 2] such that for all x, y ∈ ∂O, x 6= y, we have |k(x, y)| ≤ c|x− y|α−2. Then it
is well known (see, e.g., Theorem 2.6 in [103]) that, under the assumption that the kernel
k is either continuous or weakly singular, the operator C is compact.
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Various continuous extensions of Vk, Kk, K∗k , Dk between suitable spaces
of Hölder continuous or Hölder differentiable functions have been studied,
see, e.g., [103], [197], [319].
We are now in a position to consider boundary value problems; we discuss
the interior Dirichlet problem, namely

∆u+ k2u = 0 in O , with u = f on ∂O .
In this case only one of the two Cauchy data is given in (5.28), namely
u(x) = f(x) , x ∈ ∂O. The “missing” datum is ∂u

∂n (x) = g(x).
The boundary integral equation for the determination of g then reads(

Vkg
)

(x) =
((1

2
I + Kk

)
f
)

(x) , x ∈ ∂O ,

which is a Fredholm integral equation of the first kind. This equation, despite
the fact that it is ill posed, has proved to be very important both from the
analytic as well as from the numerical point of view. It is known that for
k 6= 0 and f ∈ C1,α(∂O) , α ∈ (0, 1), the above boundary integral equation
is uniquely solvable with g ∈ Cα(∂O) except for certain values of k ∈ C
which are the exceptional or irregular frequencies of the boundary integral
operator Vk. For any irregular frequency κ the operator Vκ has a nontrivial
null-space spanned by eigensolutions % related to the eigensolutions ρ of the
interior Dirichlet problem

−∆ρ = κ2ρ in O, ρ = 0 on ∂O ,
by

% =
∂ρ

∂n
|∂O .

In this case, for f ∈ C1,α(∂O) the boundary integral equation Vkg = 1
2
f +

Kkf has solutions g ∈ Cα(∂O) if and only if the orthogonality condition∫
∂O

f % = 0 , ∀% ∈ ker Vκ ,

is satisfied, see, e.g., [103], [197].
The interior Dirichlet problem for the Helmholtz equation can alternatively
be expressed as ((1

2
I − K∗k

)
g
)

(x) =
(

Dkf
)

(x) , x ∈ ∂O ,

which is a Fredholm integral equation of the second kind. This boundary
integral equation has been and still is extensively studied, both analytically
and numerically.
The exterior Dirichlet problem can be similarly expressed as a Fredholm
integral equation of either the first or the second kind, respectively as(

Vkg
)

(x) =
((
−1

2
I + Kk

)
f
)

(x) , x ∈ ∂O ,

and ((1

2
I + K∗k

)
g
)

(x) = −
(

Dkf
)

(x) , x ∈ ∂O .
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We notice that we may use different boundary integral equations for the
same boundary value problem; further, these boundary integral equations
may be uniquely or non-uniquely solvable. This is an important issue: for
example, the exterior Dirichlet problem for the Helmholtz equation is known,
see, e.g., [103], to have a unique solution for all k with Im k ≥ 0; so the
complication of non-uniqueness for the boundary integral equation at the
irregular frequencies arises from the selected method of solution rather than
from the nature of the problem itself. It is therefore desirable to develop
methods leading to boundary integral equations that are uniquely solvable
for all values of k. This is done by resorting to the so-called modified integral
equations. The discussion of this topic lies outside the scope of the present
section; one can consult, e.g., [103].

Remark 5.5.1 In some cases it is not possible to interchange the normal
derivative with the integral sign (because this would lead to a nonintegrable
integrand). Then one has to resort to Hadamard finite part integrals. For
f ∈ C1,θ([a, b]) a two-sided Hadamard finite part integral of order two is
defined as

pf

∫ b

a

f(t)

(x− t)2
dt := lim

ε→0

(∫ x−ε

a

f(t)

(x− t)2
dt+

∫ b

x+ε

f(t)

(x− t)2
dt− 2f(x)

ε

)
.

It can be shown that

pf

∫ b

a

f(t)

(x− t)2
dt = − f(a)

x− a
− f(b)

b− x
− pv

∫ b

a

f ′(t)

x− t
dt,

whereby

d

dx

(
pv

∫ b

a

f(t)

x− t
dt

)
= −pf

∫ b

a

f(t)

(x− t)2
dt.

Therefore, differentiation can be interchanged with integration. For more
details one can see, e.g., [197].

So we see that the Dirichlet (and Neumann) boundary value problems
for the Helmholtz equation in O (or in Oe) are reduced (in view of appro-
priate integral representations of the solutions) to problems defined on a
bounded domain of lower dimension, namely, on the boundary ∂O. Such
reductions shift the setting from partial differential (unbounded) operators
to boundary integral (compact) operators. The very rich Riesz-Fredholm
theory for compact operators is then an indispensable arsenal that, com-
bined with potential theory7, provides a powerful mathematical framework.
Boundary integral equation methods are also closely related to constructive
techniques and are well suited for numerical computations. One can refer in
general to the excellent monographs [9], [197], [309], [398], and for acoustic
and electromagnetic scattering problems to [103], [106].

7For an introduction to potential theory see [124].
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This is the course we follow to deal with boundary value problems and
scattering problems for the Maxwell equations supplemented with the Drude-
Born-Fedorov constitutive relations. We consider only the perfect conductor
boundary condition and transmission boundary conditions, not more general
and in particular nonlinear boundary conditions.

Boundary integral operators can also be studied as special cases of pseu-
dodifferential operators. Although the bulk of publications treat the case
of L2-based spaces, the case of spaces based on Lp, p 6= 2, is well studied8.
Further, in the extremely important (e.g., in real engineering problems) case
of nonsmooth domains, the behaviour of the dominant singularities of the
solution at corners or edges or interior cuts of the domain is the subject of
important research. We do not consider any of these aspects.

5.6 PROPERTIES OF BELTRAMI FIELDS

In this section we provide some properties of Beltrami fields that will be
useful in what follows.

5.6.1 Representations in terms of spherical wave functions

5.6.1.1 Scalar and vector spherical wave functions

For the reader’s convenience, we recall here the definitions of the spherical
wave functions that are employed in the following discussion. A classical
reference is [325]; in what follows we employ the contemporary condensed
notation for these functions (see, e.g., [71]).

Let ` = 0, 1, . . ., and let J`, Y` be the Bessel functions of the first and
second kind, respectively. The spherical Bessel functions of the first and
second kind, are defined, for z ∈ C, as

j`(z) =
( π

2 z

)1/2

J`+ 1
2
(z) , y`(z) =

( π
2 z

)1/2

Y`+ 1
2
(z) ,

respectively, while the spherical Hankel function of the first kind is

h
(1)
` (z) = j`(z) + i y`(z) .

Let m = 0, . . . , `, and Pm` be the associated Legendre function. For the
definitions of the Bessel functions and the associated Legendre function, see,
e.g., [259], [325].

Let (r, θ, ϕ) be the spherical coordinates of the vector x ∈ R3, and x̂ = x
r .

The even and odd normalised real scalar spherical harmonic functions are,
respectively, defined as

Yem`(x̂) =
2− δm0

2π

2`+ 1

2

(`−m)!

(`+m)!
Pm` (cosθ) cosmϕ ,

8In [323], the chiral scatterer in achiral environment transmission problem is studied
for a scatterer of less smooth boundary than the one considered here, and in Lp-based
Sobolev spaces.
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Yom`(x̂) =
2− δm0

2π

2`+ 1

2

(`−m)!

(`+m)!
Pm` (cosθ) sinmϕ ,

where δmn denotes the Kronecker delta. Let `0 := [`(`+ 1)]
−1/2

. The nor-
malised real vector spherical harmonic functions, Aj σm `, j = 1, 2, 3, are
defined by

A1σm`(x̂) := `0r curl(xYσm`(x̂)) = `0

[
θ̂

1

sin θ

∂Yσm`(x̂)

∂ϕ
− ϕ̂ ∂Yσm`(x̂)

∂θ

]
,

A2σm`(x̂) := `0r gradYσm`(x̂) = `0

[
θ̂
∂Yσm`(x̂)

∂θ
+ ϕ̂

1

sinθ

∂Yσm`(x̂)

∂ϕ

]
,

A3σm`(x̂) := x̂Yσm`(x̂) ,

for σ = e , o, respectively. They constitute a complete orthonormal set on
the unit sphere9. Finally, the normalised outgoing spherical vector wave
functions are10

ψ1σm`(x) := `0curl(xh
(1)
` (kr)Yσm`(x̂)) = h

(1)
` (kr) A1σm`(x̂) ,

ψ2σm`(x) := `0
1

k
curl curl(xh

(1)
` (kr)Yσm`(x̂))

=
1

kr

[(
kr h

(1)
` (kr)

)′
A2σm`(x̂) + `−1

0 h
(1)
` (kr) A3σm`(x̂)

]
,

where k is the wave number of the vector Helmholtz equation (∆+k2)ψ = 0 .

Since ψ1σm`(x),ψ2σm`(x) are defined via Yσm`(x̂) and h
(1)
` (kr), asymp-

totic properties for the former (as r →∞) can be deduced from well-known
corresponding properties of the latter; see [28].

5.6.1.2 Beltrami fields in spherical coordinates

Three-dimensional representations for Beltrami fields follow from the concept
of toroidal and poloidal field (see, e.g., [268]). In particular, the following
representations hold:

Qλ(x) = curl [xτλ(x)] + curl curl [xϑλ(x)] ,

where τλ(x), ϑλ(x), for λ = L, R, are scalar functions of the position vector
x that satisfy the Helmholtz equation and are related by

τλ(x) = γλϑλ(x).

9Let us note that these functions are closely related to the vector wave functions in-
troduced by Hansen which in [325], are denoted by C,B,P, respectively.

10They are closely related to the vector wave functions which are, respectively, denoted
by M,N, in [325]. In fact, there is also a third normalised outgoing spherical vector wave
function, ψ3σm` (or L), but since it is mainly useful in elastodynamics we omit its
definition here and instead refer to [71], [325].
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Using the Helmholtz decomposition, we obtain the following representation
in the spherical coordinate system for QL and QR ([28], [268]):

QL(x) =
∞∑
`=0

∑̀
m=0

am` [ψ1 em`(x) +ψ2 em`(x)− i (ψ1 om`(x) +ψ2 om`(x))] ,

QR(x) =

∞∑
`=0

∑̀
m=0

bm` [ψ1 em`(x)−ψ2 em`(x)− i (ψ1 om`(x)−ψ2 om`(x))] ,

where am`, bm` are appropriate constants.

5.6.2 Integral representations

In this section we establish integral representations for Beltrami fields, which
will be used in Section 5.7 to present a generalisation of the Stratton-Chu
representation formula of achiral electromagnetics to the chiral case.

Since we work in source-free regions, the divergence of the Beltrami fields
appearing in our study is equal to zero, and in view of the identity

curl curlu = grad div u−∆u ,

these fields are solutions of a vector Helmholtz equation of the form

∆u+ κ2u = 0 ,

so we may use classical layer potentials in terms of the fundamental solution
(5.27) of the Helmholtz equation.

5.6.2.1 Interior integral representation

We start with an interior integral representation theorem ([22]) for the so-
lution of the following problem:

curlQi
L

= γiL Q
i
L
,

curlQi
R

= −γiR Q
i
R
,

in O . (5.29)

Theorem 5.6.1 Let Qi
L, Qi

R ∈ C1(O) ∩C(O) solve the system of equations
(5.29). Then, for λ =L,R,

−1O(x)Qi
λ
(x) = curl

∫
∂O

(n (y)×Qi
λ
(y)) Φ(x, y; γiλ) ds(y)

+
mλ

γiλ
curlcurl

∫
∂O

(n (y)×Qi
λ
(y)) Φ(x, y; γiλ) ds(y), (5.30)

where 1O is the characteristic (indicator) function of O and mλ is defined
in (5.8).

5.6.2.2 Exterior integral representation

We now consider integral representations for the corresponding exterior prob-
lem (see [22]),

curlQe
L

= γeL Q
e
L
,

curlQe
R = −γeR Q

e
R,

in Oe . (5.31)
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with the radiation conditions,

x̂×Qe
L(x) + iQe

L(x) = o(|x|−1),
x̂×Qe

R
(x)− iQe

R
(x) = o(|x|−1),

|x| → ∞, (5.32)

uniformly for all directions x̂.

Theorem 5.6.2 Let Qe
L
, Qe

R
∈ C1(Oe)∩C(Oe) solve the system of equations

(5.16) - (5.32). Then, for λ =L,R,

1Oe(x)Qe
λ
(x) = curl

∫
∂O

(n (y)×Qe
λ
(y)) Φ(x, y; γeλ) ds(y)

+
mλ

γeλ
curlcurl

∫
∂O

(n (y)×Qe
λ
(y)) Φ(x, y; γeλ) ds(y), (5.33)

where 1Oe is the characteristic (indicator) function of Oe and mλ is defined
in (5.8).

5.7 SOLVABILITY

In this section we establish the existence and uniqueness of solutions of
the perfect conductor problem, the chiral scatterer in an achiral environ-
ment transmission problem, and the chiral scatterer in a chiral environment
transmission problem. We present first weak and then classical solvability.
We follow a BIE approach.

5.7.1 Integral representation

Using Bohren’s decomposition (5.5) and the integral representations (5.30)
and (5.33), a straightforward calculation leads to the following generalisation
of the Stratton-Chu integral representation formulae for chiral media. We
introduce, for convenience, fields U and U (the “dual” field of U) as:

If U = E then U = iH , while if U = H then U = −iE. (5.34)

Theorem 5.7.1 ([22]) For x in a chiral body embedded in an achiral space,
and y on its boundary, we have the Stratton-Chu integral representation
formula for chiral media:

−8U i(x) =
∑
λ=L,R

curl

∫
∂O

(
n (y)× U i(y)

)
Φ(x, y; γiλ) ds(y)

+
∑
λ=L,R

mλ

γiL
curlcurl

∫
∂O

(
n (y)× U i(y)

)
Φ(x, y; γiλ) ds(y)

+
∑
λ=L,R

mλcurl

∫
∂O

(
n (y)× Ui(y)

)
Φ(x, y; γiλ) ds(y)

+
∑
λ=L,R

1

γiL
curlcurl

∫
∂O

(
n (y)× Ui(y)

)
Φ(x, y; γiλ) ds(y),

(5.35)

where x ∈ O, y ∈ ∂O and the superscript “ i” denotes the interior fields and
mλ is defined in (5.8).
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Remark 5.7.2 An alternative representation, using a dyadic Green func-
tion, can be found in [34].

Remark 5.7.3 If β = 0, the usual (achiral) Stratton-Chu integral represen-
tation formula is obtained (see [103]).

5.7.2 Layer potentials and boundary integral operators

Definition 5.7.4 Let y ∈ ∂O. Given a continuous density function v(y),
the single-layer potential of v is

(Vi(k)v)(x) :=

∫
∂O

v(y)Φ(x, y; k) ds(y) , x ∈ O.

Definition 5.7.5 Given a tangential vector density, a ∈ Ct(∂O), the double-
layer potential of a is

(Mi(k) a)(x) := curl{Vi(k) a} .

Further, define

(Ni(k) a)(x) := curl{Mi(k) a} .
We shall use the superscript “e” to indicate that x ∈ Oe in the above

definitions.
It is known ([342]) that there are continuous extensions

Mi(k),Ni(k) : H1/2(div, ∂O)→ H1
Div(O),

Me(k),Ne(k) : H1/2(div, ∂O)→ H1
Div, loc(Oe).

Let us now introduce appropriate boundary integral operators. For x ∈
∂O, they are defined as

M(k) v(x) := n× pv

∫
∂O

(gradxΦ(x, y; k))× v(y) ds(y),

and

N(k)v(x) := n× (grad

∫
∂O

Φ(x, y; k)Div v(y)ds(y) + k2

∫
∂O

Φ(x, y; k)v(y)ds(y)).

It is known ([178], [257], [341], [342]) that there are continuous extensions

M(k),N(k) : H1/2(div, ∂O)→ H1/2(div, ∂O),

and that M(k) is compact. Furthermore, the mappings

M(k) : Hr
t (∂O)→ Hr+1

t (∂O), r ∈ R,

N(k) : Hr
t (∂O)→ Hr−1

t (∂O), r ∈ R,
are continuous.

Additionally, if v ∈ H1/2(div, ∂O), we have for the traces on ∂O

M(k)v = n×Mi(k) v +
1

2
v = n×Me(k) v − 1

2
v,

N(k)v = n× Ni(k) v = n× Ne(k) v.
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5.7.3 Boundary integral equations

5.7.3.1 The perfect conductor problem

It is not hard to show that in terms of the above boundary integral opera-
tors, the perfect conductor problem (5.16), (5.17), (5.18) admits (formally)
a solution given by the following ansatz:

Qe
L := i ηe [γeLM(γeL) + N(γeL)]φ, φ ∈ H1/2(div, ∂O),

Qe
R

:= [−γeRM(γeR) + N(γeR)]φ, φ ∈ H1/2(div, ∂O).

Let

AL,R := γeLM(γeL) + γeRM(γeR) + N(γeL)− N(γeR).

Qe
L and Qe

R will satisfy (5.18) if and only if

i ηe

[
1

2
γeLI +

1

2
γeRI + AL,R

]
φ = f, (5.36)

where I is the identity operator. The operator γeLM(γeL)+γeRM(γeR) is com-

pact on H
1/2
t (∂O) and on H1/2(div, ∂O), while N(γeL)− N(γeR) is compact

on H
1/2
t (∂O) (but not on H1/2(div, ∂O)) (see [304]).

It is our purpose to show that the operator

1

2
γeLI +

1

2
γeRI + AL,R : H

1/2
t (∂O)→ H

1/2
t (∂O)

is invertible in H
1/2
t (∂O). Then (5.36) will be solvable, and the perfect

conductor problem in its Beltrami fields formulation will be as well. Next,
by a regularity argument, we shall show that the established solution is in
H1/2(div, ∂O).

A first step is to prove that the corresponding homogeneous problem
((5.36) with f = 0) admits only the trivial solution. This is done using
different techniques found in [11] for γeL > 0 and γeR > 0, and in [24] al-
lowing complex γeL and γeR, at least one of which has a positive imaginary
part:

Lemma 5.7.6 Assume that at least one of Im γeL, Im γeR is positive. Let
φ ∈ H1/2(div, ∂O) satisfy[

1

2
γeLI +

1

2
γeRI + AL,R

]
φ = 0. (5.37)

Then φ = 0.

Based on this lemma, and using the standard Fredholm theory (see Section
A.6, Appendix A) we end up ([24]) with the following theorem.

Theorem 5.7.7 For f ∈ H1/2
t (∂O), the boundary integral equation (5.36)

has a unique solution φ in H
1/2
t (∂O). Further, if f ∈ H1/2(div, ∂O) then,

φ ∈ H1/2(div, ∂O)).
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Proof. (Sketch) Let us note that since11 (see [341], [304])

AL,R : H
1/2
t (∂O)→ H

3/2
t (∂O)

c

↪→H1/2(div, ∂O) , (5.38)

if ψ ∈ H1/2
t (∂O) is a solution of (5.37), then ψ ∈ H1/2(div, ∂O). But, by

Lemma 5.7.6, ψ = 0, i.e., the homogeneous problem has only the trivial

solution. The operator AL,R is compact in H
1/2
t (∂O), and hence, by the

Fredholm theory (see Section A.6, Appendix A), (5.36) has a unique solution

φ ∈ H1/2
t (∂O). Then

i ηeAL,Rφ+
1

2
i ηe(γeL + γeR)φ = f,

whereby

φ = − 2i

ηe(γeL + γeR)
{f − i ηeAL,Rφ} .

Since f ∈ H1/2(div, ∂O), by (5.38) it finally follows that φ ∈ H1/2(div, ∂O),
thus completing the proof. 2

Remark 5.7.8 In the case of the chiral scatterer in an achiral environment
transmission problem, Theorem 5.7.7 covers the results of [341], where the
parameters εi, µi, and βi are assumed to be real (while here we allow complex
values as well), and [39], where a variational method involving a volume (and
not a surface, as here) formulation is used.

In addition, using regularity arguments in [241] and [103], and recalling
that f = −n× Einc, we have the following result ([356]).

Theorem 5.7.9 If the boundary ∂O is of class C3,α, the integral equation
(5.36) has a unique solution in Ct(∂O).

5.7.3.2 The transmission problem

As above, we derive a pair of coupled BIEs using an ansatz in each region.
In O, assume

Qi
L

= [γiL Mi(γiL) + Ni(γiL)]φ1, φ1 ∈ H1/2(div, ∂O),

Qi
R

= [−γiR Mi(γiR) + Ni(γiR)]φ2, φ2 ∈ H1/2(div, ∂O),

and in Oe, assume

Qe
L = [γeL Me(γeL) + Ne(γeL)](ζ11φ1 + ζ12φ2),

Qe
R

= [−γeR Me(γeR) + Ne(γeR)](ζ21φ1 + ζ22φ2),

for some complex constants ζ11, ζ12, ζ21, ζ22.
This leads to a matrix boundary integral equation of the form

(L0 + K) φ̆ = f̆ , (5.39)

11The compactness of the embedding H
3/2
t (∂O)

c
↪→H1/2(div, ∂O) follows from Theo-

rem 3.7.4 and the definition (see Section 3.4.11) of the space H1/2(div, ∂O).
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where φ̆ = (φ1, φ2)tr, f̆ = (f1, f2)tr,

K : H
1/2
t (∂O)×H1/2

t (∂O)→ H
3/2
t (∂O)×H3/2

t (∂O)

is a continuous operator given by

K =

(
K11 K12

K21 K22

)
,

where

K11 = γiLM(γiL)− γeLζ11M(γeL)− i ηeγeRζ21M(γeR)− ζ11N(γeL)

+ N(γiL) + i ηeζ21N(γeR),

K12 = −i ηiγiRM(γiR)− γeLζ12M(γeL)− i ηeγeRζ22M(γeR)− ζ12N(γeL)

+ ζ22i ηeN(γeR)− i ηiN(γiR),

K21 = −i η−1
i γiLM(γiL) + γeRζ21M(γeR) + i η−1

e γeLζ11M(γeL)− ζ21M(γeR)

+ ζ11i η−1
e N(γeL)− i η−1

i N(γiL),

K22 = −γiRM(γiR) + γeRζ22M(γeR) + i η−1
i γeLζ12M(γeL)− ζ22N(γeR)

+ N(γiR) + ζ12i η−1
e N(γeL),

and

L0 =

(
L11 L12

L21 L22

)
is given by

L11 = −1

2
(ζ11γeL + i ηeζ21γeR + γiL)I,

L12 = −1

2
(ζ12γeL + i ηeζ22γeR + i ηiγiR)I,

L21 =
1

2
(ζ21γeR + i η−1

e ζ11γeL + i η−1
i γiL)I,

L22 =
1

2
(ζ22γeR + i η−1

e ζ12γeL − γiR)I,

where ζ11, ζ12, ζ21, ζ22 are chosen so that we get as simple as possible
equations, in which hypersingular operators appear in suitable, compact
combinations. Such a choice ([21]) is given by

ζ11 =
1

2

(
1 +

ηe

ηi

)
, ζ12 =

i

2
(ηe − ηi) , ζ21 =

i

2

(
1

ηe
− 1

ηi

)
, ζ22 =

1

2

(
1 +

ηi

ηe

)
.

Again, the first step is to show ([21]) the following lemma.

Lemma 5.7.10 Let ηeη
−1
i > 0. Then the homogeneous version of (5.39) has

only the trivial solution.

To establish solvability of the chiral scatterer in a chiral environment trans-
mission problem, we need to use the analytic Fredholm theory (Theorem
A.6.8 in Appendix A), (instead of the standard Fredholm theory, as for the
perfect conductor problem in Theorem 5.7.7), since now there are values of
ηeη
−1
i for which the operator L0 is not invertible. Hence:
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Theorem 5.7.11 Let µi, εi, εe, βi, βe be fixed. For f̆ ∈ H1/2(∂O) ×
H

1/2
t (∂O) the integral equation (5.39) has a unique solution in H

1/2
t (∂O)×

H1/2(∂O), except for a discrete set of values of µe. Moreover, if φ̆ ∈
H1/2(∂O)×H1/2

t (∂O) is a solution of the integral equation (5.39), and if f̆ ∈
H1/2(div, ∂O)×H1/2(div, ∂O) , then φ̆ ∈ H1/2(div, ∂O)×H1/2(div, ∂O).

In addition, we have the following regularity result ([25]).

Theorem 5.7.12 If the boundary ∂O is of class C3,α, then the weak solution
established in Theorem 5.7.11 is in Ct(∂O)× Ct(∂O).

5.7.4 On radiation conditions

The rôle of a radiation condition is twofold. From the mathematical point
of view it ensures uniqueness of solutions. From the physical point of view
it ensures that the scattered waves are not incoming at infinity, a physically
plausible demand.

Let us now discuss radiation conditions for chiral media of infinite extent.
Assume that Oe is filled with a chiral material of parameters µe, εe, βe. A
given incident electromagnetic wave Einc, H inc of the form (5.7), propagating
in Oe, is incident on O := R3 \ Oe. The total electromagnetic field Et, Ht

in Oe is given by (5.9), where Ee, He is the scattered field. The Maxwell
equations under the Drude-Born-Fedorov constitutive relations in Oe are
(5.11). Define (see Section 5.7.2):

KOe := Me(γeL) + Me(γeR) +
1

γeL

Ne(γeL) +
1

γeR

Ne(γeR) ,

DOe := Me(γeL)−Me(γeR) +
1

γeL

Ne(γeL)− 1

γeR

Ne(γeR) ,

and

POe, L, R := 2

(
KOe i ηe DOe
− i
ηe

DOe KOe

)
.

Then, along the lines of proof of (5.35), we have the following exterior repre-
sentation formula (see also [11]) expressed in terms of the boundary integral
operators Me and Ne:(

Et(x)
Ht(x)

)
=

(
Einc(x)
H inc(x)

)
+ POe, L, R

(
n× Et|∂O
n×Ht|∂O

)
. (5.40)

Let BR be a ball in R3 such that O ⊂ BR. The meaning of the symbol
P∂BR,L,R is then obvious. The following result (Theorem 4.3 in [11]) settles
the issue of radiation conditions for chiral media.

Theorem 5.7.13 Let u, v ∈ (C1,1(∂Oe))3, and define Et, Ht by(
Et − Einc

Ht −H inc

)
= POe, L, R

(
n× u
n× v

)
. (5.41)
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Then Et, Ht satisfy the Maxwell equations (5.11) in Oe and the Silver-
Müller radiation condition

|x̂×He(x) + η−1
e Ee(x)| = O(|x|−2), |x| → ∞ , (5.42)

where Ee = Et−Einc, He = Ht−H inc. Conversely, if Et, Ht satisfy (5.11)
in Oe, and

lim
R→∞

P∂BR,L,R

(
n× Et|∂BR

n×Ht|∂BR

)
= 0 , (5.43)

in the sense that the left-hand side, together with all its derivatives, tends
uniformly to zero on compact sets as R → ∞, then Et, Ht have the repre-
sentation (5.41), with u = Et and v = Ht.

Remark 5.7.14 The case of the anisotropic Maxwell system is treated in
[81]. This system (like its isotropic counterpart) is not strongly elliptic. The
determination of appropriate radiation conditions is closely related to the
asymptotic properties of the corresponding fundamental solutions, and in
this case is very difficult. Recall that in the frequency domain, the Maxwell
system takes the form (2.17). In the special case in (2.18) that the con-
stituent matrices ξF = ζF = 0 while εF and µF are real-valued, symmetric,
positive definite and proportional to each other (there exists a % > 0 such
that εF = %µF), a fundamental solution is explicitly constructed, a Silver-
Müller type of radiation condition is formulated, and uniqueness theorems
are proved for exterior boundary value problems.

Remark 5.7.15 More general notions than that of a standard radiation con-
dition have been introduced. The starting point has historically been the
scalar Helmholtz equation ∆u+ k2u = 0, regarded as the steady-state oscil-
lation equation of the dissipative wave equation ∂ttU + % ∂tU − c2∆U = 0
(i.e., U(x, t) = u(x)e−i$t, with frequency $ > 0 and wave number k :=
$($ + i%)/c2). Recall that the appropriate radiation conditions for the
scalar Helmholtz equation in dimension 3 are the Sommerfeld radiation con-
ditions u(x) = O(|x|−1) , ∂u

∂|x| (x)− iku(x) = o(|x|−1) , or the weaker version

limR→∞
∫
|x|=R |

∂u
∂|x| (x)−iku(x)|2ds = 0. The formulation of a general “radi-

ation principle”, that does not depend on the form of the unbounded domain
in which the solution of the steady-state oscillation problem is sought, would
be important. There are two possible approaches.

. The Limiting Amplitude Principle, according to which the solu-
tion of the steady-state oscillation equation is determined uniquely by
the requirement that it be the limit as t → ∞ of the amplitude of
the solution of the Cauchy problem with zero initial condition for the
wave equation with periodic right-hand side. For a generalisation of
the Limiting Amplitude Principle to exterior problems for a fairly wide
class of differential operators under certain additional conditions on the
interior boundary of the unbounded domain (see, e.g., [137], [277]).
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. The Limiting Absorption Principle, according to which the solu-
tion of the exterior boundary value problem of steady-state oscillations
in a medium without absorption is sought as the limit of the bounded
solution of the corresponding boundary value problem in the medium
with absorption, as the latter tends to zero. There are generalisations
of the Limiting Absorption Principle as uniqueness conditions for the
solution of exterior boundary value problems for general elliptic opera-
tors and for a fairly wide class of interior boundaries of the unbounded
domain (see, e.g., [136], [137], [367]). See also Chapter 10.

5.8 GENERALISED MÜLLER’S BIES

In this section we focus our attention on the chiral scatterer in an achiral
environment transmission problem, i.e., the chiral obstacle in an achiral en-
vironment transmission problem. As discussed below it is possible to express
this transmission problem in many ways as a system of boundary integral
equations; for all such systems we have existence but not necessarily unique-
ness of solutions. To establish uniqueness we present a generalisation of
Müller’s treatment of the achiral obstacle in an achiral environment case to
the chiral obstacle in an achiral environment problem. It is more convenient
to work in terms of (E,H) rather than (QL, QR) and with a dimensionless
version of this problem, scaling all lengths using a typical length scale for
the chiral obstacle (which is eventually taken equal to 1), setting

Ee = µ1/2
e Ěe, He = ε1/2

e Ȟe, Ei = µ
1/2
i Ěi, H i = ε

1/2
i Ȟ i

and similar scalings for Et, Ht, Einc and H inc. These scalings reduce the
chiral scatterer in an achiral environment transmission problem to the fol-
lowing dimensionless transmission problem, [34], which will be referred to
in the sequel as the dimensionless chiral scatterer in an achiral environment
transmission problem:

curlĚe − i keȞ
e = 0, curlȞe + i keĚ

e = 0, in Oe,

curlĚi − i
γ2

i

ki
Ȟ i − βiγ2

i Ě
i = 0, curlȞ i + i

γ2
i

ki
Ěi − βiγ2

i Ȟ
i = 0, in O,

µ1/2
e µ

−1/2
i n× Ět = n× Ěi, ε1/2

e ε
−1/2
i n× Ȟt = n× Ȟ i, on ∂O,

(5.44)

where the total fields in Oe are given by

Ět = Ěe + Ěinc, Ȟt = Ȟe + Ȟ inc

and the scattered field satisfies a Silver-Müller radiation condition

x̂× Ȟe + Ěe = o
(
|x|−1

)
, |x| → ∞,

uniformly in all directions x̂.
Using the Stratton-Chu representation formula (5.35), and computing tan-

gential components, we obtain the following system of BIEs for n× Ȟt and
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n× Ět:

{I −M(ke)} JH − i k−1
e N(ke)JE = 2J inc

H , (5.45)

{I −M(ke)} JE + i k−1
e N(ke)JH = 2J inc

E
, (5.46){

2 I + (M(γiL) + M(γiR)) + (γ−1
iL N(γiL)− γ−1

iR N(γiR))
}
JH

+ i ηeη
−1
i

{
(M(γiL)−M(γiR)) + (γ−1

iL N(γiL) + γ−1
iR N(γiR))

}
JE = 0,

(5.47)

{
2 I + (M(γiL) + M(γiR)) + (γ−1

iL N(γiL)− γ−1
iR N(γiR))

}
JE

− i ηiη
−1
e

{
(M(γiL)−M(γiR)) + (γ−1

iL N(γiL) + γ−1
iR N(γiR))

}
JH = 0,

(5.48)

where

JH = n× Ȟt, JE = −n× Ět, J inc
H

= n× Ȟ inc, J inc
E

= −n× Ěinc.

These are four BIEs for the two unknowns JE, JH. To proceed, we shall
choose two linear combinations of these equations, namely,

ϑ1(5.45) + ϑ2(5.46) + ϑ3(5.47) + ϑ4(5.48)

and

ð1(5.45) + ð2(5.46) + ð3(5.47) + ð4(5.48) ,

where ϑj and ðj , j = 1, 2, 3, 4, are constants to be specified.
In the achiral case, i.e., when βi = 0, several choices have been investi-

gated, both theoretically and numerically (see [183], [304] for review). For
all those choices we have existence. However, the question of uniqueness is
less obvious: one good choice for uniqueness has been introduced by Müller,
namely,

ϑ
(0)
1 = µe, ϑ

(0)
3 = µi, ð

(0)
2 = εe, ð

(0)
4 = εi, ϑ

(0)
2 = ϑ

(0)
4 = ð(0)

1 = ð(0)
3 = 0.

The chiral case (βi 6= 0) is more complicated. Provided that(
1 + µeµ

−1
i

) (
1 + εeε

−1
i

)
6= βik

2
e ,

by a procedure described in [34], we end up with the choice

ϑ
(β)
1 = µeµ

−1
i

(
1− k2

i β
2
i

)
, ϑ

(β)
2 = 0, ϑ

(β)
3 = 1, ϑ

(β)
4 = i ki βi η

−1
i ηe,

ð(β)
1 = 0, ð(β)

2 = εeε
−1
i

(
1− k2

i β
2
i

)
, ð(β)

3 = −i ki βi ηi η
−1
e , ð(β)

4 = 1,

which reduces to Müller’s choice when βi = 0, apart from a constant factor

(µi for ϑ
(β)
n and εi for ð(β)

n , n = 1, 2, 3, 4).
Thus our generalised chiral Müller’s equations are{

I + ϑ
(β)
1 (I −M(ke)) + A

}
JH +

ϑ
(β)
4

kiβi
BJE = 2ϑ

(β)
1 J inc

H ,

{
I + ð(β)

2 (I −M(ke)) + A
}
JE −

ð(β)
3

kiβi
BJH = 2ð(β)

2 J inc
E ,

(5.49)
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where

A =
1

2
(1− k2

i β
2
i ) (γiLM(γiL) + γiRM(γiR) + N(γiL)− N(γiR)) ,

B =
1

2
(1− k2

i β
2
i ) (γiLM(γiL)− γiRM(γiR) + N(γiL) + N(γiR)− N(ke)) .

As we mentioned above, when the obstacle is achiral (βi = 0), these
equations reduce to Müller’s system:{

I + µeµ
−1
i (I −M(ke)) + A0

}
JH + i ηeη

−1
i B0JE = 2µeµ

−1
i J inc

H
,{

I + εeε
−1
i (I −M(ke)) + A0

}
JE − i ηiη

−1
e B0JH = 2 εeε

−1
i J inc

E ,
(5.50)

where now

A0 = M(ki) and B0 = k−1
i (N(ki)− N(ke)) .

5.9 LOW CHIRALITY APPROXIMATIONS

It is known ([34]) that the solution of the chiral scatterer in an achiral envi-
ronment transmission problem is an analytic function of kiβi for |kiβi| < 1.
Rather than seek power series solutions in kiβi of (5.44) directly, we expand
the solutions of the governing integral equations (5.49). Thus, we write

JH ' J0
H

+ i kiβiJ
1
H

and JE ' J0
E

+ i kiβiJ
1
E
,

where the error is O((kiβi)
2) as kiβi → 0.

Let

(T0(ki)v)(x) =
ki
4π

∫
∂O

v(y)eiki|x−y| ds(y), x ∈ O,

T1(ki)v = n× curl{T0(ki)v},
T2(ki)v = n× curl curl{T0(ki)v}.

Then for small kiβi we have

γiL ∼ ki(1 + kiβi) , γiR ∼ ki(1− kiβi) ,

e iγiL|x−y| ∼ e iki|x−y|
(
1 + k2

i βi|x− y|
)
,

V(γiL)v ∼ V(ki)v + i kiβiT0(ki)v , V(γiR)v ∼ V(ki)v − i kiβiT0(ki)v ,

M(γiL)v ∼ M(ki)v + i kiβiT1(ki)v , M(γiR)v ∼ M(ki)v − i kiβiT1(ki)v ,

N(γiL)v ∼ N(ki)v + i kiβiT2(ki)v , N(γiR)v ∼ N(ki)v − i kiβiT2(ki)v ,

with an error of O((kiβi)
2) as kiβi → 0.

Substituting these approximations into the exact boundary integral equa-
tions (5.49), we find that [J0

H
, J0

E
] solves Müller’s equations (5.50). The

first-order correction [J1
H, J

1
E ] also solves Müller’s equations, but replacing on

the right-hand sides:

2µeµ
−1
i

(
1− k2

i β
2
i

)
J inc

H
by − k−1

i T2J
0
H
− ηeη−1

i (2M + i T1)J0
E
,

2εeε
−1
i

(
1− k2

i β
2
i

)
J inc

E by − k−1
i T2J

0
H − ηiη−1

e (2M + i T1)J0
E .
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Remark 5.9.1 In [99], sophisticated codes have been developed for the nu-
merical solution of Müller’s equations: the approach followed in that ref-
erence is versatile in dealing with any BIE formulation for calculating the
scattered fields due to arbitrarily shaped scatterers with arbitrary orienta-
tion. The common major difficulties arising from treating singular integrals
in integral equation methods have been overcome by the reduction of the or-
der of kernel singularities with the use of an effective regularisation process.
Accurate numerical solutions have been obtained that are in excellent agree-
ment with analytic solutions. By a simple modification, the codes in [99] can
be used to compute the correction due to chirality of the obstacle; we can see
that computing the first-order correction is fairly straightforward. Note that
the approximations obtained for JE and JH can be inserted into (5.45)-(5.48)
to generate exact solutions of the governing equations in Oe and O. Let us
note, moreover, that in principle one can also calculate higher-order approx-
imations, but the new right-hand sides will be much more complicated.

5.10 MISCELLANEA

5.10.1 The conductive transmission problem

The solvability of the transmission problem describing the scattering of a
plane electromagnetic wave propagating in an achiral environment by a chiral
obstacle whose boundary is covered by a thin layer of very high conductivity
is studied in [41]. The transmission conditions in this case have the form

n× Ee − n× Ei = −n× Einc,

ken×He − kin×H i − κi
$εiβi

τ(n× Ei)× n = −ken×H inc,

where now

k2
e = i$σe, k

2
i = i$µσi(1−$2εiµiβ

2
i )−2,

κi = $2εiµiβi(1−$2εiµiβ
2
i )−1, τ ∈ (C0,α(∂O))3.

5.10.2 Contrasting chiral media

5.10.2.1 Solvability

Consider a chiral obstacle (of electromagnetic parameters ε1, µ1, β1) in a
chiral environment of electromagnetic parameters ε2, µ2, β2. If ε1 6= ε2,
µ1 6= µ2 and β1 6= β2, the resulting transmission problem is frequently
referred to as the transmission problem for fully contrasting chiral media.
Its solvability is settled by Theorems 5.7.11 and 5.7.12 above.

5.10.2.2 Special cases

There are certain interesting special cases of the above transmission problem.
Recall that k = $(µε)1/2 and η = (µε )1/2 (the impedance). The most
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important classes of these special cases are (in the following the rôles of
subscripts 1 and 2 can be interchanged):

1. Mirror conjugate chiral media: k1 = k2, β1 = −β2, η1 = η2.

2. Isoimpedant chiral media: η1 = η2.

3. Isorefractive chiral media: k1 = k2, β1 = β2.

4. Cross-refractive chiral media: k1 = k2, β1 = −β2.

Let us note that the transmission problems for cases 1 and 2 are uniquely
solvable without the limitations of Theorem 5.7.11, i.e. with no exception
of a discrete set of electromagnetic parameters; this is established in [25].
Cases 3 and 4 are covered by Theorem 5.7.11.

5.10.3 Biisotropic media

The solvability of a transmission problem for biisotropic media is studied in
[44].

5.10.4 “Screen” problems

The problem where a partially coated chiral obstacle is embedded in a ho-
mogeneous isotropic chiral medium of infinite extent is studied in [40].

5.10.5 Related approaches

In [372], integral equations are obtained for the electromagnetic scattering
by an inhomogeneous, isotropic, three-dimensional chiral body. The chiral
body is assumed to be in free space, and it can be attached to a perfect
electric conducting body. The integral equations are obtained with the help
of vector-dyadic identities and the free space dyadic Green’s function. These
equations are expressed in terms of a volume integral with the electric field
as the unknown and surface integrals where the tangential components of
the electric field and its curl are the unknowns. The integral equations are
then transformed into a linear system of simultaneous equations by means of
the moment method technique. Expressions for the scattered field in the far
zone are also obtained by replacing the dyadic Green’s function and its curl
with their approximations for large arguments. Furthermore, closed form
expressions are obtained for the fields and dipole moments induced inside an
electrically small, homogeneous chiral sphere where it is assumed that the
fields are constant. Finally, closed form expressions and numerical results
for the fields scattered by the small chiral sphere and its bistatic echo area
are also obtained.

In [239], the transmission problem for a homogeneous chiral scatterer em-
bedded in an achiral environment is considered. The problem is reduced
to two single boundary integral equations (arising from the choice of the
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ansatz). The first equation is solved by two different methods: the first
method suffers from irregular frequencies because there appear eigenvalues
of the interior Maxwell problem. In addition, there is a discrete set of values
of chirality for which unique solvability does not hold. The second method
gives unique solvability for all frequencies. The other equation is uniquely
solvable for all frequencies except those corresponding to eigenvalues of a
certain associated interior Maxwell problem.
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Chapter Six

Scattering Problems: A Variety of Topics

6.1 INTRODUCTION

In this chapter we continue our study of scattering problems in the case where
the considered fields have harmonic time dependence and the involved chi-
ral media are homogeneous. For the reader’s convenience we start with a
section (Section 6.2) containing various important concepts of scattering the-
ory; for simplicity, the presentation is done for the relatively simple case of
the scalar Helmholtz equation, whose vector analogue is strongly related to
the Maxwell equations. In the following sections we present a variety of top-
ics. In particular, Section 6.3 deals with the establishment of the reciprocity
principle, the general scattering theorem and the optical theorem for the
chiral obstacle in an achiral environment problem; moreover, a study of the
spectrum of the far-field operator and its relation to that of the T -matrix is
included. Next, in Section 6.3.2 we consider the chiral obstacle in an achiral
environment scattering problem when the incident electromagnetic wave is
spherical, coming from a point source; we derive scattering relations involv-
ing two spherical waves, and mixed scattering relations involving one plane
and one spherical wave. Section 6.4 has as a general underlying concept that
of dyadics; it deals with the generalisation of the Atkinson-Wilcox expansion
theorem to the perfect conductor in a chiral environment problem. Further,
we generalise the low-frequency theory of classical (achiral) electromagnetism
(see, e.g., [121], [360]) to the perfect conductor in a chiral environment prob-
lem: we obtain an iterative sequence of potential theory type problems with
respect to the low-frequency coefficients and derive the leading term approx-
imation of the electric far-field patterns. In Section 6.5 we present the results
of Athanasiadis and Kardasi ([28], [30]) on chiral Herglotz wave functions;
we first define the Herglotz wave functions of Beltrami and electromagnetic
fields in a chiral medium. We then refer to scalar Herglotz functions and the
Herglotz condition. We define the left circularly polarised (LCP) and right
circularly polarised (RCP) Beltrami-Herglotz functions, which are shown to
satisfy the Herglotz condition. Finally, the notion of a chiral Herglotz pair
is introduced. The use of the LCP and RCP Beltrami-Herglotz fields to de-
fine a chiral Herglotz pair ascertains the validity of some interesting results
for such a pair and its far-field patterns. In Section 6.6 we exhibit infinite
Fréchet differentiability of the mapping from the boundary of the scatterer
onto the far-field patterns, for the perfect conductor in chiral environment
problem and derive a characterisation of the Fréchet derivative as a solution
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to an appropriate boundary value problem. This can be of use in a variety of
applications, including the use of Newton’s method for solving inverse prob-
lems. Let us note that in the case that the chirality measure (β) is equal to
zero all the results of this chapter reduce to the corresponding results of clas-
sical (achiral) time-harmonic electromagnetic theory. Finally, Section 6.7 is
a potpourri of topics related to chiral media. The aim is just to indicate some
of the related problems treated in the chiral bibliography; the list is only in-
dicative and by no means exhaustive. None of these directions is presented
in detail. In particular, we start with very brief comments on work done
on waveguides, then discuss some results of using the quaternionic approach
for studying chiral media. Next we concisely discuss periodic structures. A
discussion of inverse problems concludes this section.

6.2 IMPORTANT CONCEPTS OF SCATTERING THEORY

In this section we present some of the basic notions of scattering theory. For
simplicity, the presentation is done for the scalar Helmholtz equation and
follows [103], [121]. The corresponding notions for the Maxwell equations in
chiral media are one of the topics of this chapter.

Consider the Helmholtz equation

∆v(x) + k2v(x) = 0, k ∈ C, Im k ≥ 0, (6.1)

equipped with the Sommerfeld radiation condition

lim
r→∞

r
(∂v(x)

∂r
− ikv(x)

)
= 0, (6.2)

uniformly in all directions x̂ = x/r, where r = |x|.
We are interested in scattering problems, i.e., in studying the manner in

which a bounded obstacle (the scatterer) O perturbs a wave originating in
Oe, the unbounded exterior of O. The scatterer O is a (nonempty) bounded
open set, for convenience additionally assumed to be simply connected, with
a sufficiently smooth boundary ∂O; by n we denote the unit outward normal
vector on ∂O. So we consider a field1 vinc incident on O. The resulting total
field vt is the superposition of vinc and the scattered field vsc: vt(x) =
vinc(x) + vsc(x); vsc satisfies (6.1) in Oe and (6.2). In addition, a boundary
condition2 must be satisfied on ∂O. Transmission problems are of course
important, too, but we do not deal with them in this introduction. Now
consider the fundamental solution Φ(x, y; k) = ei k|x−y|/(4π |x − y|), x 6= y,

1The incident field vinc(x) is assumed to be either plane of the form exp (ikk̂ ·x), where

k̂ is the direction of propagation, or spherical due to a point source at x0 of the form
exp (ik|x−x0|)/(ik|x−x0|). In the former case the incident wave is defined for all x ∈ R3

and satisfies (6.1) for all x ∈ R3, but does not satisfy (6.2). In the latter, the incident
field satisfies (6.2) but is a solution of (6.1) only in R3 \ {x0}.

2This can be either the Dirichlet or the Neumann or the Robin condition.



rsy-book-final December 7, 2011

114 CHAPTER 6

of (6.1). Let

τ(x) :=

 1 x ∈ Oe,
1/2 x ∈ ∂O,
0 x ∈ O.

Incorporating the boundary values in (5.28) we obtain the following integral
representation for the scattered field

τ(x) vsc(x) =

∫
∂O

(
vsc(y)

∂Φ(x, y; k)

∂ny
− Φ(x, y; k)

∂vsc(y)

∂n

)
ds(y) , (6.3)

where x ∈ R3, y ∈ ∂O.
A direct consequence of the above representation formula is the following

result (Atkinson-Wilcox theorem).

Theorem 6.2.1 Let v ∈ C2(Oe) be a solution of (6.1) satisfying (6.2). Let
R0 be such that {x ∈ R3 : |x| = R0} ⊂ Oe, and let (r, θ, ϕ) be the spherical
coordinates of x. Then v has an expansion of the form

v(x) =
ei kr

r

∞∑
j=0

Fj(θ, ϕ)

rj
(6.4)

that is valid for all r ≥ R0 and that converges absolutely and uniformly with
respect to the variables (r, θ, ϕ). The series can be differentiated term by
term with respect to (r, θ, ϕ) any number of times, and the resulting series
all converge absolutely and uniformly.

Further, the coefficients Fj are recursively determined in terms of F0 by
the formula

2ikjFj = j(j − 1)Fj−1 + BFj−1 , j = 1, 2, . . . ,

where B := 1
sin θ

∂
∂θ

(
sin θ ∂∂θ

)
+ 1

sin2 θ
∂2

∂ϕ2 is Beltrami’s operator for the sphere.

Clearly, R0 can be chosen as the radius of the smallest circumscribable
sphere around the scatterer and is thus called the characteristic dimension
of the scatterer.

Additionally, we see that (6.4) can be considered a replacement of the ra-
diation condition by an exact boundary condition on any sphere surrounding
the scatterer, thus being suitable for the numerical evaluation of the scat-
tered field.

Finally, (6.4) provides an explicit realisation of the Dirichlet-to-Neumann
map relating the Neumann data ( ∂v∂n ) to the Dirichlet data (v) on a surface.
Indeed, taking this surface to be the smallest circumscribing the scatterer
sphere, all the coefficients Fj of (6.4) are known in terms of v∞ and the
Dirichlet data for v are obtained by setting r = R0 in (6.4). The Neumann
data can be determined in terms of the same coefficients Fj , since

∂v(x)

∂n
= eikR0

∞∑
j=0

Fj(θ, ϕ)
( ik

Rj+1
0

− j + 1

Rj+2
0

)
. (6.5)
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Asymptotically, the Dirichlet-to-Neumann map on a sphere appears in the
radiation condition

∂v(x)

∂n
= i k v(x) +O(|x|−2) , |x| → ∞ ,

where the term O(|x|−2) can be determined exactly in view of (6.5).
The first results regarding such expansions can be found in [430], [431].

6.2.1 The far field

Let F0 be the first coefficient in the series of Theorem 6.2.1 and S2 the unit
sphere in R3. Every solution v of (6.1) satisfying (6.2) has the following
asymptotic behaviour:

v(x) =
ei k|x|

|x|
v∞(x̂) +O(|x|−2), |x| → ∞ .

The function v∞ : S2 → C defined as v∞(x̂) = F0(θ, ϕ), where F0 is the
coefficient of the first term of the expansion (6.4), called the far-field pattern3

of v. Hence, knowledge of the far-field pattern permits reconstruction of the
scattered field up to the smallest circumscribing ∂O sphere. It can be shown
that v∞ is an analytic function of x̂ and of k.

In view of asymptotics, as |x| → ∞, for Φ(x, y; k) and its gradient we
obtain from (6.3) that

v∞(x̂) = −
∫
∂O

(∂v(y)

∂ny
+ i k (x̂ · n̂y) v(y)

)
e−i k x̂·yds(y) . (6.6)

The following comments ([121]) indicate the importance of the far-field pat-
tern: in the case in which the incident wave is planar, the far-field pattern
(often denoted in this case by v∞(x̂, k̂) instead of v∞(x̂)) describes the re-
sponse of the scatterer in the direction of observation x̂ owing to a wave
excitation in the direction of incidence k̂. If the incident wave is spherical,
then v∞ describes the response of the scatterer in the direction of obser-
vation x̂ owing to the excitation provided by the particular incident wave.
The far-field pattern contains all the angular characteristics of the scattered
far field and does not vary with |x|. A variation of either the scatterer’s
geometry (via ∂O) or its physics (via the boundary conditions) is “felt” by
v∞ alone. Conversely, the determination of whether the observation takes
place in the far field is based on the particular form of the scattered field,
which is the product of v∞ (being a scatterer-dependent angular function)
and ei k|x|/|x| (being a fixed radial function).

Further, we observe that the integral representation (6.3) for the scattered
field is a combination of monopoles and dipoles on ∂O, while the integral
representation (6.6) for the far-field pattern is a weighted distribution of
plane waves on the boundary, all of which propagate in the direction −x̂.

3Or scattering amplitude, or scattering coefficient, or radiation pattern, or radiation
function.
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6.2.2 Cross sections

The intensity (power flux) of the scattered field due to a plane incident wave
in the far field where the medium is lossless (k ∈ R+) is ([121]) given by

I(x) = α Im
(
vsc(x) grad vsc(x)

)
,

where α is a positive constant. For an incident plane wave

vinc(x) = exp(i k (k̂ · x)),

the intensity in the direction of propagation k̂ is given by

k̂ · Iinc(x) = αk .

The scattered field in the radiation zone (where it propagates in the radial
direction) has the radial intensity

r̂ · Isc(x) = α Im
(
vsc(x)

∂vsc

∂r
(x)
)
, r = |x| → ∞ ,

which, in view of the radiation condition, gives, as r →∞,

r̂ · Isc(x) = αk |vsc(x)|2 +O(r−3) = αk r−2 |v∞(x̂)|2 +O(r−3) ,

whereby, as r →∞,

r2x̂ · Isc(x) = αk |vsc(x)|2 +O(r−3) = αk |v∞(x̂)|2 +O(r−1) .

The differential scattering cross section is then defined as

σdif(x̂) := lim
r→∞

r2x̂ · Isc(x)

k̂ · Iinc(x)
= |v∞(x̂)|2 ,

and specifies the amount of power scattered in the observation direction x̂
relative to the incident power flux in the direction of propagation.

The scattering cross section or total cross section is defined as the average
of σdif(x̂) over all directions:

σsc :=
1

4π

∫
S2

σdif(x̂)ds(x̂) =

∫
S2

|v∞(x̂)|2ds(x̂) ,

which by Green’s formula yields

σsc = Im
(
vsc

∂vsc

∂n

)
ds .

So the scattering cross section is defined as the ratio of the time average
rate (over a period) at which energy is scattered by the obstacle to the
corresponding time average at which the energy of the incident wave crosses
a unit area normal to the direction of propagation. The scattering cross
section has the dimensions of area and is a measure of the disturbance caused
by the obstacle to the incident wave.

The corresponding expression for the total field defines the absorption
cross section

σabs = −Im
(
vt

∂vt

∂n

)
ds ,
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where the minus sign indicates that the power flux is inward. The absorp-
tion cross section defines the total energy absorbed by the scatterer if it is
penetrable and lossy. For lossless scatterers, as for scatterers with either
the Dirichlet or the Neumann condition on their boundary, we have that

σabs = 0. In the case that the Robin condition, ∂v(x)
∂n

+ ikνv(x) = 0 on
∂O (ν > 0), is satisfied on the scatterer’s boundary, the scatterer absorbs
energy, and σabs = ν

∫
∂O |v

t|2ds > 0.
Finally, the extinction cross section, defined as

σext := σsc + σabs ,

describes the total energy that the scatterer extracts from the incident wave
either by radiation or by absorption.

6.2.3 Basic scattering theorems

Theorem 6.2.2 (reciprocity relations)

(i) plane waves The far-field pattern in the direction x̂ due to a plane

wave in the direction k̂ is equal to the far-field pattern in the direction
−k̂ due to a plane wave in the direction −x̂, i.e.,

v∞(x̂, k̂) = v∞(−k̂,−x̂) .

(ii) spherical waves The scattered field, vsc(x1, x2), at x1 due to a point
source4 at x2 in Oe is equal to the scattered field, vsc(x2, x1), at x2 due
to a point source at x1. The same relation holds for the total fields, as
well. So,

vsc(x1, x2) = vsc(x2, x1) and vt(x1, x2) = vt(x2, x1) .

Theorem 6.2.3 (the general scattering theorem)

v∞(k̂1, k̂2)− v∞(k̂2, k̂1) =
ik

2π

∫
S2

v∞(x̂, k̂1) v∞(x̂, k̂2) ds(x̂)

+
1

4π

∫
∂O

(
vt(x, k̂2)

∂ vt(x, k̂1)

∂n
− vt(x, k̂1)

∂ vt(x, k̂2)

∂n

)
ds(x).

Theorem 6.2.4 (the optical theorem5) The total energy that the scat-
terer removes from the incident field is proportional to the value of the far-
field pattern in the forward direction k̂, i.e.,

σext =
4π

k
Im(v∞(k̂, k̂)) ,

a relation that easily follows from the general scattering theorem by setting
k̂1 = k̂2 = k̂.

4Recall that the field due to a point source at x0 is given by eik|x−x0|/(ik|x− x0|).
5Also known as the forward scattering theorem or the fundamental extinction theorem.
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A corollary of this result is that the power scattered in the forward direc-
tion can never be zero.

The relation between the forward far-field pattern and the total energy
scattered, given by the optical theorem, can be interpreted as a relation
between the incident and the scattered wave that establishes the mechanism
of energy transfer.

Remark 6.2.5 The optical theorem actually states that the total energy
the scatterer removes from the incident field is proportional to the value of
the far-field pattern in the direction in which the incident wave is travelling
(forward scattering).

6.3 BACK TO CHIRAL MEDIA: SCATTERING RELATIONS

AND THE FAR-FIELD OPERATOR

Here again, we consider the dimensionless chiral scatterer in an achiral envi-
ronment transmission problem treated in Section 5.8, and study scattering
relations and related issues.

6.3.1 Plane waves

The electromagnetic far-field pattern (Ě∞(x̂), Ȟ∞(x̂)) is defined in terms of
the scattered electromagnetic field (Ěe(x), Ȟe(x)) by the relations ([106])

Ěe(x) =
e i ke|x|

|x|
Ě∞(x̂) +O(|x|−2), |x| → ∞,

Ȟe(x) =
e i ke|x|

|x|
Ȟ∞(x̂) +O(|x|−2), |x| → ∞,

uniformly in all directions x̂. For the (dimensionless) incident electromag-
netic field, we take

Ěinc(x; d̂, p) = i (ke$)p e i (ke$)d̂·x̂,

Ȟ inc(x; d̂, p) = d̂× Einc(x; d̂, p)

(with $ = 1; see the comment at the beginning of Section 5.8), where

the unit vector d̂ describes the direction of propagation and the complex
vector p gives the polarisation and satisfies d̂ · p = 0. We indicate the
dependence of the scattered field, of the total exterior and interior fields,
and of the far-field pattern on the incident direction d̂ and the polari-
sation p by writing (Ěe(x; d̂, p), Ȟe(x; d̂, p)), (Ět(x; d̂, p), Ȟt(x; d̂, p)), and

(Ě∞(x; d̂, p), Ȟ∞(x; d̂, p)), respectively. In what follows we again use the
“U -U notation” (5.34). The meaning of the symbols Ǔe, Ǔ inc, Ǔ t and Ǔ∞
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is now clear. Moreover, we shall employ the Twersky [417] notation6,

{Ǔ1, Ǔ2}∂O :=

∫
∂O

[(n × Ǔ1) · Ǔ2 − (n× Ǔ2) · Ǔ1] ds.

Let S2 denote the unit sphere in R3. In [35] the following result is
established:

Theorem 6.3.1 The far-field pattern Ǔ∞ satisfies the reciprocity principle

q · Ǔ∞(x̂; d̂, p) = p · Ǔ∞(−d̂;−x̂, q),

for all d̂, x̂ ∈ S2 and p, q ∈ (C \ R)3 with p · d̂ = q · x̂ = 0.

We thus observe that the standard reciprocity relation for the achiral case,
described in [106], is also valid for the chiral case. For a discussion of the
basic reciprocity theorems for electromagnetic wave fields in time-invariant
configurations we refer the reader to [131].

We then have the following basic scattering theorem ([35]).

Theorem 6.3.2 The far-field pattern satisfies the relation

q · Ǔ∞(x̂; d̂, p) + p · Ǔ∞(d̂; x̂, q)

=− 1

2π

∫
S2

Ǔ∞(ŷ; d̂, p) · Ǔ∞(ŷ; x̂, q) ds(q)− i

4π

{
Ǔ t(· ; d̂, p), Ǔ t(· ; x̂, q)

}
∂O

,

for all d̂, x̂ ∈ S2 and p, q ∈ (C \ R)3 with d̂ · p = x̂ · q = 0, where

i

2

{
Ǔ t(· ; d̂, p), Ǔ t(· ; x̂, q)

}
∂O

= Im
(
γ2
i

µ?
ε?ki

)
(Ǔ1, Ǔ2)

+ Im
(

γ2
i

µ?ε?ki

)
(Ǔ1, Ǔ2) + Im (βiγ

2
i )

[
1

µ?ε?
(Ǔ1, Ǔ2) +

1

µ?ε?
(Ǔ1, Ǔ2)

]
,

Ǔ1 = Ǔ(· ; x̂, q), Ǔ2 = U(· ; d̂, p), (u, v) is the usual inner product in

(L2(O))3, and µ? = µ
1/2
e µ

−1/2
i ε? = ε

1/2
e ε

−1/2
i , γ2

i = k2
i (1− k2

i β
2
i )−1.

Remark 6.3.3 If εi, µi, βi ∈ R, then i
2

{
Ǔ t(· ; d̂, p), Ǔ t(· ; x̂, q)

}
∂O
≡ 0.

Theorem 6.3.4 The following relation holds:

σsc = −4πRe
(
p · Ǔ∞(d̂; d̂, p)

)
− i

2

{
Ǔ t(· ; d̂, p), Ǔ t(· ; x̂, q)

}
∂O

.

Remark 6.3.5 If εi and µi are positive and βi is real, we obtain that

σsc = −4πRe (p · Ǔ∞(d̂; d̂, p)),

which coincides with the classical optical theorem ([131], [417]).

6Let us note that {·, ·}∂O is related to the reciprocity gap functional which has recently
found many applications in inverse problems in acoustics, electromagnetics and linear
elasticity in connection with the linear sampling method (see Section 6.7.4).
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To conclude this section, we introduce the far-field operator F∞U : L2
t (S

2)→
L2
t (S

2), corresponding to the far-field pattern Ǔ∞, defined (see [106]) by

(F∞U h)(x̂) =

∫
S2

Ǔ∞(x̂; q̂, h(q̂)) ds(q̂).

We have the following result ([35]).

Theorem 6.3.6 Suppose that εi, µi > 0 , βi ∈ R. Then F∞U has a countable
number of eigenvalues, all lying on the circle |ζ|2 + 4πRe ζ = 0.

There is an interesting relation between the spectra of the far-field operator
and the T -matrix. For the sake of brevity we just recall here the definition
of the T -matrix, and refer to [397] for its properties.

Surround an obstacle by a sphere of radius d and centre O. The T -matrix
connects the incident field with the scattered field, and is defined by

f% =
∑
ς

T%ς aς , or f = T a ,

where we assume that the given incident field can be expanded as

U inc(x) =
∑
%

a%Reψ%(x) , |x| < d ,

and the scattered field as

U sc(x) =
∑
%

f%ψ%(x) , |x| > d ,

in terms of ψ% that is used as an abbreviation for ψ1σm`,ψ2σm`, the
normalised outgoing spherical vector wave functions (see Section 5.6.1.1).
Therefore, the T -matrix connects the known coefficients a% with the un-
known coefficients f%. In the above formulae, % and ς are multi-indices. The
composition of the obstacle (chiral or achiral, homogeneous or inhomoge-
neous, perfectly conducting or otherwise) enters through its T -matrix.

The final result of this section is the following theorem ([35]).

Theorem 6.3.7 The number λ is an eigenvalue of the far-field operator F∞U

if and only if
λ

4π
is an eigenvalue of the T -matrix.

6.3.2 Spherical waves

We consider an incident spherical electromagnetic wave due to a point source
located at a point with position vector a with respect to the origin; this
incident wave (E inc

a , H inc
a ) has the form ([36], [33]):

Einc
a (x; p̂) = (i ke)

−1 curl

(
h0(ke |x− a|)
h0(ke |a|)

â× p̂
)
,

H inc
a (x; p̂) = (i ke)

−1η−1
e curlEinc

a (x; p̂),

(6.7)

where p̂ is a constant unit vector with p̂ · a = 0, and h0(y) = i y−1 e i y is
the spherical Hankel function of the first kind and order zero. Physically,
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(Einc
a , H inc

a ) represents the field generated by a magnetic dipole with dipole
moment â × p̂ (see [106], or [121]). The above form of Einc

a ensures that
when the point source tends to infinity, the spherical wave reduces to a plane
electric wave with direction of propagation −â and polarisation p̂. The total
exterior electric field Eta is given by

Eta(x; p̂) = Einc
a (x; p̂) + Ee

a(x; p̂), x ∈ Oe \ {a},
where Ee

a(x; p̂) is the scattered electric field, which is assumed to satisfy the
radiation condition

x̂× curlEe
a + i ke|x|Ee

a = o(|x|−2), |x| → ∞, (6.8)

uniformly in all directions x̂.
The behaviour of Ee

a in the radiation zone is given by

Ee
a(x) = h0(ke|x|) gA(x̂) +O(|x|−2), |x| → ∞,

where gA(x̂) is the electric far-field pattern. We use this notation for the
far-field pattern (instead of E∞) only in this section because of its relation
to the spherical far-field pattern generator GA, which is defined below. The
total exterior electric field solves the equation

curl curlEta = k2
eE

t
a in Oe.

We note that the incident electric field satisfies the radiation condition (6.8),
and hence the total electric field also satisfies (6.8).

The incident electromagnetic waves are transmitted into the chiral scat-
terer. Let Ei

a be the total electric field in the interior. Then Ei
a satisfies

curl curlEi
a − 2βiγ

2
i curlEi

a − γ2
iE

i
a = 0 in O ,

where γ2
i = k2

i (1− k2
i β

2
i )−1 , k2

i = $2εiµi .
On the surface ∂O of the scatterer we have the following transmission

conditions:

n× Eta = n× Ei
a

n× curlEta =
µe
µi

k2
i

γ2
i

n× curlEi
a −

µe
µi
k2
i βin× Ei

a.

In the following for an incident time-harmonic spherical wave Einc
a (x; p̂) due

to a point source located at a, we will denote the total field in Oe, the
scattered field and the far-field pattern by writing Eta(x; p̂), Ee

a(x; p̂) and
gA(x̂; p̂), respectively, indicating the dependence on the position a of the
point source and the polarisation p̂. Also, the total electric field in O will
be denoted by Ei

a(x; p̂).
We are interested in relations between these fields. We consider a point

source at a with polarisation p̂1 and another point source at b with polari-
sation p̂2.

We define the spherical far-field pattern generator ([33]) as

Gb(a; p̂2) = e ike|a|a×
[
curlEe

b (a; p̂2)− i ke
2π

∫
S2

x̂× gb(x̂; p̂2) e ikex̂·ads(x̂)

]
.

Now the general scattering theorem for spherical electric waves scattered by
a chiral obstacle is formulated as follows.
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Theorem 6.3.8 For any two point source locations in Oe, a and b, and for
any polarisations, p̂1 and p̂2, we have

p̂1·Gb(a; p̂2)+p̂2·(GA(b; p̂1))+
1

2π

∫
S2

gb(x̂; p̂2)·(gA(x̂; p̂1)) ds(x̂) = Ea,b(p̂1; p̂2),

where

Ea,b(p̂1; p̂2) =

∫
O

(r1curl(Ei
a(x; p̂1)) · curlEi

b(x; p̂2)r2(Ei
a(x; p̂1)) · Ei

b(x; p̂2))dx

+ r3

∫
O

((Ei
a(x; p̂1)) · curlEi

b(x; p̂2)− curl(Ei
a(x; p̂1)) · Ei

b(x; p̂2))dx,

and

r1 =
ke
2π
Im (

µe
µi

k2
i

γ2
i

), r2 = − ke
2π
Im (

µe
µi
k2
i ), r3 =

ke
2π
Im (

µe
µi
k2
i βi).

In [121] a reciprocity relation for spherical waves scattered by an achiral
obstacle has been proved. The same relation also holds for a penetrable
chiral scatterer; see [20].

Theorem 6.3.9 For any two point source locations in Oe, a and b, for any
polarisations, p̂1 and p̂2, and for a penetrable chiral scatterer, we have

h0(ke|a|) (̂b× p̂2) · curlEe
a(̂b; p̂1) = h0(ke|b|) (â× p̂1) · curlEe

b(â; p̂2).

The scattering cross section due to a point source at a is defined ([121]) as

σsc
a =

1

k2
e

∫
S2

|gA(x̂; p̂)|2 ds(x̂),

the absorption cross section is defined as

σabs
a =

1

ke
Im
∫
∂O

n · (Eta × curlEta) ds,

and the extinction cross section, σext
a , is defined by

σext
a = σsc

a + σabs
a .

It is not hard to see first that

σabs
a = −2π

k2
e

Ea,a(p̂; p̂),

and then that

σext
a = −4π

k2
e

Re [p̂ ·GA(a; p̂)] .

Now let

Einc
pl (x; d̂, p̂) = p̂ exp{i ked̂ · x}

be an incident time-harmonic plane electric wave, where the unit vector
d̂ describes the direction of propagation and the unit vector p̂ gives the
polarisation. We will indicate the dependence of the total field in Oe, the
total field in O, the scattered field and the electric far-field pattern on the
incident direction d̂, and the polarisation p̂ by writing Et(x; d̂, p̂), Ei(x; d̂, p̂),

Ee(x; d̂, p̂), and g(x̂; d̂, p̂), respectively.
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6.3.3 Mixture of plane and spherical waves

Here we consider mixed situations, i.e., relate fields due to one spherical
electric wave Einc

a (x; p̂1) and one plane electric wave Einc
pl (x;−b̂, p̂2); we do

this by letting |b| → ∞ in our previous results.
Using some asymptotics, we can easily see that for the spherical electric

wave (6.7) we have

lim
|b|→∞

Einc
b (x; p̂) = Einc

pl (x;−q̂, p̂). (6.9)

Theorem 6.3.10 For two incident point source electric waves, Einc
a (x; p̂1)

and Einc
b (x; p̂2), we have

lim
|a|→∞

Gb(a; p̂2) = gb(−â; p̂2) , lim
|a|→∞

G(a;−q̂, p̂2) = g(−â;−q̂, p̂2).

We can now let |b| → ∞ in the general scattering theorem (Theorem
6.3.8).

Theorem 6.3.11 Let Einc
a (x; p̂1) be an incident spherical electric wave and

let Einc
pl (x;−q̂, p̂2) be an incident plane electric wave. Then

p̂1 ·G(a;−q̂, p̂2) + p̂2 · gA(q̂; p̂1)

+
1

2π

∫
S2

g(x̂;−q̂, p̂2) · gA(x̂; p̂1) ds(x̂) = lim
|b|→∞

Ea,b(p̂1; p̂2).

To conclude, we note that we also have

lim
|a|→∞

lim
|b|→∞

Gb(a; p̂2) = lim
|b|→∞

lim
|a|→∞

Gb(a; p̂2) = g (−â;−q̂, p̂2).

This can be used to verify that the known scattering relations for plane
wave incidence ([106], [121]) are recovered when |a| → ∞ and |b| → ∞.
Furthermore, (6.9) and the reciprocity principle for plane waves ([121]) give
the following limiting property:

lim
|a|→∞

p̂1 ·G(a;−q̂, p̂2) = lim
|b|→∞

p̂2 ·G(−b; â, p̂1).

Remark 6.3.12 The problem of the scattering of a spherical electromag-
netic wave propagating in a chiral medium by a bounded chiral obstacle is
studied in [20], as far as the derivation of reciprocity and general scattering
theorems (relating the scattered fields due to the presence of a point source
located at two different points) is concerned. A forward scattering theorem
and mixed (plane/spherical) scattering relations are also established. In [45]
certain radiation integral relations (“radiation principles”) are established
that relate the fields and far-field patterns created by spherical wave excita-
tion due to a dipole immersed in the interior of a layered chiral obstacle. A
reciprocity principle and a general radiation theorem (as well as an optical
theorem resulting from the latter) are proved, relating the total, primary
and secondary Beltrami fields to the respective far-field patterns. Mixed
(plane/spherical) radiation-scattering theorems are also derived.
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6.4 USING DYADICS

Dyadics may provide a very useful formulation for some key results in scat-
tering theory. Dyadic Green functions play a key rôle in electromagnetics;
see [400]. An introduction to dyadic analysis can be found in Appendix D.

6.4.1 An expansion result of the Atkinson-Wilcox type

We deal again with the scattering problem for an obstacle in a chiral en-
vironment. In this section, any kind of boundary condition on ∂O that
ensures well posedness of the corresponding boundary value problem can be
considered (and not necessarily the perfect conductor condition).

Letting U e be equal either to Ee or He, we have

curl curlU e − 2βeγ
2
e curlU e − γ2

eU
e = 0, in Oe, (6.10)

x̂× curlU e(x)− βeγ2
e x̂× U e(x) + i

γ2
e

ke
U e(x) = o(|x|−1), (6.11)

as |x| → ∞ uniformly in all directions x̂.

Let us denote by
˜̃
B(x, x′) the infinite medium Green dyadic. Chirality

imposes the appearance of two components, a left-handed one and a right-

handed one, in
˜̃
B; as in [268] we can write˜̃

B(x, x′) =
˜̃
BL(x, x′) +

˜̃
BR(x, x′), (6.12)

where, for λ = L, R,˜̃
Bλ(x, x′) =

keγeλ
2γ2

e

(˜̃
I +

1

γeλ
2

grad grad +
mλ
γeλ

curlx
˜̃
I

)
Φ(x, x′; γeλ).

Here
˜̃
I is the identity dyadic, Φ(x, x′; k) is the fundamental solution of the

Helmholtz equation and mλ is defined in (5.8). This decomposition is re-
flected in an Atkinson-Wilcox type result for chiral media stated below,
based on the following integral representation of the scattered field, ([268])

U e(x) =−2βeγ
2
e

∫
∂O

˜̃
B(x, x′) · (n × U e(x′)) ds(x′)

+

∫
∂O

˜̃
B(x, x′) · (n × curlUe(x′)) ds(x′)

+

∫
∂O

curlx
˜̃
B(x, x′) · (n × U e(x′)) ds(x′), x ∈ Oe. (6.13)

Let ρ0 be the radius of the smallest sphere circumscribable around the scat-
terer. Then we have an Atkinson-Wilcox type of expansion result for chiral
media.

Theorem 6.4.1 Let Ue be a twice continuously differentiable field satisfying
(6.10) and (6.11) in the domain r > ρ0, where (r, θ, ϕ) are the spherical
coordinates of the observation point x. Then

U e(x) =
eiγeLr

r

∞∑
j=0

FLj (θ, ϕ)

rj
+
eiγeRr

r

∞∑
j=0

FRj (θ, ϕ)

rj
, (6.14)
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which converges for r > ρ0. The series in (6.14), as well as those obtained by
term-by-term differentiation of any order, converge absolutely and uniformly
in the closed domain r ≥ r0 > ρ0, θ ∈ [0, π], ϕ ∈ [0, 2π].

A consequence of the above expansion theorem is the following proposi-
tion by which we recurrently obtain all the coefficients in the series (6.14)
from the leading coefficient Fλ0 (θ, ϕ). In complete analogy with the stan-
dard Atkinson-Wilcox expansion for the Helmholtz equation, the leading
coefficient has the interpretation of a far-field.

Theorem 6.4.2 The coefficients Fλj (θ, ϕ), λ = L,R, of the series (6.14)

can be determined from F λ0 (θ, ϕ) by the recurrence relations

(γ2
e − γ2

eλ)Fλ1 + 2i γ2
eβeγeλr̂ × Fλ1 = 2γ2

eβe(r̂ − D)× F λ0 ,

and, for j ≥ 1,

(γ2
e − γ2

eλ)F λj+1 + 2i γ2
eβeγeλr̂ × Fλj+1 =

2ji γeλF
λ
j + 2γ2

eβe ((j + 1)r̂ − D)× Fλj − [B + j(j − 1)]Fλj−1, (6.15)

where7 D = θ̂ ∂
∂θ

+ 1
sin θ

ϕ̂ ∂
∂ϕ

and B = D · D is the Beltrami operator.

One can easily obtain from the above recursion relations that if the radi-
ation patterns Fλ0 (θ, ϕ), λ = L,R, are zero, then the scattered field is also
zero (a useful property in inverse scattering problems).

The proofs of the results in this section may be found in [26].

6.4.2 Low-frequency theory

In this section we consider the perfect conductor problem, in terms of the
electric field only. We make extensive use of dyadic Green functions (see
[400]).

Using (5.14), the fact that Einc satisfies (5.13), and the following reci-
procity properties of the dyadic Green function

˜̃
B(x′, x)tr =

˜̃
B(x, x′) and

(
curlx′

˜̃
B(x′, x)

)tr
= curlx

˜̃
B(x, x′),

we obtain from the integral representation (6.13) that

Et(x) = Einc(x) +

∫
∂O

˜̃
B(x, x′) · (n × curlEt(x′)) ds(x′), x ∈ Oe. (6.16)

Using some asymptotics ([24], [121]) we have the following expression for the

asymptotic behaviour of
˜̃
Bλ, λ = L,R:

˜̃
Bλ(x, x′) =

keγeλ
8πα2

e

e iγeλ|x|

|x|
e−iγeλx̂·x′ ˜̃Jλ +O(|x|−2), |x| → ∞, (6.17)

7As usual, r̂, θ̂, ϕ̂ are the unit vectors of the spherical coordinate system.
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uniformly for all x′ ∈ ∂O, where˜̃
Jλ =

˜̃
I − x̂⊗ x̂+ imλx̂⊗

˜̃
I,

and mλ is defined in (5.8). Using (6.17) and the integral representation
(6.16), we end up with

Ee(x) =
e iγeL|x|

|x|
E∞L (x) +

e iγeR|x|

|x|
E∞R (x) +O(|x|−2), |x| → ∞, (6.18)

where for x ∈ Oe, x′ ∈ ∂O,

E∞λ (x) =
keγeλ
8πα2

e

∫
∂O

e−iγeλx̂·x′ ˜̃Jλ · [n × curlEt(x′)] ds(x′). (6.19)

Let us remark that in the case that Oe is achiral space (βe = 0), (6.18) and
(6.19) yield the familiar electric far-field pattern ([106]). The appearance of
the left and the right electric far-field patterns is due to the chiral nature of
the host medium; (see also [268]).

We are now in a position to present the low-frequency theory for the
perfect conductor problem.

The solution Et of the scattering problem (5.13) - (5.15) considered as a
function of $ is analytic in a neighbourhood of zero ([34]). Thus, Et can be
expressed as a convergent power series of $ in the low-frequency region

Et(x) =
∞∑
j=0

$j

j!
Θj(x), x ∈ Oe, (6.20)

where the low-frequency coefficients Θj(x) are independent of $. Insert-
ing the expansion (6.20) into (5.13) and equating equal powers of $, the
following iterative sequence of PDEs is obtained:

curl curl Θj(x) = 0, x ∈ Oe, j = 0, 1,

curl curl Θj(x) = j(j − 1)εeµeβ
2
ecurl curl Θj−2(x)

+ 2j(j − 1)εeµeβe curl Θj−2(x)

+ j(j − 1)εeµe Θj−2(x), x ∈ Oe, j = 2, 3, . . . .

Moreover Θj , j = 0, 1, 2, . . ., are divergence free in Oe. Hence, the low-
frequency coefficients Θj for j = 0, 1, are solutions of the vector Laplace
equation, while Θj for j ≥ 2 are solutions of the vector Poisson equation,
since the low-frequency coefficients of the right-hand sides are known from
previous steps. The boundary condition (5.14) is transformed into

n ×Θj(x) = 0, x ∈ ∂O.

We note that a similar expansion can be obtained for the magnetic field H.
In particular, if we consider the low-frequency expansion

Ht(x) =
∞∑
j=0

$j

j!
Ψj(x), x ∈ Oe,
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with Ψn(x) independent of $, then the coefficients Θj, Ψj are connected by
the relations

curl Θ0 = 0,

curl Θ1 = iµΨ0,

curl Θj − (j − 1)εeµeβe(βe curl Θj−2 − jΘj−2) = i jΨj−1, j ≥ 2.

(6.21)

To derive a suitable form of the radiation condition for the low-frequency
coefficients, we use the integral representation (6.16), where all the fields
are expanded in power series with respect to $. The incident electric plane
wave (5.7) assumes the following form, established in the Appendix of [24]:

Einc(x) =

∞∑
j=0

$j

j!
[qLfL,j(pL · x) + qRfR,j(pR · x)] . (6.22)

The functions fλ,j , λ = L, R, have the form

fλ,j(τ) =

j∑
m=0

dλ,j,mτ
m,

where the coefficients dλ,j,m are dependent only on the physical parameters
εe, µe, βe.

The infinite medium Green dyadic
˜̃
B(x, x′) given by (6.12) has the follow-

ing expansion:

˜̃
B(x, x′) =

∞∑
j=0

$j

j!
˜̃
Γj(x, x

′) +
˜̃
T 0(x, x′)

4πεeµe$2
, (6.23)

where ˜̃
Γj(x, x

′) =
˜̃
ΓL,j(x, x

′) +
˜̃
ΓR,j(x, x

′),

with˜̃
Γλ,0(x, x′) =

1

16π|x− x′|

[(
1 + 2β2

e

)˜̃
I +

(
1− 6β2

e

) (x− x′)⊗ (x− x′)
|x− x′|2

]
and, for j = 1, 2, . . .,

8π
˜̃
Γλ,j(x, x

′) =
˜̃
I

|x− x′|
[fλ,j(|x− x′|) + jβe

√
εeµe fλ,j−1(|x− x′|)]

+
1

(j + 1)(j + 2)εeµe

˜̃
Sλ,j+2(x, x′)− βemλ

(j + 1)
√
εeµe

˜̃
Sλ,j+1(x, x′)

+
mλ

(j + 1)
√
εeµe

(x− x′)× ˜̃Sλ,j+1(x, x′) + jmλβ
2
e

√
εeµe

˜̃
Sλ,j−1(x, x′)

−jmλβ2
e

√
εeµe (x− x′)× ˜̃Sλ,j−1(x, x′)− β2

e
˜̃
Sλ,j(x, x

′),
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with

˜̃
Sλ,j(x, x

′) =

j∑
m=0

(m− 1)dλ,j,m
˜̃
Tm(x, x′)

and ˜̃
Tm(x, x′) =

1

|x− x′|3

[˜̃
I + (m− 3)

(x− x′)⊗ (x− x′)
|x− x′|2

]
.

Since ˜̃
T 0(x, x′) = O

(
|x|−3

)
, |x| → ∞,

from (6.16), (6.22) and (6.23) we obtain the following asymptotic represen-
tation for the jth low-frequency coefficient:

Θj(x) = qLfL,j(pL · x) + qRfR,j(pR · x)

+

j−1∑
ρ=0

(
j

ρ

)∫
∂O

˜̃
Γj−ρ(x− x′) · [n × curlΘρ(x

′)] ds(x′)

+O
(
|x|−1

)
, |x| → ∞.

The far-field behaviour of the electric field at low-frequencies can be
derived from (6.19), using (6.20) and the expansion

e−iγeλx̂·x′ =
∞∑
j=0

$j

j!
fλ,j(−x̂ · x′).

So, we have

E∞λ (x) =
˜̃
Jλ
8π
· Σ∞,

where

Σ∞ :=

∞∑
j=0

$j

j!

j∑
ρ=0

(
j

ρ

)∫
∂O

fλ,j(−x̂ · x′) n × curlΘj−ρ(x
′) ds(x′)

+βe
√
εeµe

∞∑
j=0

$j

j!

j−1∑
ρ=0

(
j − 1

ρ

)∫
∂O

fλ,j(−x̂ · x′) n × curlΘj−ρ−1(x′) ds(x′).

From this relation, taking into account (6.21) and the fact that for any closed
surface surrounding a free-charge region the corresponding surface integrals
of Θ0 or Ψ0 are equal to zero, we admit the leading term approximation as
$ → 0:

E∞λ (x) =
$2

8π
˜̃
Jλ ·

[∫
∂O

n × curlΘ2(x′) ds(x′)

−2i

∫
∂O

(x · x′) n × curlΘ1(x′) ds(x′)

]
+O($3), $ → 0.
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Remark 6.4.3 As far as the development of low-frequency theory for trans-
mission problems is concerned, let us mention that the chiral scatterer in an
achiral environment transmission problem (to be more precise, the more gen-
eral problem where the chiral scatterer consists of an “onion-like” structure
of a finite number of nested homogeneous chiral layers of different electro-
magnetic material parameters in each layer, with a perfectly conducting or
impedant core) is treated in [43]. The case of an achiral scatterer in a chiral
environment is studied in [23].

Remark 6.4.4 Some other very interesting issues of low-frequency theory
for chiral media are considered in [10].

Remark 6.4.5 In [27], scattering theorems for dyadic chiral fields are stud-
ied, while in [29] the authors’ results (see Section 6.5) for the perfect con-
ductor scattering problem on Beltrami-Herglotz fields, Herglotz pairs and
density theorems in the vector case are established in the dyadic case, as
well.

6.5 HERGLOTZ WAVE FUNCTIONS

The asymptotic properties of metaharmonic functions (i.e., solutions of the
Helmholtz equation) have been the subject of extensive study over the years.
The modern interest in the field, initiated by a lecture by Herglotz in the mid-
1940s, was further advanced by Müller [327], Hartman [184], and Hartman
and Wilcox [185] in the 1950s and 1960s, and was used extensively in the
context of multiple scattering theory by Twersky in the 1960s [415], [416],
[417]. In addition to the sine qua non rôle that Herglotz wave functions play
in multiple scattering, they proved to be very useful in inverse scattering
theory; Colton and Kirsch [102], Colton and Kress [104], [105], [107] and
Colton and Monk [108], [109] used Herglotz wave functions to develop an
effective method for shape reconstruction in acoustic and electromagnetic
inverse scattering theory. An excellent source for this approach is [106].
Density results for the vector Helmholtz equation may be found in [433].
Dassios and Rigou [122] extended to linear elasticity the basic properties of
the acoustic Herglotz functions. In this section we present the related results
of Athanasiadis and Kardasi [28], [30] concerning chiral media.

6.5.1 Herglotz functions

A Herglotz scalar wave fuction is a solution U in R3 of the Helmholtz equation
∆U + k2U = 0, k ∈ R, satisfying the growth condition

‖U‖2H := lim
%→∞

1

%

∫
B(0,%)

|U(x)|2dx <∞,

where, as proved in [185], the above quantity exists and defines a norm,
called the Herglotz norm. It is known ([106]) that a function is a Herglotz
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function if and only if there exists a function g ∈ L2(S2), called the Herglotz
kernel, such that

U(x) =

∫
S2

g(d̂)ei kd̂·xds(d̂).

Furthermore, U and g are related by

‖U‖2H =
8π2

k2
||g||2L2(S2).

In analogy with the scalar case, let us now consider the vector Herglotz
wave function

q(x) =

∫
S2

b(d̂)ei γd̂·xds(d̂), (6.24)

with a vector Herglotz kernel b ∈ (L2(S2))3, and γ > 0; i.e., the Cartesian
components of q are scalar Herglotz wave functions. These represent solu-
tions of the vector Helmholtz equation ∆q + γ2q = 0 in R3. The definition
of the Herglotz norm for the vector case is obvious.

Remark 6.5.1 The term Herglotz function is also used for a holomorphic
function h : C+ → C+ ∪ R, where C+ := {z : Im z > 0}. These functions
are closely related to the so-called Nevanlinna functions, or Pick functions,
or R-functions, and have been thoroughly studied because of their relation
to positive harmonic functions and Hardy spaces, the theory of continued
fractions and the problem of moments, and the spectral theory of self-adjoint
operators. These functions turned to be very important recently in the fol-
lowing sense: it is known that they can be represented by positive measures
on the real line, a representation that can be interpreted as a dispersion rela-
tion for passive systems. A set of integral identities (called “sum rules”) for
physical systems has been derived ([62]) from this representation. These sum
rules constitute a very promising setting for deriving physical limitations for
passive systems.

6.5.2 Beltrami-Herglotz functions

Chirality imposes the appearance of two components, a left-handed one and
a right-handed one, in Herglotz functions. For q given by (6.24), it can easily
be shown that

div q(x) = iγ

∫
S2

ei γd̂·xd̂ · b (d̂)ds(d̂) ,

curl q(x) = iγ

∫
S2

eiγd̂·xd̂× b (d̂)ds(d̂) .

Thus, we see that a vector Herglotz wave function q(x) is a Beltrami field

if and only if d̂ · b (d̂) = 0 and for LCP fields d̂ × b (d̂) = −i b (d̂), while

d̂× b (d̂) = i b (d̂) for RCP fields. This observation leads to the definition of
the following subspaces of (L2(S2))3:

T2
L(S2) = {bL : S2 → C3 : bL ∈ (L2(S2))3, n · bL = 0, n× bL = −ibL},
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T2
R(S2) = {bR : S2 → C3 : bR ∈ (L2(S2))3, n · bR = 0, n× bR = ibR}.

A vector Herglotz wave function that is also a Beltrami field is called a
Beltrami-Herglotz function. Athanasiadis and Kardasi [28] introduced this
concept for the study of the Maxwell equations (5.2) in chiral media, which
in view of Bohren’s decomposition (5.5) take the form (5.4) in terms of
Beltrami fields. In particular:

Definition 6.5.2 Let bλ ∈ T2
λ
(S2). A λ-CP 8 Beltrami-Herglotz function,

λ = L,R, is a function of the form

qλ(x) =

∫
S2

bλ(d̂λ)eiγλd̂λ·xds(d̂λ). (6.25)

The function bλ is called the λ-CP Beltrami-Herglotz kernel.

The Beltrami-Herglotz functions are characterised by a growth condition:

Theorem 6.5.3 The vector qλ is a λ-CP, λ = L,R, Beltrami-Herglotz func-
tion if and only if it is a λ-CP Beltrami field satisfying ||qλ||2H <∞.

Beltrami-Herglotz functions can be expanded in terms of spherical vector
wave functions (see Section 5.6.1). The inversion of (6.25) is given in the
following result ([28]) which provides an expression for the Herglotz kernels
bλ directly from qλ without the need to resort to such series expansions.

Theorem 6.5.4 If qλ, λ = L,R, is a Beltrami-Herglotz function and bλ is
the corresponding Herglotz kernel, then

bλ(x̂) = lim
%→∞

1

2%

∫ %

0

re−iγλr
[
∂ qλ(x)

∂r
+ iγλ qλ(x)

]
dr,

with r = |x| and the limit interpreted in the (L2(S2))3 sense.

Beltrami-Herglotz functions are important because of the following density
result ([28]).

Theorem 6.5.5 Let O be a bounded domain in R3 with C2 boundary. For
every Beltrami field Qλ ∈ C2,α(O), α ∈ (0, 1), and for every ε > 0 there
exists a Beltrami-Herglotz function qλ, λ=L,R, such that

max
x∈O
|Qλ(x)− qλ(x)| ≤ ε.

Similar density results have been proved by Colton and Monk [108] for the
Helmholtz equation in starlike domains in R2, and by Dassios and Rigou
[123] for the reduced Navier equation for three-dimensional linear elasticity.

8CP stands for “circularly polarised”.
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6.5.3 Chiral Herglotz pairs

Using the LCP and the RCP Beltrami-Herglotz functions, we introduce the
concept of a chiral Herglotz pair.

Definition 6.5.6 A chiral Herglotz pair is a pair of vector fields of the form

E(x) = qL(x)− iηqR(x), H(x) = iη−1qL(x) + qR(x), (6.26)

where qλ, λ = L,R are λ-CP Beltrami-Herglotz functions.

Chiral Herglotz pairs are generated by linear combinations of Beltrami-
Herglotz kernels.

Definition 6.5.7 The vector field bL + bR, where bλ ∈ T2
λ
(S2), λ = L,R, is

called the electric Herglotz kernel for the electric Herglotz field E.

Let us denote the set of all electric Herglotz kernels by

T2
LR

(S2) = {b : S2 → C3 : b = bL + bR, where bλ ∈ T2
λ
(S2), λ = L,R},

and note that it is a subset9 of T2
L
(S2)⊕ T2

R
(S2).

Chiral Herglotz pairs obviously represent solutions to (5.19) in R3. Using
Theorem 6.5.3, we characterise chiral Herglotz pairs.

Theorem 6.5.8 A solution (E, H) to equations (5.19) in R3 satisfies

||E||2H + ||H||2H <∞ , (6.27)

if and only if it is a chiral Herglotz pair.

Furthermore, the following density result holds:

Theorem 6.5.9 Let O be an open, bounded and connected subset of R3

with C2 boundary ∂O, and suppose that E and H are C2,α(O), α ∈ (0, 1),
solutions of (5.19). Then, for every ε > 0 there exists a chiral Herglotz pair
(E ,H) such that

max
x∈O
|E(x)− E(x)| ≤ ε, max

x∈O
|H(x)−H(x)| ≤ ε.

The proof can be found in [28].
The following asymptotic forms, as r = |x| → ∞, for E and H hold

E(x) =
[
bL(x̂)h

(1)
0 (γLr)− iηbR(x̂)h

(1)
0 (γRr)

]
+
[
bL(−x̂)h

(1)
0 (−γLr)− iηbR(−x̂)h

(1)
0 (−γRr)

]
+O

(
1

r2

)
,

H(x) =

[
1

iη
bL(x̂)h

(1)
0 (γLr) + bR(x̂)h

(1)
0 (γRr)

]
+

[
1

iη
bL(−x̂)h

(1)
0 (−γLr) + bR(−x̂)h

(1)
0 (−γRr)

]
+O

(
1

r2

)
,

(6.28)

where h
(1)
0 is the spherical Hankel function of the first kind.

9 T2
L(S2) + T2

R(S2) is shown to be a direct sum in Lemma 3.2 of [30].
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6.5.4 Superposition of incident electric fields

In [108], [109], Colton and Monk applied a superposition technique10 to solve
the inverse acoustic scattering problem, while in [106], Colton and Kress
applied this method to the electromagnetic case. Dassios and Rigou [122],
[123] studied the superposition of incident dyadic fields for the case of linear
elasticity. Here we present the extension of the superposition technique to the
case of electromagnetic fields in chiral media by Athanasiadis and Kardasi
[30].

It is now easy to prove the following11.

Theorem 6.5.10 For given densities bλ ∈ T2
λ
(S2), λ = L,R, the solution

to the perfect conductor scattering problem for the incident wave

E inc(x) =

∫
S2

bL(d̂L)eiγLd̂L·xds(d̂L) +

∫
S2

bR(d̂R)eiγRd̂R·xds(d̂R)

is given by the relation

Ee(x) =

∫
S2

{Ee
L(x; d̂L, bL(d̂L)) + Ee

R(x; d̂L, bL(d̂L))}ds(d̂L)

+

∫
S2

{Ee
L
(x; d̂R, bR(d̂R)) + Ee

R
(x; d̂R, bR(d̂R))}ds(d̂R),

(6.29)

and has the far-field pattern

E∞(x̂) =

∫
S2

{E∞L (x̂; d̂L, bL(d̂L)) + E∞R (x̂; d̂L, bL(d̂L))}ds(d̂L)

+

∫
S2

{E∞L (x̂; d̂R, bR(d̂R)) + E∞R (x̂; d̂R, bR(d̂R))}ds(d̂R),

(6.30)

where E∞λ , λ = L,R, is the far-field pattern corresponding to scattered field
Ee
λ.

Remark 6.5.11 If the incident wave is either LCP or RCP, then the above
theorem reduces to a simpler form; see Corollary 3.1 in [30].

Let us recall the reciprocity principle for chiral media ([22]).

Theorem 6.5.12 Consider two time-harmonic plane electric waves

Einc
j (x) = Einc

L
(x; d̂L,j , pL,j) + Einc

R
(x; d̂R,j , pR,j), j = 1, 2,

incident on the scatterer O. Then the corresponding far-field patterns E∞
λ,j,

10This is a constrained optimisation method for solving the inverse problem seeking
an optimal solution in the orthogonal complement of the closure of the set of far-field
patterns. This leads to reducing the problem of solving an exterior scattering problem to
that of an interior boundary value problem, in view of Herglotz wave functions.

11We use the notation of Section 6.3.
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λ = L,R, satisfy the reciprocity relation

1

γ2
L

pL2 · [E∞L1 (−d̂L2; d̂L1, pL1) + E∞L1 (−d̂L2; d̂R1, pR1)]

+
1

γ2
R

pR2 · [E∞R1
(−d̂R2; d̂L1, pL1) + E∞

R1
(−d̂R2; d̂R1, pR1)]

=
1

γ2
L

pL1 · [E∞L2 (−d̂L1; d̂L2, pL2) + E∞L2 (−d̂L1; d̂R2, pR2)]

+
1

γ2
R

pR1 · [E∞R2
(−d̂R1; d̂L2, pL2) + E∞

R2
(−d̂R1; d̂R2, pR2)],

(6.31)

for all d̂λ,j ∈ S2, pλ,j ∈ C3, λ = L,R, j = 1, 2, and pλ,j · d̂λ,j = q · x̂ = 0.

We note that for either LCP or RCP incidence the reciprocity principle
reduces to the more familiar form of Corollary 6.5.13.

Corollary 6.5.13 If both Einc
λ1 and Einc

λ2 are either LCP or RCP incident
plane waves on the scatterer O, then the corresponding far-field patterns
E∞
λ,j, λ = L,R, j = 1, 2, satisfy the reciprocity relation

pλ2 · E∞λ (−d̂λ2; d̂λ1, pλ1) = pλ1 · E∞λ (−d̂λ1; d̂λ2, pλ2),

for all d̂λj ∈ S2, pλj ∈ C3, λ = L,R, j = 1, 2 and pλj · d̂λj = q · x̂ = 0.

The following result also holds; its proof follows from an argument analogous
to that of [102], p. 157.

Theorem 6.5.14 Let Ee ∈ C2(R3 \ O) be a solution of (5.13)-(5.15) for
which the electric far-field pattern vanishes identically. Then Ee = 0 in
R3 \ O.

In the following result (whose proof can be found in [30]) provides a neces-
sary and sufficient condition such that the set of far-field patterns is complete
in T2

λ
(S2), λ = L,R.

Lemma 6.5.15 Let {d̂λ,n}, λ = L,R, be a sequence of unit vectors that is
dense in S2. We define the sets of LCP and RCP electric far-field patterns
by

Fλ := {E∞λ (·; d̂λ,n, êj) : n = 1, 2, . . . , and j = 1, 2, 3}, λ = L,R,

where êj are the Cartesian unit vectors. Then Fλ is complete in T2
λ
(S2),

λ = L,R, if and only if there does not exist a nontrivial electric Herglotz
field E such that n× E = 0 on ∂O.

The nontrivial solution may be interpreted as an eigenfunction of the
operator form of the equation (5.13)-(5.15).
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6.5.5 The far-field operators

Using the far-field equation derived above, we define related far-field opera-
tors and study some of their properties.

Definition 6.5.16 The operators

F∞λ : T2
λ
(S2) −→ T2

λ
(S2), λ = L,R,

defined by

(F∞λ bλ)(x) :=

∫
S2

{E∞
L

(x̂; d̂λ, bλ(d̂λ)) + E∞
R

(x̂; d̂λ, bλ(d̂λ))}ds(d̂λ) (6.32)

will be respectively called the LCP and the RCP far-field operators related to
the far-field equation (6.30).

In the following result we furnish some properties of the operators defined
in (6.32).

Proposition 6.5.17 For the bounded integral operator F∞
λ

, λ = L,R, we
have

(i) F∞
λ

(T2
λ
(S2))⊥ = ker((F∞

λ
)∗) , ker((F∞

λ
)∗)⊥ = F∞

λ
(T2

λ
(S2)).

(ii) F∞λ is injective and has dense range if and only if there does not exist
a nontrivial electric Herglotz field E such that n× E = 0 on ∂O.

The proof of (i) is based on Theorem 4.6 of [102], while for the proof of (ii)
see Lemma 4.2 of [30].

Let us now consider an electric field given by a superposition of the form

E inc(x) =

∫
S2

bL(d̂L)eiγLd̂L·xds(d̂L) +

∫
S2

bR(d̂R)eiγRd̂R·xds(d̂R),

where bλ ∈ T 2
λ

(S2), λ = L,R, are weight functions, i.e., the incident wave
is an electric Herglotz field. Then, according to Theorem 6.5.10, the corre-
sponding far-field pattern is given by

E∞(x̂) =

∫
S2

{E∞L (x̂; d̂L, bL(d̂L)) + E∞R (x̂; d̂L, bL(d̂L))}ds(d̂L)

+

∫
S2

{E∞
L

(x̂; d̂R, bR(d̂R)) + E∞
R

(x̂; d̂R, bR(d̂R))}ds(d̂R).

(6.33)

In order that the scattered field be a solution Ee to (5.13)-(5.15) with corre-
sponding far-field pattern E∞, we have to solve the integral equation

F∞
LR

(bL + bR) = E∞, (6.34)

where the integral operator

F∞LR : T2
LR(S2) −→ T2

LR(S2) (6.35)

is defined by

F∞LR(bL + bR) = F∞L bL + F∞R bR,
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and the far-field patterns E∞(·; d̂) for all incident directions d̂ are assumed
to be known. An interesting discussion of far-field patterns can be found in
[19]. The integral operator defined in (6.35) is called the electric far-field
operator related to the far-field equation (6.30).

As a consequence of Proposition 6.5.17(ii) (considering the adjoint oper-
ator of F∞LR

), we can easily obtain the following corollary.

Corollary 6.5.18 The integral operator F∞
LR

is injective and has dense
range if and only if there does not exist a nontrivial electric Herglotz field E
such that n× E = 0 on ∂O.

Finally, in the following result we address the question of the possibility
of finding a superposition of incident plane electric waves such that the
resulting far-field patterns coincide with some prescribed far-field patterns.
Its proof is based directly on the previous discussion and the results of this
section and is therefore omitted; it can be found in [30]. Let us note that
it is the existence and not the uniqueness of a solution that is of interest in
this setting.

Theorem 6.5.19 Let Ee, He be a radiating solution to (5.19) in Oe that
creates electric far-field patterns E∞λ , λ = L,R. Then the linear integral
equation (6.34) possesses a solution b = (bL + bR) ∈ T2

LR(S2) if and only if
Ee, He are defined in (C(R3 \ Oe))3 and belong to (C(R3 \ Oe))3, and the
interior perfect conductor boundary value problem

curlEint = βγ2Eint + i$µ
(γ
k

)2

H int , in O ,

curlH int = βγ2H int − i$ε
(γ
k

)2

Eint , in O ,

n× Eint = −n× Ee , on ∂O ,

(6.36)

has a solution E int,Hint that is an electromagnetic Herglotz pair.

6.6 DOMAIN DERIVATIVE

We now consider the perfect conductor problem. It is known (see [24])
that a scattered electromagnetic wave behaves like the sum of two outgoing
spherical waves:

Ee(x) =
e iγeL|x|

|x|
E∞L +

e iγeR|x|

|x|
E∞R +O

(
|x|−2

)
, |x| → ∞.

The fields E∞L and E∞R are referred to as the left-handed and the right-
handed electric far-field patterns of Ee; the notion of far-field pattern is
discussed further in Sections 6.2 and 6.3.

The main purpose of this section is to study the properties of the mapping
from the boundary ∂O of O onto the far-field pattern (E∞

L
, E∞

R
). We will

exhibit infinite Fréchet differentiability (see Section A.3.1 in Appendix A)
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for this mapping in appropriate spaces and derive a characterisation of the
Fréchet derivative as a solution to a chiral boundary value problem.

Consider perturbations O(r) of a reference domain12 O0, with C3,α bound-
ary ∂O0, such that Γ(r) := ∂O(r) := {x+ r(x) : x ∈ ∂O0} for some C3,α vec-
tor fields r : ∂O0 → R3. Note that ∂O(0) = ∂O0, and for ‖r‖C3,α sufficiently
small, each set Γ(r) is the boundary of some domain O(r) with boundary of
class C3,α. For a given r ∈ C3,α and a given vector field a : R3 → R3, we
consider the (invertible) operator T (r) whose action on a is

(T (r) a )(x) := a (x+ r(x)), x ∈ ∂O0.

Using this operator we may transform all functions and boundary integral
operators on ∂O(r) into corresponding quantities on ∂O0. It is important
to note that T (r) does not necessarily relate tangential fields to tangential
fields between the two domains. To handle the particular spaces of tangential
fields we use the projection operator P1 : C(∂O0) → Ct(∂O0), defined by
P1a = π∂O0

(a) = (n0 × a|∂O0
)× n0, where n0 is the outward unit normal to

∂O0. By P2(r) we denote the inverse of the restriction, P1(r), of P1 to the
space Ct(∂O(r)), given by

P2(r) a := a −
(
n (r) · a
n (r) · n0

)
n0,

where n(r) is the outward unit normal on ∂O(r).
If A(r) : Ct(∂O(r))→ Ct(∂O(r)) is an operator and c a constant such that

cI +A(r) is invertible, where c is a constant, then we have

P1(r)(cI+A(r))−1P2(r) = (P1(r)(cI+A(r))P2(r))−1 = (cI+P1(r)A(r)P2(r))−1,

on Ct(∂O(r)). Using this fact, along with the identity I = P2(r)P1(r) on
Ct(∂O(r)), we obtain ([356]) that the solution of the perfect conductor prob-
lem in O(r) can be expressed as

Ee = −2A(r)P2(r)(cI + P1(r)A(r)P2(r))−1P1(r)(n(r) × T (r)Einc), (6.37)

where13

c := i ηe(γeL + γeR) , A(r) := i ηeAL,R(r) , A(r) :=
c

2
I + A(r) .

Let

A :=
{
r ∈ (C3,α(∂O0))3 : ‖r‖ ≤ d

}
,

for appropriately chosen d > 0. If we consider the restriction of the solution
to the scattering problem to some (arbitrary) bounded set G ⊂ Oe, then the
representation (6.37) defines the mapping

F (r) : Ct(∂O0)→ (C(G))3, F (r)Einc := Ee(r), (6.38)

12That is, we consider a family of domains O(r), in the vicinity of the original
domain O0 all of which are parametrised in terms of ∂O0 using Γ(r) := ∂O(r) :=
{x+ r(x) : x ∈ ∂O0} for various choices of r.

13Recall that AL,R := γeLM(γeL)+γeRM(γeR)+N(γeL)−N(γeR), which clearly depends
on the choice of ∂O(r).
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where by Ee(r) := Ee, as given by (6.37), we denote the solution to the
problem for the choice ∂O(r). The meaning of the above is the following:
consider a fixed function Einc : R3 → C3, such that Einc is continuous on
the boundary of the reference domain O0. Choosing r, we obtain a pertur-
bation O(r) of the reference domain, and the boundary data are derived by
evaluating the function Einc on ∂O(r) using (T (r)Einc)(x), x ∈ ∂O0. By
letting r vary, therefore letting ∂O(r) vary, but keeping the function Einc

fixed, we obtain different boundary data14, and therefore we obtain different
solutions to the problem. It is one of the aims of the present section to
quantify the variation of these solutions as the domain changes. This can be
accomplished in terms of the Fréchet derivative of the solution with respect
to r (see, e.g., [60], [3], [98]).

To this end, we use the results of [354] applied to the integral operators
which build up the mapping F (r). For fixed r, the operator F (r) can be
decomposed as F (r) = F1(r) ◦ F2(r) ◦ F3(r), where

F1(r) : Ct(∂O0)→ (C(G))3, F1(r)u := A(r)P2(r)u,

F2(r) : Ct(∂O0)→ Ct(∂O0), F2(r)v := (cI + P1(r)A(r)P2(r))
−1
v,

F3(r) : Ct(∂O0)→ Ct(∂O0), F3(r)w := −2P1(r) (n (r)× T (r)w) .

We now consider an operator from A to the space of operators from Ct(∂O0)→
C(G), which for every choice of r ∈ A renders the operator F (r) : Ct(∂O0)→
C(G) mapping the boundary data on the ∂O(r) to the field in G. This can
be visualised as follows: Fix w ∈ Ct(O0), and consider

F̆1 : A→ L(Ct(∂O0), C(G)), F̆1 := A(r)P2(r),

F̆2 : A→ L(Ct(O0), Ct(∂O0)), F̆2(r) = (cI + P1(r)A(r)P2(r))
−1
,

F̆3 : A→ Ct(O0), F̆3(r) := F3(r)w,

(6.39)

where by L(X1, X2) we denote the set of linear and bounded operators be-
tween the Banach spaces X1, X2. Note that F̆1, F̆2 are operator valued.
Since for each r we obtain F (r), an operator Ct(∂O0)→ C(G), we may con-
sider the mapping F̆ : A → L(Ct(∂O0), C(G)) with action F̆ (r)w = F (r)w,
for every w ∈ Ct(∂O0).

We summarise the infinite Fréchet differentiability of the above operators
in the following result (see [356]).

Proposition 6.6.1 The operators F̆1, F̆2 and F̆3, defined in (6.39) are in-
finitely Fréchet differentiable with respect to r.

Using the product rule (Theorem A.2 of [98]) applied to the decomposition
of F̆ using the operators (6.39) we obtain, in view of Proposition 6.6.1, the
required differentiability of F̆ . This leads to the following.

Theorem 6.6.2 The mapping F : A → C(G) is infinitely Fréchet differen-
tiable with respect to r.

14As the given function Einc is calculated on different surfaces ∂O(r).
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This means that the solution to the chiral scattering problem is a contin-
uous function on G that depends infinitely differentiably on the boundary
of the scatterer, as long as it is C3,α and such that ‖r‖ ≤ d for a suitably
chosen d > 0. In particular, this guarantees that the solution of the problem
depends continuously on the boundary of the scatterer.

Above we established the Fréchet differentiability of the scattered field for
the chiral scattering problem. In principle, the derivative can be calculated
by differentiation of the kernels of the involved integral operators and an
application of the product rule as stated in [98]. However, to avoid the
complexity of this procedure both from the viewpoint of implementation
time and from the viewpoint of computational costs, the characterisation
of the derivative of Ee as a solution to some corresponding boundary value
problem has become very popular over the last years (see, e.g., [106], [98],
[114], and the references therein).

We conclude this section with a characterisation of the chiral medium
scattering problem, established in [356].

Theorem 6.6.3 The action of the Fréchet derivative at r = 0 of the chiral
scattering problem, ∂Ee

∂r (0), on a function h = (h1, h2, h3) ∈ (C3,α(∂O0))3

solves the exterior chiral problem with the boundary values given by

n0 ×
∂Ee

∂r

∣∣∣∣
r=0

h = − ∂ n

∂r

∣∣∣∣
r=0

× Et
∣∣
r=0
− n0 ×

3∑
j=1

∂xj E
t
∣∣
r=0

hj .

Note that the derivatives with respect to r are Fréchet derivatives, while the
derivatives with respect to xj are the usual partial derivatives. A coordinate-
free expression of the above expression can be found in [356].

We would like to briefly sketch two important applications of the differ-
entiability properties and their characterisation. First, the differentiabil-
ity properties may be used for perturbation methods to calculate the scat-
tered field or its far-field patterns from the solution of the corresponding
boundary value problems for simple geometries. Second, consider the op-
erator SD mapping the surfaces Γ = ∂O?, of some inclusions O?, onto the
far-field pattern for scattering of a chiral plane wave. We assume that Γ
is in an appropriate Banach space, e.g., by using sufficiently smooth vec-
tor fields r : Γ0 → R3 on the boundary of some reference domain Γ0 and
r 7→ Γ(r) := {x+ r(x) : x ∈ Γ0}. Then, the Newton method for finding an
unknown set of inclusions Γ from knowledge of the far-field pattern is given
by the iterative scheme

Γn+1 := Γn −
(
∂SD

∂Γ
(Γn)

)−1

SD(Γn).

Here, the derivative ∂SD
∂Γ (Γn) needs to be calculated and inverted. For this,

the characterisation of this derivative as a solution to a certain boundary
value problem is an important step, since each Newton step is reduced to
solving one or several boundary value problems (see, e.g., [355] or [106]).
Domain derivatives play an important rôle in the theory of inverse problems,
as well as in shape optimisation (see [190] and the references therein).
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6.7 MISCELLANEA

6.7.1 Waveguides

Problems regarding chirowaveguides or biisotropic waveguides have been
studied by many authors. A representative very short list would include
[143], [163], [164], [165], [435], [203], [204].

6.7.2 Quaternionic methods for chiral media

Quaternionic analysis is the most natural and close generalisation of complex
analysis that preserves many of the latter’s important features.

It is well known that in vector analysis the vector product does not permit
the formation of an algebra. In the nineteenth century various attempts were
made to construct an algebra in R3, until eventually Hamilton discovered
that it is necessary instead to consider R4, for which a convenient algebra
already existed. Quaternionic analysis was introduced by Hamilton in 1843
and was further developed by G. C. Moisil, N. Teodorescu15 and K. R. Füter.
For an introduction to quaternionic analysis the reader may refer to, e.g.,
[251].

A quaternion q is an element of R4, and hence can be represented as
q =

∑3
k=0 qkik, where qk ∈ R , k = 0, 1, 2, 3 are the “components” of q,

and ik , k = 0, 1, 2, 3, are the elements of the standard orthonormal basis.
The equality and the addition of two quaternia are defined componentwise.
The concept of quaternion differs from that of any vector in R4 through
the definition of quaternionic multiplication, based on the proper definition
of multiplication of the elements of the basis. All laws of algebra are valid
regarding quaternionic arithmetic, with one exception: quaternionic multi-
plication is not commutative. Thus, in algebraic terms, real quaternia form
a skew field. There is an obvious generalisation to complex quaternia (also
called biquaternia).

The operator D :=
∑3
k=1 ik

∂
∂xk

is called the Moisil-Teodorescu (or Dirac)

operator. The quaternionic equation16 Df = 0 is equivalent to a system,
called the Moisil-Teodorescu system, that can be expressed in terms of the
usual operators div, curl and grad; it is regarded as a natural generalisation
of the Cauchy-Riemann equations to the three-dimensional space. It is easy
to see that D2 = −∆ , where ∆ is the Laplacian. Hence, each component of
a function f satisfying Df = 0 is a harmonic function.

In recent years quaternionic methods have been used by many authors
in a wide spectrum of problems in mathematical physics. Vladislav V.
Kravchenko and his group have extensively employed quaternionic meth-
ods in the study of electromagnetic problems in chiral media. We briefly
review their work here.

15His name often appears as either Théodoresco or Theodoresco.
16A function f satisfying this equation is called D-holomorphic, hyperholomorphic, or

monogenic.
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In [246] it is observed, in the achiral setting, that the Maxwell system in
the time-harmonic case for homogeneous isotropic media can be decoupled
and written in the form of two separate biquaternionic equations with the aid
of the operators (D + α) and (D− α)17 applied to purely vectorial biquater-
nia ϕ and ψ 18. Here ϕ and ψ are appropriate linear combinations of the
electric and magnetic fields E and H, D is the Moisil-Teodorescu operator
and α ∈ C with Im α ≥ 0 is the wave number. With the aid of this de-
coupling procedure, Kravchenko showed that the Stratton-Chu formulae are
easily obtained from the Cauchy integral formulae for the biquaternia ϕ and
ψ; moreover, he considered and solved the problem of analytic extendability
of the electromagnetic field from the boundary. These results, complemented
with some integral representations for other physical quantities (e.g., the im-
pulse of the electromagnetic field), appeared later in [247] and in the book
[256]. In [237], similar ideas are applied to the time-harmonic field in a
chiral medium. In [248], using the fact that the quaternionic equations to
which the Maxwell system reduces are closely related to the Dirac system
from relativistic quantum mechanics, the relationship between solutions of
both these systems is studied, with a discussion of the physical meaning. In
[238], a system (suitable for solving scattering problems for time-harmonic
electromagnetic fields in homogeneous chiral media) of biquaternionic funda-
mental solutions is introduced, with very promising results from numerical
tests owing to the correct asymptotic behaviour at infinity, as well as near
the boundary of a scatterer. In [253] and [251] the Maxwell equations for
time-harmonic fields in chiral media are studied in the case of stratified me-
dia. Classes of exact and asymptotic solutions are obtained. In [249] the
equation curlU + λU = 0 is studied in the case in which λ is a function
of the spatial variables. In particular, when λ depends on one Cartesian
variable only, integral representations for solutions are obtained in terms of
fundamental solutions for associated stationary Schrödinger equations. This
study has been continued in [254], [252] in view of the pseudoanalytic func-
tion theory. In this case (i.e., when λ depends on one Cartesian variable),
the equation describing Beltrami fields is reduced to specific type of equation
called Vekua equation for which a complete system of solutions is obtained
explicitly. In [250] and [251] the Maxwell system describing time-dependent
electromagnetic fields in inhomogeneous isotropic media is reformulated in
the form of a single biquaternionic equation (in the case of homogeneous
media, this result has been known since the early twentieth century). This
is a novel result for inhomogeneous chiral media. For homogeneous chiral
media the Maxwell system for time-dependent fields is written as a single
biquaternionic equation in [172]. This biquaternionic reformulation is used

17These operators permit a factorisation of the three-dimensional Helmholtz operator,
exactly as the operators ∂ and ∂ factorise the two-dimensional Laplacian. This observation
has played a sine qua non rôle in the development of modern quaternionic analysis. For
details, see [174].

18These ideas work in higher dimensions, as well: the skew field of quaternia is then
replaced by an appropriate Clifford algebra (see, e.g., [175]).
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to obtain in explicit form a Green function satisfying the causality principle.
A review of this and the preceding results can be found in [236]. See also
[255].

6.7.3 Periodic structures

Periodic structures (gratings) have received increasing attention over the
years because of their important applications in integrated optics, opti-
cal lenses, antireflective structures, holography, lasers, communications and
computing. In the achiral case, significant mathematical results have been
established by many authors; one can consult the bibliography in [14]. Chi-
ral gratings give rise to new features and applications; e.g., they are capable
of converting a linearly polarised incident field into two nearly circularly
polarised diffracted modes in different directions. Various physical and com-
putational aspects regarding the propagation of electromagnetic waves inside
periodic chiral media have been studied by many authors; again, one can con-
sult the bibliography in [14]. The mathematical theory in the time-harmonic
case has been studied in [4], [5], [6], [14]: a time-harmonic electromagnetic
plane wave is incident on a biperiodic structure (i.e., a three-dimensional
structure that is periodic in two orthogonal directions) filled with a chiral
inhomogeneous material; this structure is assumed to separate two chiral
homogeneous regions. The diffraction problem consists in the study of the
propagation of the reflected and transmitted waves away from this structure.
A variational formulation of the diffraction problem by chiral gratings is first
introduced. The main result refers to the well posedness of the problem: it
is established that for all (with the possible exception of a discrete set of)
frequencies, the diffraction problem has a unique quasi-periodic weak solu-
tion. The approach is based on a variant of the Hodge decomposition and
a compact embedding result. The reduction of the problem to a bounded
domain problem is a key step; this can be done by two approaches: either in
view of a pair of transparent boundary conditions (based on the Bohren de-
composition of fields inside homogeneous chiral media) or by deriving exact
radiation conditions on the boundary of the heterogeneous chiral medium
(based on the coupling of a finite element method in the inhomogeneous
chiral medium with an integral equations, or boundary element method on
the periodic interfaces). The aforementioned variational approach assumes
that the material parameters ε, µ and β are only bounded functions. The
incidence angles and grating shapes can be arbitrary, and the geometry can
be very general. In [444] the problem of electromagnetic scattering by a
periodic chiral structure is considered. The medium is homogeneous and
the structure is periodic in one direction and invariant in another direc-
tion. The electromagnetic fields inside the chiral medium are governed by
the Maxwell equations together with the Drude-Born-Fedorov constitutive
relations. The problem is simplified to a two-dimensional scattering prob-
lem, and the existence and uniqueness of solutions are treated by an integral
equations approach. It is shown that for all (with the possible exception
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of a discrete set) wave numbers, the corresponding integral equation has a
unique solution. In [445], the scattering of time-harmonic electromagnetic
waves propagating in a homogeneous chiral environment by a chiral grating
is studied. The reduction to a two-dimensional problem is again employed,
and the existence and uniqueness of solutions are studied by a variational
approach. The diffraction problem is solved by a finite element method with
perfectly matched absorbing layers. The corresponding scattering problem
for the case of a perfectly conducting grating is studied in [446], by an inte-
gral equation approach. An exact boundary value solution for the scattering
of a transverse magnetic (TM) wave by an elliptic chiral cylinder is developed
and presented in [235]. The solution is based on the separation-of-variables
technique in the elliptic cylinder coordinates system and expressed in terms
of Mathieu and modified Mathieu functions. The incident, transmitted and
scattered electromagnetic waves are expressed in terms of infinite series of
wave functions. The matrix form of the expansion coefficients is found by
applying the boundary conditions and the orthogonality of the Mathieu func-
tions. Numerical results of the forward- and back-scattered echo widths for
co- and cross-polarised waves with TM and TE polarised incident fields are
presented and discussed for various cases. In [61] the authors prove the
uniqueness of the solution of time-harmonic electromagnetic boundary value
problems defined on a smooth bounded domain that is filled with both loss-
less and lossy media. Further, they obtain the regularity of electromagnetic
fields in chiral media and the absence of resonances in cavities loaded with
chiral and partly lossy dielectrics. The potential applications of electromag-
netic chirality, together with the fact that a general ellipsoid can simulate a
variety of common objects, such as discs, needles, etc., constitute the moti-
vation of [228]. Scattering of electromagnetic waves incident on an ellipsoidal
object with a chiral property is analysed using Fourier analysis, in conjunc-
tion with an integral equations technique. The inner field of the scatterer
is described in terms of a superposition of plane waves satisfying the vector
Helmholtz equation inside the chiral medium, and a Galerkin procedure is
employed to solve a volume integral equation obtained by applying Green’s
theorem. A highly stable numerical code is obtained and verified by com-
parison with previously published solutions. Numerical computations have
been carried out for various scatterers, and interesting scattering properties
of waves from chiral media are observed. In the particular case of an inci-
dent linearly polarised plane wave, the subsequent change of its polarisation
is investigated and discussed. Wave scattering by a chiral grating is studied
in [438]. Numerical results are given and physical properties are discussed,
including the influence of frequency, angle of incidence, and aspect ratio.
At high frequencies the authors find anomalous coupling regions known as
Wood’s anomalies, which are explained by the excitation and reradiation of
leaky waveguide modes in the periodic layer. The chiral grating can posses
both frequency-selection and mode-conversion properties. In [214] the angu-
lar scattering from radially stratified spherical chiral objects is investigated.
Based on the principles of invariant embedding, a matrix Riccati equation is
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formulated that can be used to examine basic scattering properties of spher-
ical chiral structures with radial inhomogeneities in permittivity, permeabil-
ity, and chirality. High- and low-frequency limits as well as weak reflection
and constant impedance cases for this equation are examined. Further, it is
shown that in the limit of large radii of curvature, this formulation yields the
planar result. Some interesting results appear also in [436]. Time-harmonic
electromagnetic fields in thin chiral curved layers are considered and studied
in [13].

6.7.4 Inverse problems

The inverse scattering problem can be broadly divided into two classes, the
inverse obstacle problem and the inverse medium problem. In the inverse
obstacle problem, the scattering object is a homogeneous obstacle with given
boundary data and the inverse problem is to determine the obstacle from
knowledge of the scattered field at infinity (i.e., the far-field pattern). The
inverse medium problem is to determine the constitutive parameters of a
(possibly) inhomogeneous medium, from knowledge of the far-field pattern.

The inverse scattering problem has only recently progressed from a collec-
tion of ad hoc techniques with little rigorous mathematical basis to an area of
intense activity with at least the beginnings of a solid mathematical founda-
tion. The reason for this is that the inverse scattering problem is inherently
nonlinear and improperly posed. Nevertheless, the inverse scattering prob-
lem is fundamental in areas such as radar, sonar, geophysical exploration,
medical imaging and nondestructive testing; for different aspects of the the-
ory and its applications see, [106], [190], [208], [219], [242], [355], [359], [402]
and the references therein.

Consider the direct transmission problem describing the scattering of a
time-harmonic plane wave propagating in an achiral space by a chiral scat-
terer. The solvability of this problem in R3 is discussed in Section 5.7 for
a homogeneous scatterer and in [308] for an inhomogeneous scatterer. The
homogeneous scatterer case in R2 is studied in [160]. The study of the
corresponding inverse problem has two main areas: the first is the unique
determination of the chiral scatterer from knowledge of the far-field pattern,
and the second consists in uniquely determining the electromagnetic param-
eters in the scatterer from knowledge of the fields on its boundary. Without
referring to the exact formulation and detailed presentation of the related
results, we briefly describe the main ideas.

Consider two sets of data (Oj, εj , µj , βj), j = 1, 2, describing the scat-
tering problem for homogeneous chiral scatterers (εj , µj , βj : constants) in
a homogeneous chiral environment. If the electric far-field patterns E∞,1
and E∞,2 coincide for all incident directions and all polarisations, then the
scatterers coincide, i.e., O1 = O2. For three dimensions this is proved in [42]
based on a weak volume formulation of the transmission problem, in view of
Isakov’s approach in [106], [208]. For two dimensions it is proved in [160], in
view of a simplified version of Isakov’s approach introduced by Kirsch and
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Kress (see [106]), based on a boundary integral equation method, with the
use of a modified Bohren decomposition in which the coupling in the bound-
ary conditions is shifted from Neumann-to-Dirichlet data. In addition, it is
established in [393] that if O1 = O2 and the electric far-field patterns coin-
cide for all incident directions and all polarisations, then ε1 = ε2, µ1 = µ2

and β1 = β2. In two dimensions, a Newton-type method for the reconstruc-
tion of the boundary of a starlike scatterer has been developed in [160]. To
cope with the ill posedness of the problem, a regularisation suggested by
Hohage and Schormann (see the references in [160]) is implemented. The
following question is treated in [307]: from electromagnetic information ob-
tainable at the boundary of a body, can one determine material parameters,
and their normal derivatives, at the boundary of the body? The answer to
this question is given in two physically distinct situations. The first is when
the relationship between the electromagnetic fields depends on the conduc-
tivity, the electric permittivity and the magnetic permeability of the body,
and these parameters, together with their normal derivatives, are shown to
be recoverable at the boundary. The second is when the chirality of the
body is taken into account. It is also shown how a layer-stripping algorithm
may be derived to estimate the unknown parameters near the boundary in
both situations. In [31] the inverse electromagnetic scattering problem by a
perfect conductor in a chiral environment is studied in view of the authors’
results for Herglotz wave functions for chiral media. The reconstruction of
biisotropic material parameters from experimental data is treated in [366].
In [157] the linear sampling method19 for boundary reconstruction of a chiral
obstacle is analysed.

For the corresponding nonhomogeneous problem (ε, µ, β are now position
dependent), taking into account as well the (spatially varying) conductivity
σ, it is shown in [308] that the knowledge of a boundary map for the electro-
magnetic fields (Dirichlet-to-Neumann map formalism) uniquely determines
the electromagnetic parameters ε, µ, β and σ in the interior of the scatterer.
This is done by rewriting the modified chiral Maxwell equations as a first-
order perturbation of the Laplacian and constructing exponentially growing
solutions; the result is thus obtained in the spirit of complex geometrical
optics. In [307] the problem of determining the conductivity, permittivity,
permeability and chirality measure (as well as their partial derivatives with
respect to the x3 direction) on the boundary of a scatterer O from knowledge
of the Calderón operator is studied. To this end, two results pertaining to
pseudodifferential operators are provided. In [281] the problem of determin-
ing inhomogeneous (space-dependent) coefficients in the (time-independent)
constitutive relations for the Maxwell equations is explored: the data are
taken to be two sets of measurements of the electric flux density and the

19The linear sampling method (LSM), introduced by Colton and Kirsch in 1996, is the
oldest and most developed of the qualitative methods in inverse scattering theory. It is
based on solving a linear integral equation and then using the equation’s solution as an
indicator function for the determination of the support of the scattering object. For the
LSM in electromagnetics, introduced by Haddar and Monk in 2002, see [84].
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magnetic flux density obtained at points forming a subset of the spatial do-
main where the Maxwell equations are considered, for all times from a given
time interval. The constitutive relations considered in the paper correspond
to the biisotropic model of a medium and involve three scalar parameters
(as functions of the space variable): the dielectric permittivity, the magnetic
permeability, and a magnetoelectric coupling parameter, which is a measure
of nonreciprocity in the model. Under certain a priori bounds on the pa-
rameters to be reconstructed (defining an admissible set of parameters), the
author establishes a Lipschitz-type stability estimate for the inverse problem.
The proof is based on reducing the Maxwell equations to a weakly coupling
system of hyperbolic equations and subsequently applying a Carleman-type
estimate.

In [192] the transmission problem for a chiral obstacle O of non-constant
ε, µ, β surrounded by free-space (εe = µe = 1, βe = 0) is studied; the
solvability of the corresponding direct scattering problem is settled by a
variational technique. Further, the inverse problem of determining the shape
of the scatterer from the knowledge of the (fixed, positive) wavenumber k
and of the far-field patterns (resulting from a plane incident field p ei k d·x)
for all d, x/|x| ∈ S2 and p ∈ C3, is studied. This is accomplished with the
use of an appropriate factorisation method, involving the far-field operator,
the Herglotz operator and some range identities. An application is provided
for the case of an infinite chiral cylinder of the form D × R, where D is a
bounded domain in the x1x2-plane.

Another problem refers to stratified chiral media. Through an analysis of
the scattering matrix, information is obtained about the material parameters
at normal or oblique incidence ([73], [74], [75]): uniqueness results and recon-
struction formulae are given for these parameters. In particular, in [73] the
propagation of a transversely polarised time-harmonic electromagnetic plane
wave normally incident on a stratified nonreciprocal chiral (biisotropic) slab
is considered. The structure of the scattering matrix is analysed. The inverse
problem of reconstruction of material characteristics of a medium is studied.
The approach is to calculate an explicit asymptotic expansion for the symbol
of a boundary operator that is assumed to be known (from boundary mea-
surements); this expansion is shown in each case to determine the unknown
parameters at the boundary. Further, in [76], a Riemann-Hilbert approach
is presented to solving the inverse problem of the reconstruction of the pa-
rameters of a dispersive stratified chiral medium. The frequency dependence
of the medium’s parameters is supposed to be given by a single-resonance
Lorentz model. It is assumed that a plane harmonic wave impinges normally
on the chiral slab from a vacuum region. The scattering produced by the
slab is measured and constitutes the input data for the inverse problem.
The main result is to show, by treating the inverse problem as an analytic
factorisation problem in the complex plane frequencies, that the scattering
data as functions of alternating frequency allow reconstruction of three inde-
pendent combinations of four spatially varying medium parameters. In [379]
an inverse problem for a stratified uniaxial bianisotropic slab is considered
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in the frequency domain. The problem is treated as an analytic factorisation
problem in the frequency complex plane. Uniqueness in the parameter re-
construction is discussed and illustrated under a particular choice of a priori
information. In [155] the propagation of a transient electromagnetic field in
a stratified, dispersive and anisotropic slab and related direct and inverse
problems are investigated. The field is generated by a transient external
three-dimensional source. The analysis relies on the wave-splitting concept
and a two-dimensional Fourier transformation in the transverse spatial co-
ordinates. An investigation of the physical properties of the split fields is
undertaken. To solve the direct and inverse scattering problems, wave prop-
agators are used. This method is a generalisation and a unification of the
previously used embedding and Green functions methods. The wave prop-
agator approach provides an exact solution of the transmission operator.
From this solution it is possible to extract the first precursor (the Sommer-
feld forerunner). These results also hold for a bianisotropic slab. An inverse
problem is outlined using reflection and transmission data corresponding
to four two-dimensional Fourier parameters. Because of the stratification
of the medium, the inverse Fourier transformation is not needed in the in-
verse problem. In [365], time-varying wave propagation and time-harmonic
wave propagation in biisotropic materials are reviewed and the connection
between the formulations is established via the temporal Fourier transform.
An alternative method to determine the dispersive properties of a biisotropic
slab from sinusoidal scattering data at normal incidence is presented. A nu-
merical example (realistic, synthetic scattering data) is given to illustrate
the theory. Furthermore, experimental data are presented and used to gen-
erate the permittivity, permeability, and chirality parameters of a specific
man-made chiral slab in the range 3.5-18 GHz. On the basis of the results
of inversion, the question of whether the passivity concept is too austere is
raised.



This page intentionally left blank



rsy-book-final December 7, 2011

PART 3

Time-Dependent Deterministic Problems



This page intentionally left blank



rsy-book-final December 7, 2011

Chapter Seven

Well Posedness

7.1 INTRODUCTION

In this chapter we deal with electromagnetic fields in complex media in the
time domain. The most general form for the constitutive relations is assumed
to be nonlocal in time, in the form of convolutions. The convolution models
dispersive effects in the medium. We address questions related to the well
posedness of the Maxwell equations in this setting.

The structure of the chapter is as follows. In Section 7.2 we discuss the
Maxwell equations in complex media in the time domain and show that they
can be expressed as integrodifferential equations. In Section 7.3 we provide
a convenient functional setting that allows us to treat the Maxwell equation
as an integrodifferential evolution equation, and in Section 7.4 we provide
some solvability and well posedness results for this problem based on a semi-
group approach. In Section 7.5 we discuss two alternative approaches to the
solvability of evolution problems in the time domain, namely, the evolution
family approach and an approach using finite-dimensional approximations
(Faedo-Galerkin) approach. Finally, in Section 7.6 we present some exten-
sions related to evolution problems. This chapter is partly based on [284],
[394].

7.2 THE MAXWELL EQUATIONS IN THE TIME DOMAIN

The starting point for the analysis of this chapter is the Maxwell system for
isotropic linear complex media in an interior bounded domain O, in the time
domain, as expressed in Section 2.4.6 and in particular in equation (2.46).
For convenience, we repeat this initial-boundary value problem here.

∂t (Aor u+ Gd ? u) = Mu− j, (t, x) ∈ (0, T ]×O,
u(0, x) = u0(x), x ∈ O,
n(x)× u1(t, x) = 0, (t, x) ∈ (0, T )×O,

(7.1)

where u = (E,H)tr =: (u1, u2)tr and M is the Maxwell operator. Further,
let Gd be the susceptibility matrix and Aor be the optical response matrix
(see (2.11)). Assuming, additionally, that Gd is weakly differentiable with
respect to time and that Gd(·, 0) = 0, we may rewrite the above equation in
the equivalent form

∂tu = MAu+ GA ? u+ JA, (7.2)
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where GA = −A−1
or ∂tGd, MA = A−1

or M , JA = −A−1
or j. By Assumption 2.3.5,

equations (7.1) and (7.2) are equivalent.

7.3 FUNCTIONAL FRAMEWORK AND ASSUMPTIONS

In this section we introduce the functional setting that will be needed for
the study of equations (7.1) or (7.2), as well as the assumptions on the data
of the problem that will be used in proving the well posedness of the above
models.

We will use the following function spaces (see Section 3.9.1):

X := (L2(O))3,

X := X× X,

X1 := H0(curl,O), X2 := H(curl,O),

XM := X1 × X2.

The proper combination of these function spaces provides the right functional
environment for the treatment of the problem. Note that if u ∈ XM, then
u satisfies the perfect conductor boundary condition. Other choices are of
course possible.

To keep the discussion as general as posible, we formulate our results in
terms of an abstract integrodifferential equation. Let H and HM be two
Hilbert spaces and MA : HM → H. The space HM is endowed with the graph
norm of MA. In our setting, (H,HM) will be used as a proxy for the pair
(X,XM) or any other relevant choice.

The following standing assumption on the operator MA is crucial for our
approach. As will be seen later, in Section 7.4.2, the state space can be
chosen so that this assumption holds true.

Assumption 7.3.1 The operator MA : HM → H is the generator of a C0

semigroup {TMA
(t)}t∈R on the Hilbert space H.

Regarding the definition and properties of semigroups, see Section A.8 in
Appendix A.

We are now able to state (7.2) as an abstract integrodifferential equation
of the form

u′ = MAu+ GA ? u+ JA (7.3)

on the Hilbert space H.

Remark 7.3.2 ([205]) Consider the Maxwell equation d′(t) = (Lu)′(t) =
Mu(t) + j(t) , t ≥ 0 , u(0) = u0, with L(u) = Aoru+ Gd ? u. If u : R+ → XM

and J : R+ → H(div,O) (recall that j = (−J, 0)tr), it follows that d : R+ →
H(div,O) ×H(div,O) and ρ : R+ → L2(O). So, if div d(0) = (ρ(0), 0)tr =
(Lu)(0) = Aoru0 is given at t = 0, then divD = ρ and divB = 0 for all
t > 0. Therefore Gauss’s laws (2.2) are true, as long as the initial datum
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u0 is such that Aoru0 ∈ H(divρ(0),O)×H(div0,O), where H(divρ(0),O) =
r + H(div0,O) with r ∈ L2(O,R3) : divr = ρ(0). So the modelling requires
just Ampère’s and Faraday’s laws (2.1), the equation of continuity (2.7), and
the above regularity on (E0, H0)tr.

7.4 SOLVABILITY

We now consider the problem of well posedness of the mathematical model
governing the evolution of electromagnetic fields in complex media in the
time domain, as expressed by the integrodifferential equation (7.3). This is
a very important issue, since as it stands, this equation is nothing more than
a formal expression of the Maxwell equations supplemented with a properly
selected set of constitutive relations and boundary conditions. However,
unless one manages to show that this evolution equation admits solutions
having the right qualitative behaviour, one cannot assume this model is a
satisfactory one for the physical situation at hand, and it is also very risky
to try and use this model for numerical purposes.

Several alternative approaches to the solvability of system (7.3) can be
considered. Our primary approach to this problem is to adopt a semigroup
formulation, based on the semigroup generated by the Maxwell operator.
Then the convolution terms, which model the chirality and the dispersive
effects, are treated as perturbations of this semigroup. Through the use
of general fixed point schemes, the well posedness as well as interesting
qualitative properties of the model can be shown. This approach is adopted
for the following reasons: (a) the semigroup (group, actually) generated by
the Maxwell operator is very well studied and (b) the chiral terms are usually
small, so that it is plausible to treat them as perturbations. The results of
this section are based on [285]; they are related to those in [205]. See also
[64], [65], [179].

7.4.1 Different notions of solutions

For the integrodifferential equation (7.3) a variety of different types of solu-
tions can be defined regarding spatial or temporal regularity.

Definition 7.4.1 A function u ∈ C([0, T ]; H) is called a mild solution of
(7.3) if for all t ∈ [0, T ],

u(t) = TMA
(t)u0+

∫ t

0

TMA
(t−s)

∫ s

0

GA(s−r)u(r)dr ds+

∫ t

0

TMA
(t−s)JA(s) ds.

Definition 7.4.2 A function u ∈ C([0, T ]; H) is called a weak solution of
(7.3) if for every φ ∈ D(M∗A) = D(MA) :
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(i) The function (u(t), φ) is absolutely continuous on [0, T ], where (·, ·)
denotes the inner product1 in H.

(ii) For almost all t ∈ [0, T ],

(u(t), φ)′ = −(u(t),MAφ) + ((GA ? u)(t), φ) + (JA(t) , φ).

(iii) u(0) = u0.

Remark 7.4.3 Since MA is closed and densely defined, one can easily prove
that a mild solution is a weak solution, and vice versa.

Definition 7.4.4 An H-valued function u is called a strong solution of (7.3)
if u ∈W 1,1([0, T ];H) and u(t) satisfies equation (7.3) and the initial condi-
tion u(0) = u0, a.e. on [0, T ].

Remark 7.4.5 By the form of (7.3) it can be seen that for a strong solution
we have u(t) ∈ D(MA), a.e. in [0, T ], and MAu,GA ? u ∈ L1([0, T ];H).
Therefore, a strong solution possesses higher spatial regularity than a mild
or a weak solution.

Solutions that assume a higher degree of regularity are classical solutions.

Definition 7.4.6 A function u ∈ C1([0, T ];H)∩C([0, T ];D(MA)) that sat-
isfies equation (7.3) and the initial condition u(0) = u0, for all t ∈ [0, T ], is
called a classical solution.

Remark 7.4.7 It is easily seen that for a classical solution, it holds that
MAu, and GA ? u ∈ C([0, T ];H).

The following theorem guarantees the well posedness of (7.3) in the weak
sense:

Theorem 7.4.8 Under the assumptions

(i) GA ∈ L2([0, T ]; (L∞(O))6×6),

(ii) JA ∈ L1([0, T ];H),

the equation (7.3) is weakly2 well posed in H.

Proof. Choose a positive b, and consider the Banach space C([0, T ];H),
with the norm ‖u‖b = supt∈[0,T ] e

−bt‖u(t)‖H. For T < ∞, this norm is
clearly equivalent to the usual norm of C([0, T ];H). We define the map F on
C([0, T ];H) by

F(u(t)) := TMA
(t)u0 +

∫ t

0

TMA
(t− s)

∫ s

0

GA(s− r)u(r)dr ds

+

∫ t

0

TMA
(t− s)JA(s) ds,

(7.4)

1In general, e.g., in nonlinear problems, in place of the inner product the duality pairing
between the involved spaces should appear.

2In view of Remark 7.4.3, “weakly” can be replaced by “mildly”.
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with s ≤ t ∈ [0, T ]. It is not hard to establish that F maps C([0, T ];H)
into C([0, T ];H), and that for an appropriate choice of b, F is a contrac-
tion. Therefore, by the Banach contraction theorem (see Theorem A.9.1 in
Appendix A), F has a unique fixed point that is the solution of (7.3). The
continuous dependence of the solution on the data follows similarly. 2

Remark 7.4.9 The choice of b in the equivalent norm || · ||b so that the map
F is a contraction can be thought of in an equivalent manner, as follows:
instead of choosing b as large as we wish to render F a contraction, we may
take b = 0 and study the fixed point equation in an interval [t0, t0 + ∆t]
for arbitrary t0. For ∆t small enough, F is a contraction in the original
norm, therefore guaranteeing the existence of a solution in this interval. A
standard continuation argument may provide solutions in [0, T ].

In the assumptions of the three following theorems, GA(t)y denotes the
action of the matrix GA(t) on the six-vector y locally in t, i.e., not as a
convolution.

The following result guarantees that equation (7.3) is strongly well posed.

Theorem 7.4.10 Assume that u0 ∈ HM and that

(i) ∃ C > 0: ||GA(t)y||HM
< C ||y||HM

∀ y ∈ H a.e. in [0, T ];

(ii) JA ∈ L1([0, T ]; HM);

Then (7.3) is strongly well posed in H.

Proof. Let b > 0. We consider the Banach space L1([0, T ]; HM) with norm

‖u‖b =
∫ T

0
e−bt‖u(t)‖HM

dt. For T < ∞ the norm || · ||b is equivalent to
the usual norm of L1([0, T ];HM). For s ≤ t ∈ [0, T ], we define the map F on
L1([0, T ]; HM) as in (7.4). Based on the equivalence of the norms we can show
that F maps L1([0, T ]; HM) into L1([0, T ]; HM). It is not hard to establish
now that F is a contraction on L1([0, T ]; HM) for b > 0 sufficiently large.
It is clear3 that the resulting fixed point satisfies the properties required
by Definition 7.4.4. So, (7.3), under the assumptions (i)-(ii), has a unique
strong solution that is b-exponentially bounded. Remark 7.4.9 applies here
as well. 2

Working in a similar fashion we may obtain classical solutions of equation
(7.1) at the cost of imposing stricter regularity conditions on the data of the
problem.

Theorem 7.4.11 Assume that u0 ∈ HM and that

(i) ∃ C > 0: ||GA(t)y||H < C ||y||H ∀ t ∈ [0, T ], y ∈ H.

(ii) ∃ C > 0: ||GA(t)y||HM
< C ||y||HM

∀ t ∈ [0, T ], y ∈ HM.

3Taking into account as well the absolute continuity of u(t) on [0, T ].
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(iii1) JA ∈ L1([0, T ]; HM) ∩ C([0, T ];H), or

(iii2) JA ∈W 1,1([0, T ]; H) ∩ C([0, T ];H).

Then (7.3) is classically well posed in H.

Proof. For b > 0, consider the Banach space C([0, T ];HM) equipped with the
norm ‖u‖b = supt∈[0,T ] e

−bt‖u(t)‖HM
. For T < ∞, this norm is equivalent

to the usual norm of C([0, T ];HM). Define the map F on C([0, T ];HM) as in
(7.4).

Consider the function uG : [0, T ]→ H, uG(t) :=
∫ t

0
GA(t−s)u(s) ds. Clearly,

uG ∈ C([0, T ];H). Furthermore, since uG(t) ∈ HM = D(MA) for every t ∈
[0, T ] and MAuG ∈ L1([0, T ]; H) the functions u(t) =

∫ t
0

TMA
(t− s)uG(s) ds

and MAu(t) are continuous on [0, T ], so u(t) ∈ C([0, T ]; HM).

By a similar argument we find that the functions υ(t) =
∫ t

0
TMA

(t −
s)JA(s)ds and MAυ(t) are continuous on [0, T ]; hence, υ(t) ∈ C([0, T ];HM).
So, F maps C([0, T ];HM) into C([0, T ];HM).

Furthermore, we may show that for b > 0 large enough, F is a contraction
on C([0, T ];HM), and thus has a unique fixed point in C([0, T ];HM) that
satisfies the assertions of Definition 7.4.6. Following the proof of Theorem
2.4, p. 107 in [346], it can be shown that this solution is continuously
differentiable. So, (7.1) is classically well posed and the unique classical
solution is b-exponentially bounded. Remark 7.4.9 applies here as well. 2

Finally, we observe that the classical solution may be obtained by replac-
ing some of the conditions concerning spatial regularity of the kernel with
conditions concerning temporal regularity of kernel. In particular:

Theorem 7.4.12 Under the assumptions of Theorem 7.4.11 with (ii) re-
placed by

∃ g ∈ L1([0, T ];R): ||G′
A

y||H ≤ g(t) ||y||HM
, ∀ t ∈ [0, T ], y ∈ HM,

(7.3) is classically well posed.

Proof. We consider again the map F : C([0, T ];HM) → C([0, T ];HM), as
defined by (7.4), and prove that under the above assumptions, this map is a
contraction.

Consider the continuous function uG(t) =
∫ t

0
GA(t − s)u(s) ds. Since u ∈

C([0, T ];HM), we observe that u′G(t) = GA(0)u(t) +
∫ t

0
G′A(t − s)u(s) ds ∈

L1([0, T ]; H).

Therefore, the function uT(t) =
∫ t

0
TMA

(t−s)uG(s) ds is differentiable, and
its derivative,

u′T(t) = TMA
(t)uG(0) +

∫ t

0

TMA
(t− s)u′G(s) ds =

∫ t

0

TMA
(t− s)u′G(s) ds,

is continuous on [0, T ]. So, we obtain that uT(t) ∈ HM = D(MA) and MAuT(t)
is continuous on [0, T ], with MAuT(t) = u′T(t)−uG(t). Moreover, since {GA(t)}
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is a family of bounded operators in H such that supt∈[0,T ] ‖GA‖L(H) ≤ C for
some C > 0, for any y ∈ HM we have:

‖GA(t)y‖H ≤ C‖y‖H ≤ C‖y‖HM
.

Hence, applying (7.5) for y = u(t), in conjunction with our assumptions we
obtain :

‖MAuT(t)‖H≤‖u′T(t)‖H + ‖G(t)‖H ≤ ‖
∫ t

0

TMA
(t− s)u′G(s) ds‖H + ‖uG(t)‖H

≤T
(
‖GA(0)‖L(H) +

∫ t

0

g(s) ds+ C

)
sup
t∈[0,T ]

‖u(t)‖HM
.

Finally we obtain that, for fixed T , there is a constant c such that

‖uT(t)‖HM ≤ c sup
t∈[0,T ]

‖u(t)‖HM , (7.5)

with c > Tm(‖GA(0)‖L(H) +
∫ T

0
g(s) ds+ C), and Tm = max{T, T 2}.

By a similar argument as before, since JA ∈ W 1,1([0, T ]; H), we see that

for the continuous function υ(t) =
∫ t

0
TMA

(t− s)JA(s)ds we have that υ(t) ∈
HM = D(MA) and MAυ(t) is continuous on [0, T ]. So F maps C([0, T ];HM)
into C([0, T ];HM).

Now, using (7.5), we can check that F is a contraction on C([0, T ];HM).
Indeed, defining u♦ = u(1) − u(2), for u(1), u(2) ∈ C([0, T ];HM), we have

e−bt‖
∫ t

0

TMA
(t− s)

∫ s

0

GA(s− r)u♦(r)dr ds‖HM
≤ e−btc sup

t∈[0,T ]

‖u♦(t)‖HM
,

so it is clear that for b > 0 sufficiently large, the map F is a contraction on
C([0, T ];HM). It is easy to check that the unique fixed point u(t), t ∈ [0, T ],
satisfies the assertions of Definition 7.4.6 and consequently equations (7.3).
So (7.3) is classically well posed. 2

Remark 7.4.13 In the case that Gd is independent of x, assumption (ii)
holds, provided that G′d is bounded by an L1 function. Similar comments
apply in the case in which Gd may depend on x and H is an L2-based Hilbert
space, e.g., in X.

Remark 7.4.14 Along the lines of the above procedure, one may obtain
solutions of (7.3) of higher regularity by imposing sufficiently smooth data.
The results of this section are by no means optimal. Optimal results can
be obtained using more sophisticated methods than the ones employed here.
For instance, resorting to other fixed point theorems we may obtain existence
results under weaker assumptions on the data. We intentionally avoid such
an approach to minimise the necessary technicalities.

7.4.2 Finite energy solutions

Different types of solutions can be obtained by the proper choice of the state
space H and the domain of the operator MA. In particular, the following
choices yield important types of finite energy solutions.
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. Non (necessarily)-divergence-free solutions. The choice H =
X and D(MA) = XM provides the proper functional setting for studying
finite energy solutions for (7.1). In view of Proposition 3.9.9, Assump-
tion 7.3.1 holds for this choice of function spaces. Therefore, one may
apply in a straightforward manner the abstract results of Section 7.4.1
to show the mild, strong and classical well posedness of (7.1) under the
appropriate regularity conditions on the data.

. Divergence-free solutions. The same choice for H and HM as
above, (H,HM) = (X,XM) may yield solutions with divergence in X
or even divergence-free solutions. For instance, if u(0) ∈ X and JA ∈
C1([0, T ];X), then by the abstract theory u(t) ∈ XM for all t, and
taking the divergence of the Maxwell equations (weakly), we obtain
in conjunction with the equation of continuity that u has well-defined
divergence in X, with divergence properties that are determined by the
initial data (see Remark 7.3.2).

To obtain solutions for which the divergence can be defined, other choices
for the functional setting are possible. For example, one may choose one of
the following.

. H = X and HM = (H0(curl,O)∩H(div,O))×(H(curl,O)∩H(div,O)).
Noting that M : HM → X is a semigroup generator, apply the abstract
results of Section 7.4.1 to obtain solutions with well-defined divergence
without resorting to the charge conservation equation. These results
extend to the operator MA.

. H = X and HM = XM =
(
H0(curl,O) ∩ H(div0,O)

)
×
(
H(curl,O) ∩

H0(div0,O)
)
. This choice guarantees that the fields are divergence

free. Then M : HM → H is a semigroup generator (see Theorem 3.9.7;
see also [138]). These results extend to the operator MA in the case
where Aor or A0 have constant coefficients, or in the case of spatially
dependent but smooth enough coefficients but working in the weighted
versions of the H(div0,O) spaces.

. Still other choices are possible; see, e.g., [92], [93], [282], [450].

7.5 OTHER POSSIBLE APPROACHES TO SOLVABILITY

We now turn to the discussion of other possible approaches to the solvability
of equation (7.1)

7.5.1 Evolution families approach

More compact expressions of the solution of Volterra-type problems of forms
more general than (7.3) can be found in [133], [169], [170], [357] in terms
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of the theory of resolvent operators. According to this theory, the unique
classical solution of (7.3) is given by

u(t) = R(t)u0 +

∫ t

0

R(t− s)JA(s) ds, t ∈ [0, T ],

where {R(t)}t≥0, is the resolvent operator family that is admitted for (7.3).
We have the following result, along the lines of [133]:

Theorem 7.5.1 Under the assumptions of Theorem 7.4.12, (7.3) admits a
resolvent operator {R(t)}t≥0 and has a classical unique solution given by

u(t) = R(t)u0 +

∫ t

0

R(t− s)JA(s) ds, t ∈ [0, T ].

Proof. (Sketch) Since, by assumption, GA(t) is continuous as an operator
from HMA

to H for any t ≥ 0, we see that Hypothesis H2 of [133] is fulfilled,
and the result follows by application of the abstract results of [133]. 2

For a similar result in the whole of R3, see Chapter 10.
In many applications we prefer the expression of the solution of (7.3) using

semigroup theory instead of using the theory of resolvent operators, even if
in the latter case the solution has a simpler and more compact form. The
resolvent operator {R(t)}t≥0 is an abstract mathematical object, whereas
the unitary group (TMA

(t))t∈R, generated by the Maxwell operator, is quite
well studied in the literature. Generally, in [173], several results concerning
the expansion of a solution, which is expressed using semigroup theory, are
proved. These results may lead to a numerical scheme.

7.5.2 A Faedo-Galerkin approach

An alternative approach to the well posedeness problem is to employ a Faedo-
Galerkin approach. This will result in a finite-dimensional approximation of
the evolution equation. The Faedo-Galerkin approach is a very versatile
approach for the study of evolution problems that has interesting applica-
tions in numerical analysis and can be generalised for the study of nonlinear
problems.

The following theorem, which follows the general lines of [70], provides a
result concerning the solvability of the Maxwell equations in chiral media
based on the Faedo-Galerkin method.

Theorem 7.5.2 Under the assumptions of Theorem 7.4.8, equation (7.1)
has a unique weak solution u ∈W 1,∞([0, T ];X) ∩ L∞([0, T ];XM), satisfying

|| u ||L∞([0,T ];XM) + || u′ ||L∞([0,T ];X)≤ C ( || j ||W1,1([0,T ];X) + || u(0) ||XM).

Proof. (Sketch) We will work in terms of the weak form of the evolution
equation and use the Faedo-Galerkin method to provide an existence result.

Let en, n = 1, 2, · · · , be an orthonomal basis of XM. We will first look for
solutions in Vm = span(e1, · · · , em), which is a finite-dimensional subspace
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of XM. This candidate solution will be of the form um =
∑m
i=1 u

(i) ei, where
u(i) are scalar functions. To avoid introducing cumbersome notation, we will
identify um ∈ Vm with the m-dimensional vector um = (u(1), · · · , u(m)) and
use the same notation for both. We substitute this expression into the weak
form of the equation and then, using as test functions the elements of the
basis ei, one by one, we obtain, after integrating once with respect to time, a
system of m integral equations of the Volterra type for the scalar functions,
of the form

Aum +K ? um −
∫ t

0

Mum(s)ds =

∫ t

0

jm(s)ds, (7.6)

where um = (u(1), · · · , u(m)) ∈ Rm, A,M,K ∈ Rm×m and jm is the pro-
jection of j on Vm. The matrix functions A,M,K are defined through the
relations

(Aum)i := (Aor um, ei), (K ? um)i := (Gd ? um, ei) , (Mum)i := (Mum, ei) ,

where the subscript i denotes the corresponding coordinate of the vector
Sum, S being a proxy for A,K,M .

The solvability of the finite-dimensional system (7.6) is obtained by the
standard theory of the Volterra equations (see, e.g., Lemma 1.1 in [70]). The
time regularity of the solution um is dictated by the regularity of the kernel
function K, as well as by the regularity of the source term4.

We now obtain a priori estimates for the projections of the solution in
Vm, independent of the dimension m. To this end, in the weak form of the
equation, and assuming u ∈ Vm as the solution, we use u as a test function.
By the properties of the Maxwell operator we see that∫

O
(Aorum + Gd ? um)′ · um dx =

∫
O
jm · um dx.

Integrating over [0, t] we get the estimate∫
O

Aor um(t) · um(t) dx ≤
∫
O

Aor um(0) · um(0) dx

+

∫ t

0

Θ(s)U2
m(s) ds+ || jm ||L1([0,t];X) Um(t) ,

(7.7)

where Um(t) = sups∈[0,t] || um(s) ||X and

Θ(s) =|| Gd(0) ||L∞(O) +

∫ t

0

|| G
′

d(s) ||L∞(O) ds .

By Gronwall’s inequality (see Section A.11 in Appendix A) we obtain the
following bound for the finite-dimensional approximation of the solution5,

|| um ||L∞([0, T ]; X)≤ C1 ( || j ||L1([0, T ]; X) + || u(0) ||XM) ,

4In fact, um inherits the regularity of the above-mentioned data of the problem,
that is, um ∈ W r,1((0, T ),Rm), as long as K ∈ W r,1((0, T ),Rm×m) and

∫ t
j(s) ds ∈

W r,1((0, T ),Rm).
5And taking into account the obvious estimate || jm ||L1([0, T ]; X)≤|| j ||L1([0, T ]; X)<∞.
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where the bound is uniform in m.
Similar arguments applied to the weak form of the equation, differentiated

twice with respect to t, provide the estimate

|| u′m ||L∞([0, T ]; X)≤ C2 ( || j ||W1,1([0, T ]; X) + || u(0) ||XM),

where C2 is a constant depending on the data of the problem but not on the
dimension m of the approximation.

We now consider the approximation um =
∑m

i=1 u
(i) ei as a sequence in X.

The above estimates allow us to conclude that if we consider the sequence
{um} of finite-dimensional approximations to the solution of the problem,
and allow m → ∞, then the sequences {um} and {u′m} are bounded se-
quences in the function space L∞([0, T ];X). By standard results (see Section
A.2 in Appendix A), this guarantees the existence of a subsequence {umk}
that converges in the weak-∗ topology to a limit u such that umk

∗
⇀ u and

u′mk
∗
⇀ u′ in L∞([0, T ];X). The finite-dimensional approximations um sat-

isfy ∫
O

(Aorum +K ? um)
′ · φn dx = −

∫
O
um ·Mφn dx−

∫
O
j · φn dx

for every φn ∈ Vn. We first take the limit as n→∞, and by the density of
Vn in XM, we find that∫

O
(Aorum +K ? um)

′ · v dx = −
∫
O
um ·Mv dx−

∫
O
j · v dx (7.8)

for every v ∈ XM. We now take the limit as m → ∞, and by the weak star
convergence results of um and u′m, we see that the limit u satisfies (7.8) for
every v ∈ V . By an integration by parts, we see that this is equivalent to∫

O
(Aoru+ Gd ? u)

′ · v dx =

∫
O

Mu · v dx−
∫
O
j · v dx, (7.9)

and by the density of XM in X, we deduce that (7.9) is equivalent to the
weak form of equation (7.1). Solving the equation for Mu provides a bound
for the L∞([0, T ];X) norm of curlu. The Banach-Steinhaus theorem (uni-
form boundedness principle) (see Section A.7 in Appendix A) is essential in
showing that the weak limit of Mum is Mu. 2

The choice of the basis ei is an important issue. An interesting choice
would be to use the eigenfunctions of the curl operator or the eigenfunc-
tions of the Maxwell operator. Such a choice would simplify immensely the
form of the finite-dimensional approximations in terms of Volterra integral
equations, and this will be important if one wishes to use this approxima-
tion for the numerical analysis of the problem. One particular choice may
be in terms of the eigenfunctions of the curl operator, proposed by Moses
[326]. The use of these eigenfunctions for the study of chiral media has been
proposed in [151].

The Faedo-Galerkin approach may be used for the study of more regular
solutions, imposing higher regularity on the data. On the other hand, the
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Faedo-Galerkin method may be used within a variational formulation in or-
der to provide solutions of the equations under possibly weaker assumptions
on the data, and may also prove a very useful tool for numerical approxi-
mation of the equations, by generalising the discussion of Section 4.6 to the
time-dependent problem.

7.6 MISCELLANEA

7.6.1 More on the semigroup approach

It is possible to employ the semigroup approach directly by extending the
phase space of the original problem. Then, in the proper functional setting,
(7.3) is equivalent to an abstract ODE,

z′ = C z, (7.10)

where z = (w, u)tr is an element of the extended phase space (u being the
original unknown six-vector function and w being a new variable incorpo-
rating the effects of the convolution terms) and C is the generator of the
extended semigroup. This semigroup comprises the right shift semigroup
(whose generator is the derivative operator with respect to the time vari-
able) and the semigroup generated by MA. A semigroup approach for (7.10)
yields the required well posedness results.

This approach has been employed for general linear integrodifferential
equations in Banach spaces ([53], [133], [321]; see also the monograph [141]).

7.6.2 Pseudoparabolic equations

Equations of the general form

Lu′ = Mu+ f (7.11)

(and nonlinear extensions) have been studied for a long time by a variety of
methods. They are of interest not only for the sake of generalisations but also
because they arise naturally in a vast variety of applications (e.g., in acous-
tics, electromagnetics, viscoelasticity, heat conduction, etc.). They have
been called Sobolev-type equations, the term generally denoting equations
or systems in which spatial derivatives are mixed with the time derivative
of highest order. For a descriptive review of work prior to 1976 and many
historic examples, see [89]. In particular, equation (7.11) is called strongly
regular if L−1M is continuous, weakly regular if L is invertible but does
not dominate M, and degenerate if L is not invertible (see [399]). Strongly
regular Sobolev equations are also widely known as pseudoparabolic. Using
techniques from the theory of Sobolev-type equations, we may consider the
low chirality limit for the Maxwell equations (see [283]).
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Chapter Eight

Controllability

8.1 INTRODUCTION

In this chapter we present some issues concerning the controllability of the
Maxwell equations for complex media in the time domain. Controllability
issues constitute an important class of problems that present considerable
interest both from the mathematical as well as from the applications point
of view.

The structure of this chapter is as follows. In Section 8.2 we formulate
the problem and discuss our main strategy for its treatment, using a fixed
point approach. This approach is based on the controllability problem for the
Maxwell equations and treats the integrodifferential terms in the constitutive
relations for the complex media as a perturbation. In Section 8.3 we present
some results on the controllability of the Maxwell system that are essential
in the study of the controllability problem in complex media. In Section 8.5
we provide details on the solution of the controllability problem for complex
media using the fixed point scheme. In this chapter our main approach is a
constructive one; however, in Section 8.6.1 we provide an abstract approach
to controllability based on semigroup arguments, which allows us to present
our results in a unified framework. In Section 8.6.2 we briefly discuss the
problem of boundary controllability. In Section 8.6.3 we discuss the problem
of optimal control for Maxwell equations. Finally, in Section 8.6.4 we present
miscellaneous results concerning controllability for time-harmonic problems,
etc.

8.2 FORMULATION

Our starting point is the general control system (2.49) derived in Section
2.4.7 (and restated here for convenience):

u′ = MA u+ GA ? u+ JA + B v, (8.1)

where u = (E,H)tr is the state of the system, v = (v1, v2)tr is the con-
trol, and B is an operator quantifying how the control v affects the system’s
evolution equation. Although B can in general be an unbounded, or a nonin-
vertible, operator, to avoid technicalities we assume here that it is a bounded
and boundedly invertible operator. As usual, we will consider the Maxwell
equations as an abstract ODE in the appropriate function setting. For in-
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stance, for internal controllability problems we will consider (8.1) an abstract
ODE in the function space

XM :=
(
H0(curl,O) ∩H(div0,O)

)
×
(
H(curl,O) ∩H0(div0,O)

)
which incorporates the boundary conditions, as well as the divergence-free
property of the fields1.

The main object of this chapter is the problem of the controllability of
system (8.1), which can now be stated as follows:

Given T > 0, an initial condition u(0) = U0 and a final condition
u(T ) = UT , can we find a control procedure v[(·) such that the
solution of the system (8.1) with v(·) = v[(·) satisfies u(0) = U0

and u(T ) = UT ?

This problem has been treated in detail for a large number of linear equa-
tions, with or without convolution terms (see, e.g., [244], [290], [291]). Al-
though extensive work on the subject of controllability of the Maxwell equa-
tions exists (see, e.g., [139], [140], [223], [264], [336], [350], [422]), the subject
is still “virgin” for the case of complex media (with the exceptions of [116],
[117], [118], [195]). The linear problem with the inclusion of a convolution
term can be treated exactly; nevertheless, we choose to adopt here a per-
turbative approach based on the Hilbert uniqueness method, mainly because
this method can be easily extended to treat the problem of controllability of
nonlinear systems. However, for the sake of completeness, we will sketch the
alternative approach in a separate section. For detailed presentations of the
Hilbert uniqueness method, developed by J.-L. Lions, we refer the reader to
[265], [290], [291], [453].

Our approach is based on the following fixed point scheme. Assume that
the state space of the system is a Hilbert space H. At this point we do not
specify the exact nature of this Hilbert space; we will return to this later.
Fix a function z(·) ∈ H and consider the linear system

u′ = MA u+ J2

A + B v, (8.2)

where J2

A = JA + GA ? z. Assuming for the moment the controllability of the
linear system (8.2), we define as vz(·) the control procedure that is needed
to drive the system (8.2) from u(0) = U0 to u(T ) = UT . Let uz(·) be the
solution of

u′ = MA u+ J2

A + B vz, (8.3)

with initial condition u(0) = U0. By the definition of vz, we know that
u(T ) = UT . Define the map F : C([0, T ];H)→ C([0, T ];H) by

F (z(·)) = u(·)
If this map has a fixed point, i.e., if there exists a function u ∈ C([0, T ];H)
such that F(u) = u, then this u is the solution of the controlled system (8.1)

1This choice is not restrictive; other choices are possible (e.g., the function spaces used
in Chapter 7 may be used). However, we make this choice here to show some alternative
results under modified assumptions on the properties of the fields.



rsy-book-final December 7, 2011

CONTROLLABILITY 165

that connects the states U0 and UT in time T , and furthermore vu is the
required control v[.

There are several possible treatments of the problem of showing that the
map F has a fixed point. For instance, one may use the Banach contraction
mapping theorem for this purpose. This, in general, will work either for small
enough initial data, or small enough T , or small enough amplitudes of the
chirality coefficients, or a proper combination of these. Another alternative
is to use fixed point theorems that are of a more global nature, such as the
Schauder fixed point theorem. The application of this theorem may allow us
to obtain controllability results that are less restrictive in terms of parameter
values or in terms of the initial data. For this reason we choose to adopt
this approach here.

8.3 CONTROLLABILITY OF ACHIRAL MEDIA: THE HILBERT

UNIQUENESS METHOD

From the above discussion it is clear that the first main step in the study of
controllability of the Maxwell equations in complex media is the study of the
achiral case, i.e., when GA = 0. To this end we consider the controllability
of the system

u′ = MA u+ JA + B v. (8.4)

The question is to construct a control procedure v such that the system is
driven from U0 to UT in time T .

We will approach this problem using the Hilbert uniqueness method. This
requires the introduction and study of some auxiliary problems.

Consider first the backward adjoint problem

−Φ′ = M∗AΦ,

Φ(T ) = ΦT ,
(8.5)

where by M∗A we denote the adjoint of MA. By the properties of the Maxwell
operator, within the functional setting adopted here, we have that M∗A =
−MA, so that the backward adjoint problem (8.5) is equivalent to

Φ′ = MAΦ,

Φ(T ) = ΦT .
(8.6)

Assuming temporarily that this problem is well posed (we return to this
issue shortly; see Section 8.4.1), we may obtain the function Φ.

For this function Φ we consider the following auxiliary forward problem:

Ψ′ = MAΨ + G Φ,

Ψ(0) = 0,
(8.7)

where G is some operator that will be specified in due course. Assuming for
the time being the well posedness of this problem, as we did for the adjoint
backward problem (see Section 8.4.1), we may find the final condition Ψ(T ).
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We now define the operator Λ by Λ(ΦT ) = Ψ(T ). This map connects the
final condition, ΦT , of the backward adjoint problem (8.6) to the final state,
Ψ(T ), of the forward nonhomogeneous problem (8.7). We must be careful
with the domain and the range of this map; however, for the time being we
define the map as Λ : H1 → H1, where H1 is an appropriate subset of the
state space H.

Finally, we consider the auxiliary system

V ′ = MAV + JA,

V (0) = U0.
(8.8)

This is nothing else but the uncontrolled Maxwell system, starting at U0.
The solution of this system will provide us with V (T ), which is the state
that the original system would get to in the absence of control.

By the linearity of the equations we observe that if we set U = V + Ψ,
then the function U will satisfy the system

U ′ = MA U + JA + G Φ,

which, if G = B, coincides with the original control system. Now let us
consider the initial and final states. For the initial state we have

U(0) = V (0) + Ψ(0) = U0.

For the final state we have U(T ) = V (T ) + Ψ(T ). Therefore, if Ψ(T ) =
UT − V (T ), then U(T ) = UT , which is the required final state. This would
result in the solution of the problem, since if Φ[ is the solution of (8.6) such
that the solution of (8.7) satisfies Ψ(T ) = UT −V (T ), then Φ[ is the desired
control v.

It remains to see whether such a solution Φ[ indeed exists. To this end,
we need to use the map Λ, which connects the final states of the adjoint
backward and forward systems. Suppose that the operator equation

Λ(Φ[T ) = UT − V (T ) (8.9)

is satisfied for some Φ[T ∈ H1. Then this Φ[T is the proper final condition for
the adjoint system (8.6). The construction of the control then is given by
the following procedure:

. Solve (8.8) with initial condition U0 to obtain V (T ).

. Solve the operator equation (8.9) to obtain Φ[T .

. Solve the backward adjoint equation (8.6) with final condition Φ[T to
obtain the solution Φ[(·).

. The required control is v[ = Φ[.

. The desired path is given by the solution of (8.4) with the control
v[ = Φ[.
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Therefore, the whole problem reduces to a detailed understanding of the
mapping Λ and the solvability of the operator equation (8.9). If this equation
has a solution for any UT , then, assuming always the well posedness of the
auxiliary problems, it is possible to find a control procedure v(·) that allows
us to steer the system (8.4) from any initial state U0 to any final state UT
within the required time T . In this case we say that the system is exactly
controllable. The control procedure constructed above is a minimal-norm
control 2.

From the above discussion, we see that exact controllability of the system
is equivalent to the invertibility of the operator Λ on the whole of H1. The
Hilbert uniqueness method essentially consists in trying to define appropriate
Hilbert spaces H1, endowed with the proper norms, so as to guarantee the
invertibility of Λ. We treat this problem following [196], in the specific setting
of the Maxwell equations, and avoid a general abstract discussion to keep
the presentation as clear and as self-contained as possible. For an excellent
and extremely clear discussion of the general abstract approach, we refer the
interested reader to [112]. See also [414].

8.4 THE FORWARD AND BACKWARD PROBLEMS

8.4.1 Well posedness

We first establish that both the backward and the forward problems (8.6)
and (8.7) are well posed. Recall that

X := (L2(O))3, X := X× X,

X1 := H0(curl,O) ∩H(div0,O), X2 := H(curl,O) ∩H0(div0,O),

XM := X1 × X2 ,

and define

W1,1 := C([0, T ];X) ∩W 1,1([0, T ],X) .

Theorem 8.4.1 (i)Let ΦT ∈ XM. Then the backward problem (8.6) (and
hence (8.5)) is well posed in C([0, T ];XM) ∩ C1([0, T ];X) .
(ii)Let B ∈ L(W1,1,W1,1) be invertible. Then the nonhomogeneous forward
problem (8.7) with G = B, namely,

Ψ′ = MAΨ + BΦ,

Ψ(0) = 0,

is well posed in C([0, T ];XM) ∩ C1([0, T ];X) .

Proof. (Sketch) The proof is based on the facts that within the functional
setting employed, we have (a) M∗

A
= −MA, and (b) MA is the generator of

2In general the controllability problem does not have a unique solution unless an extra
condition is required, that of choosing the control of minimal norm. This coincides with
the control constructed by the Hilbert uniqueness method described above (see, e.g., [291].



rsy-book-final December 7, 2011

168 CHAPTER 8

a C0 group. The group property of etMA guarantees that the properties of
the forward and the backward problem are equivalent. The rest follows by
standard semigroup arguments. 2

By the regularity properties of the Maxwell equations (which follow easily
from semigroup arguments; see Appendix A, Theorem A.8.14), we see that
the map Λ is well defined as a map from XM → XM. It remains to study the
invertibility of Λ. We will approach this problem using an application of the
Lax-Milgram lemma.

To this end, we need the following auxiliary results:

8.4.2 An estimate for the backward problem

Consider first the backward problem

−v′ = M∗Av,

v(T ) = α,
(8.10)

which is a final value problem for some α ∈ XM. Here, M∗
A

is the adjoint of
MA in D(MA) = XM.

Lemma 8.4.2 Consider any τ ∈ [0, T ]. The solution to the backward prob-
lem (8.10) satisfies an estimate of the form

||α||2XM
≤ Cρ1(τ)

∫ T

T−τ
||v(t)||2

XM
dt, (8.11)

where ρ1(τ) blows up as τ → 0.

Proof. Recall that for the specific choice of XM considered here, the operator
MA has the property M∗

A
= −MA, so that the backward adjoint system

assumes the form

v′ = MA v,

v(T ) = α.
(8.12)

Therefore, we may use the results for the backward continuation of the
Maxwell system. In fact, since the Maxwell operator generates a C0 group,
these results are straightforward adaptations of the results for the forward
system. Now let us denote α := (α1, α2)tr v := (v1, v2)tr. Assuming for
simplicity, and without loss of generality, that ε = µ = 1, we have

∂2
t vi + curl curl vi = 0, i = 1, 2. (8.13)

We will use the following known fact (see, e.g., [334]): there exist C1 > 0
and C2 > 0 that depend only on O, such that for any w1 ∈ X1, one has

||w1||X1
≤ C1||curlw1||X, (8.14)

and for any w2 ∈ X2, one has

||w2||X2
≤ C2||curlw2||X. (8.15)
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Working in a similar fashion with the corresponding problem in [182], we
multiply the identity

∂2
t v1 + curl curl v1 = 0 (8.16)

by ρ(t)v1, where ρ(t) := (T−τ−t)2(T−t)2, and integrate over (T−τ, T )×O.
We get∫ T

T−τ

∫
O
ρ′v1∂tv1dx dt +

∫ T

T−τ

∫
O
ρ|∂tv1|2dx dt =

∫ T

T−τ

∫
O
ρ|curl v1|2dx dt.

Noting that∫ T

T−τ

∫
O
ρ′v1∂tv1dx dt =

∫ T

T−τ

∫
O

ρ′
√
ρ

√
ρv1∂tv1dx dt,

and using standard inequalities, we see that for all λ > 0,∫ T

T−τ

∫
O
ρ(t)|curlv1|2dx dt ≤

∫ T

T−τ

∫
O
ρ(t)|∂tv1|2 (8.17)

+
λ

2
sup

T−τ≤t≤T

ρ′(t)2

ρ(t)

∫ T

T−τ

∫
O
|∂tv1|2dx dt+

1

2λ

∫ T

T−τ

∫
O
ρ(t)|v1|2dx dt.

Using then (8.14), which implies that there exists a constant C3 such that
||v1|||X ≤ C3 ||curlv1||X (see, e.g., Corollary 3.51 in [324]), by choosing λ large
enough,∫ T

T−τ

∫
O
ρ(t)|curlv1|2dx dt ≤ C

(∫ T

T−τ

∫
O
ρ(t)|∂tv1|2dx dt

+ sup
T−τ≤t≤T

ρ′(t)2

ρ(t)

∫ T

T−τ

∫
O
|∂tv1|2dx dt

)
,

(8.18)

for some constant C that depends only on O.
Next we establish that, for i = 1, 2,∫ T

T−τ

∫
O
ρ(t)(|∂tvi|2 + |curlvi|2)dx dt = ||curlα||2X

∫ T

T−τ
ρ(t)dt, (8.19)

where we use the notation curlα = (curlα1, curlα2)tr.

Adding
∫ T
T−τ

∫
O ρ(t)|curlv1|2dx dt to both sides of (8.18), using (8.19), we

obtain the inequality

||curlα||2X
∫ T

T−τ
ρ(s)ds ≤ C

∫ T

T−τ

∫
O

(
ρ(t)|∂tv1|2 + ρ1(τ, T )|∂tv1|2

)
dx dt

+

∫ T

T−τ

∫
O
ρ(t)|curlv1|2dx dt ≤ C

∫ T

T−τ

∫
O

(|curlv1|2 + |curlv2|2)dx dt,

(8.20)

where ρ1(τ, T ) := supT−τ≤t≤T
ρ′(t)2

ρ(t)
, for some constant C that depends on

the suprema of the functions ρ and (ρ′)2

ρ . In the above we used the fact that
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|∂tv1|2 = |curlv2|2, as dictated by the Maxwell equations, and we estimated
(for i = 1, 2)

∫ T

T−τ

∫
O
ρ(t) |curlvi|2 dx dt ≤ sup

T−τ≤t≤T
ρ(t)

∫ T

T−τ

∫
O
|curlvi|2 dx dt .

Combining (8.20) with (8.14), (8.15) gives the desired result for ρ1(τ) =

(
∫ T
T−τ ρ(s) ds)−1. 2

Remark 8.4.3 Let us note that (8.19) is formally deducible from the fact
that the energy of the Maxwell system (written as described above in the
form (8.13)) is conserved.

Indeed, by multiplying (8.16) by %(t)∂tv1, where %(t) :=
∫ T

2T−τ−t ρ(s) ds,
and integrating over [T − τ, T ]×O, we get I1 + I2 = 0, where

I1 =

∫ T

T−τ

∫
O
%(t) ∂tv1 ∂

2
t v1 dx dt,

I2 =

∫ T

T−τ

∫
O
%(t) (∂tv1) curlcurlv1 dx dt.

Observe that %(t) is such that %(T − τ) = 0, %(T ) =
∫ T
T−τ ρ(s) ds and %′(t) =

ρ(t). In I1, integrate with respect to t by parts, to obtain

I1 =

∫
O
%(T ) |∂tv1|2t=T dx−

∫ T

T−τ

∫
O
%′(t) |∂tv1|2 dx dt

−
∫ T

T−τ

∫
O
%(t) v1 ∂

2
t v1dx dt

= %(T ) ||curlα2||2X −
∫ T

T−τ

∫
O
ρ(t) |∂tv1|2 dx dt− I1,

since by the Maxwell equations we have |curlv2|2 = |∂tv1|2. This gives

I1 =
1

2
%(T ) ||curlα2||2X −

1

2

∫ T

T−τ

∫
O
ρ(t) |∂tv1|2 dx dt

In I2, integrate by parts with respect to x to obtain

I2 =

∫ T

T−τ

∫
O
%(t)∂t(curl v1)curl v1dx dt =

1

2

∫ T

T−τ
%(t)∂t(curlv1)|curlv1|2 dxdt,

which is then integrated by parts with respect to t to give

I2 =
1

2
%(T )||curlα1||X −

1

2

∫ T

T−τ

∫
O
ρ(t) |curlv1|2 dx dt.

Then I1 + I2 = 0 gives (8.19).
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8.4.3 An estimate for the forward problem

Next we consider the forward problem (8.7), where the nonhomogeneous
term is B v, with v being the solution of the problem (8.10). We assume that
the operator B is realised as a matrix operator with entries Bij , i, j = 1, 2.

We use the notation Ψ = (Ψ1,Ψ2)tr where Ψi, i = 1, 2 are three-vectors.
By differentiating with respect to time once and using the divergence-free
property of the fields, this is reduced to a vector wave equation of the form

∂2
tw + curl curlw = B∇∂tv + B4v,
w(T − τ) = ∂tw(T − τ) = 0

(8.21)

where w = Ψ1, v = (v1, v2)tr is a solution of the backward problem (8.10)
and

B∇∂tv = (B22 + B11) ∂tv1 + (B12 − B21) ∂tv2,

B4v = gradB21 × v1 + gradB22 × v2.
(8.22)

An equivalent formulation in terms of Ψ2 is possible with different definitions
of the operators B∇, B4.

The following estimate for (8.21) will be needed.

Lemma 8.4.4 Let w(T ) = (w1(T ), w2(T ))tr =: wT = (wT,1, wT,2)
tr. Then

||wT||2XM
≤ C

∫ T

T−τ

∫
O

2∑
i=1

|∂tvi|2dx dt.

Proof. To avoid cumbersome notation, in what follows C is used as a proxy
for a constant, the value of which may vary from estimate to estimate. Fur-
thermore, without loss of generality, we assume that gradBij = 0, i, j = 1, 2,
since otherwise B4 v is subordinate3 to B∇ ∂tv, as long as gradBij is weakly
differentiable.

In a similar fashion as for the wave equation (see, e.g., [144]), multiply the
equation by ∂tw and integrate over O. This gives

1

2

d

dt
||∂twi||2X +

1

2

d

dt
||curlwi||2X =

∫
O

2∑
j=1

Bij∂tvj∂twidx

≤ C

(
||∂twi||2X +

2∑
i=1

||∂tvi||2X

)
. (8.23)

For i = 1, 2, define

υi(t) := ||∂twi||2X + ||curlwi||2X .
Then (8.23) implies that

υ′i(t) ≤ C

υi(t) +
2∑
j=1

||∂tvj ||2X

 , T − τ ≤ t ≤ T , i = 1, 2 ,

3In the sense that the norm of B4v is bounded by the norm B∇v for any suitable v.
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and a straightforward application of Gronwall’s inequality gives

sup
T−τ≤t≤T

υi(t) ≤ C
∫ T

T−τ

2∑
j=1

||∂tvj ||2X dt

By the definition of υi(t) and the equivalence of the norm ||w||XM
with

||curlw||X, we obtain the stated result. 2

8.4.4 Solvability of the operator equation (8.9)

We consider the map Λ : XM → XM defined by

α 7→ v 7→ w 7→ w(T ) =: Λ(α),

where v is the solution of the backward equation (8.10) and w is the solution
of the forward equation (8.21).

The following property of Λ is essential for what follows:

Lemma 8.4.5 There exists an α[ such that Λ(α[) = h, for every h ∈ XM.

Proof. We split the proof into four steps.
STEP 1 First, we observe that the operator Λ : XM → XM is a linear operator.
This follows easily from the linearity of the adjoint system and the linearity
of the forward system.
STEP 2 We next observe that the operator Λ : XM → XM is continuous. In-
deed, by definition, Λ(α) = w(T ). By Lemma 8.4.4, concerning the solutions
of the forward problem (8.21), we have

||Λ(α)||2XM
≤
∫ T

T−τ

∫
O

2∑
i=1

|∂tvi|2dx dt. (8.24)

Working as for the proof of equation (8.19), but choosing Ψ(t) = t− (T − τ),
we obtain for i = 1, 2 the identity∫ T

T−τ

∫
O

(
|∂tvi|2 + |curlvi|2

)
dx dt = τ ||curlα||2X ,

which gives the estimate∫ T

T−τ

∫
O
|∂tv|2 dx dt ≤ C ||α||2XM

. (8.25)

Combining (8.24) and (8.25), we obtain

||Λ(α)||XM
≤ C ||α||XM

,

which proves the continuity of the operator Λ.
STEP 3 We now prove the coercivity of Λ. Multiply the forward equation
(8.21) by ∂tvi, i = 1, 2 and integrate over [T − τ, T ]×O. This gives∫ T

T−τ

∫
O
∂2
tw1∂tv1dx dt+

∫ T

T−τ

∫
O
∂tv1curl curlw1dx dt =

B11

∫ T

T−τ

∫
O
| ∂tv1 |2 dx dt+ B12

∫ T

T−τ

∫
O
∂tv1 ∂tv2dx dt.

(8.26)
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Integration of the first term on the left-hand side by parts with respect to t
gives

I1 :=

∫ T

T−τ

∫
O
∂2
tw1∂tv1dx dt

=

∫
O
∂tw1(T )∂tv1(T )dx−

∫ T

T−τ

∫
O
∂2
t v1 ∂tw1dx dt. (8.27)

The second term on the left-hand side gives

I2 :=

∫ T

T−τ

∫
O
∂tv1curl curlw1dx dt

=

∫
O
v1curl curlw1

∣∣∣∣t=T
t=T−τ

dx−
∫ T

T−τ

∫
O
v1curl curl∂tw1dx dt

=

∫
O

curlv1curlw1

∣∣∣∣t=T
t=T−τ

dx−
∫ T

T−τ

∫
O

curlcurlv1 ∂tw1 dx dt

=

∫
O

curlα1curlwT,1dx−
∫ T

T−τ

∫
O

curlcurlv1 ∂tw1 dx dt, (8.28)

where we first integrated by parts with respect to t and then integrated by
parts with respect to x (once for the first integral and twice for the second).

Combining (8.26)-(8.28) and using the fact the v1 solves the adjoint equa-
tion (8.10), we obtain∫

O
∂tw1(T )∂tv1(T )dx+

∫
O

curlα1curlwT,1dx =

B11

∫ T

T−τ

∫
O
|∂tv1|2dx dt+ B12

∫ T

T−τ

∫
O
∂tv1 ∂tv2dx dt. (8.29)

We remark that the first term on the left-hand side of the above relation
can be expressed as a linear combination of curlα1curlwT,1, curlα2curlwT,2,
which may be recombined to form the inner product (α,wT)XM

. Indeed, from
(8.21), ∂tw(t = T ) is equal to a linear combination of curlαi, curlwT,i and
vi, ∂tvi, i = 1, 2, where vi are the components of v. Since v solves (8.13)
(which is the equivalent form of (8.10)), by the conservation of the X norm
for the solution of (8.13) combined with the conservation of the X norm for
the solution of (8.10), we see that the X norm of v is related to the X norm
of α, which in turn is bounded above by the X norm of curlα.

We now integrate the equation for w2 by ∂tv2 and perform the same steps
to obtain ∫

O
∂tw2(T )∂tv2(T )dx+

∫
O
curlα2curlwT,2dx =

B22

∫ T

T−τ

∫
O
|∂tv2|2dx dt+ B21

∫ T

T−τ

∫
O
∂tv1 ∂tv2dx dt. (8.30)

Adding (8.29) and (8.30), we get the following estimate:

(α,wT)XM
≥ C

∫ T

T−τ

∫
O

(
|∂tv1|2 + |∂tv1|2

)
dx dt. (8.31)
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The left-hand side of (8.31) can be estimated by the Cauchy-Schwarz in-
equality by

(α,wT)XM
≤ ||α ||XM

||wT||XM
. (8.32)

By the backward uniqueness estimate of Lemma 8.4.2, the right-hand side
of (8.31) can be estimated by∫ T

T−τ

∫
O

(
|∂tv1|2 + |∂tv2|2

)
dx dt=

∫ T

T−τ

∫
O

(
|curlv1|2 + |curlv2|2

)
dx dt

≥C ||α||2
XM
. (8.33)

Combining (8.31), (8.32), and (8.33), we obtain

||α||XM
||wT||XM

≥ C ||α||2XM
,

which readily provides the estimate

||wT||XM
= ||Λ(α)||XM

≥ C ||α||XM
, (8.34)

for all α ∈ XM.
STEP 4 The inequality (8.34), along with continuity property, guarantees
the invertibility of the operator Λ, using the standard arguments of the Lax-
Milgram lemma.

Thus the proof is complete. 2

8.5 CONTROLLABILITY: COMPLEX MEDIA

In this section we prove the exact controllability of the Maxwell equations
in complex media using a fixed point argument based on the Schauder fixed
point theorem (see Appendix A, Theorem A.9.3). For the required com-
pactness we need a version of the Arzelà-Ascoli theorem (Theorem A.5.2,
Appendix A). Let XM,W1,1 be the spaces defined in Section 8.4. We have
the following controllability result for the full chiral system.

Theorem 8.5.1 Assume that u0 ∈ XM and that JA ∈ W1,1 . In addition
let B ∈ L(W1,1,W1,1) be invertible. Then the full Maxwell system (8.1) is
exactly controllable.

Proof. The idea is based on a fixed point argument similar to that sketched
in Section 8.2. Consider the problem

u′ = MA u+ GA ? z + JA + B v . (8.35)

Fix z ∈ C([0, T ];X). Let vz(·) be the control procedure that drives the system
(8.35) from U0 at time t = 0 to UT at time t = T . Consider now the problem

u′ = MA u+ GA ? z + JA + B vz , (8.36)

with initial condition u(0) = U0. By the definition of vz we know that
u(T ) = UT .
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Define the map F : C([0, T ];X)→ C([0, T ];X) by

z 7→ F(z(·)) := u(·) ,

where u is the solution to (8.36) with initial condition u(0) = U0.
The establishment of the existence of a fixed point of F clearly settles

the exact controllability of the full (chiral) Maxwell system. We shall prove
the existence of a (not necessarily unique) fixed point of F by applying the
Schauder fixed point theorem (Theorem A.9.3 in Appendix A).

To this end, we must show that F maps an element of C([0, T ];X) to a
subspace that is compactly embedded in C([0, T ];X). Since the map F is
defined by the solution of (8.36) with initial condition u(0) = U0, we resort
to the regularity theory for this system. By the regularity properties (see
Appendix A, Theorem A.8.14) of the mild solutions of abstract nonhomoge-
neous equations of the form

u′ = MAu+ J2

A,

for MA : D(MA) = XM → X, we have that

u ∈ C([0, T ];XM) ∩ C1([0, T ];X),

as long as U0 ∈ XM and J2

A ∈ W1,1. Clearly, if z ∈ C([0, T ];X), then GA ?
z ∈ C1([0, T ];X). Since J2

A = JA + GA ? z + B vz, it remains to show that
B vz ∈W1,1.

Recall from Section 8.3 that vz is constructed via the following steps:

. We first solve the problem

V ′ = MAV + JA,

V (0) = U0.
(8.37)

By the regularity properties (see Appendix A, Theorem A.8.14) of
the mild solutions of abstract inhomogeneous equations, we have that
V ∈ C([0, T ];XM), since U0 ∈ XM and JA ∈W1,1.

. We solve the operator equation Λ(Φ[T ) = UT − V (T ), where UT is the
desired final state and V (T ) is the solution of the uncontrolled system
(8.37) at t = T . This operator is invertible in XM, thus establishing
the existence of a solution Φ[T ∈ XM.

. Using the above found Φ[T as a final condition, we solve the backward
(adjoint) system

−Φ′ = M∗AΦ,

Φ(T ) = Φ[T .
(8.38)

Noting that M∗A = −MA is the generator of a strongly continuous
group, this is equivalent to an initial value problem for the uncontrolled
Maxwell equations with initial condition Φ[T ; by the same regularity
arguments as above, we obtain Φ(t) ∈ C([0, T ];XM) ∩ C1([0, T ];X).
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. The solution Φ of (8.38) yields the desired control procedure vz.

Therefore, by the assumptions on B, B vz ∈ C([0, T ];XM) ∩ C1([0, T ];X),
whereby B vz ∈W1,1, as desired. Since the image F(z(·)) of z(·) is the mild
solution of (8.35) with control v given by vz, in view of the properties of J2

A

proved in the above steps, u ∈ C1([0, T ];X)∩C([0, T ];XM) and is an equicon-
tinuous family. The characterisation of compact subsets of C([0, T ];X) can
now be performed by the Arzelà-Ascoli theorem, and in particular by its ver-
sion Theorem A.5.2 (Appendix A), by noting that all its assumptions hold
true, in view of the above arguments and by the compact embedding XM

c

↪→X
(see Theorem 3.7.5, or Corollary 3.49 in [324], p. 71). Since the map F is
continuous, the Schauder fixed point theorem (Theorem A.9.3, Appendix A)
establishes that F admits a fixed point. 2

Remark 8.5.2 If the control v were exerted in a part O0 of O only, then T
would have to satisfy T > Tcr, where Tcr is a critical time related to the time
needed for the field activity in O0 to reach O \O0. This is due to the finite
speed of propagation of the solutions of the Maxwell equations (by analogy
with the corresponding property of solutions to the wave equation). This
remark also holds for boundary controllability.

8.6 MISCELLANEA

8.6.1 An abstract approach

The problem of controllability for chiral media may be treated using a general
abstract approach. This approach uses the semigroup formulation of the
problem. It is inspired by the work of Bensoussan [57].

To make the presentation simpler, we first omit the chiral term, which will
be added shortly after.

Consider the control system

u′ = MAu+ B v, (8.39)

where B is a “control-to-state” operator. Let us denote by H the state space
of the system and by V the control space of the system; both are assumed
to be Hilbert spaces. Assume that MA : D(MA) → H genererates a C0

semigroup, TMA
(t), on H. Assume further that B ∈ L(V,H).

The mild solution of the system (8.39) can be expressed as

u(t) = TMA
(t)u0 +

∫ t

0

TMA
(t− s)B v(s) ds. (8.40)

If we consider controls of the general form

v(t) = B∗ TMA
(t) ξ,

for some ξ ∈ H, then equation (8.40) becomes

u(t) = TMA
(t) (u0 + Lco(t)ξ) ,



rsy-book-final December 7, 2011

CONTROLLABILITY 177

where

Lco(t) :=

∫ t

0

T∗MA
(s)BB∗ TMA

(s) ds

is called the controllability operator for the control system (8.39).
Observe that by the special form assumed for the control, ξ uniquely

determines the control process v. Equation (8.41) thus connects ξ (and
therefore the control process) with the state of the system at time t. If for
some T > 0 the operator equation

uT = TMA
(T ) (u0 + Lco(T )ξ)

has a solution ξ ∈ H, then there exists a control v(t) that can drive the
system (8.39) from state u0 to state uT in time T .

If the operator Lco(T ) were coercive, then an application of the Lax-
Milgram lemma would automatically yield the required result. However,
the coercivity of this operator is attained only if we change the functional
setting of the equation.

One sees immediately that as long as an inequality of the form

(Lco(T )ξ, ξ) ≥ C(ξ, ξ) (8.41)

holds (where now we may have to interpret the operator Lco(T ) as an op-
erator between two suitably chosen function spaces K1 and K2), then this
operator is invertible (by Lax-Milgram-type results). However, recall the
definition of the controllability operator. Using this definition, we obtain∫ T

0

(T∗MA
(s)BB∗TMA

(s)ξ, ξ)ds =

∫ T

0

||BTMA
(s)ξ|| ds ≥ C||ξ||2, (8.42)

and since TMA
(s)ξ can be interpreted as the solution φ(s) of the uncontrolled

system at time s, having started at initial state ξ, we see that (8.42) is an
inequality relating the future states of the system to the initial state, i.e.,∫ T

0

||B φ(s)||2 ds ≥ ||φ(0)||2. (8.43)

Such an inequality is called an observability inequality and is equivalent to
the controllability of the system.

The treatment so far is very general, makes minimal or no reference to
the nature of the control system, other than the semigroup property, and
reduces the controllability issue to verifying condition (8.41) or its equivalent
condition (8.41). However, there is no free lunch! Proving an observability
inequality is usually the difficult part of a controllability problem and re-
quires detailed study of the specific problem at hand. A possible choice of
H can be X, while for D(MA) we may choose XM. To obtain the coercivity
result we need to define an appropriate Gelfand triple setting; for a detailed
treatment; see [57].

Regarding now the inclusion of the chiral terms: they can be treated in
a perturbative manner, akin to the fixed point scheme approach we have
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used in this chapter. We compute the controllability operator for the system
including the chiral terms. Repeating the above calculations, we see that
the controllability operator for the chiral medium Lchi

co (T ) assumes the form

Lchi
co (T ) = Lco(T ) + Kchi(T ),

where Kchi(T ) is the operator, including the chirality effects.
An alternative approach would be to use the evolution family for the

integrodifferential equation.

8.6.2 Boundary controllability

An important extension of the ideas developed in this chapter applies to
the case of boundary controllability, i.e., when the control is exerted at the
boundary ∂O of the domain O, or even at a part ∂Oo of it. Boundary
controllability problems are often of interest, as in a number of practical
applications it is easier to exert a control at the boundary of the domain than
in its interior, often in the form of electric currents. Boundary controllability
results for the achiral Maxwell system are proved in [140], provided that T
is greater than a critical value T ∗ depending on the geometrical properties
of the domain O. The main reason for that stems from the fact that the
Maxwell equation has wave propagation properties. This dictates that any
information from the boundary of the domain has to propagate to the interior
of the domain with the wave propagation velocity in the medium. As a
result of that, the “communication” between the boundary ∂O and any
point x ∈ O, has to take place in finite time. The problem for complex
media is still open.

8.6.3 Optimal control problems

Another class of important problems comprises optimal control problems.
In such problems we are not simply interested in steering the control system
to a desired final state, we want to do so in the “cheapest” possible way,
where the cost is defined in terms of a cost functional, J (u, v), involving the
control and the possible deviation from the desired final state. The theory of
optimal control is a well-studied subject for finite- and infinite-dimensional
control systems with many important applications. A particular subclass of
problems that has been heavily studied in the past consists of linear quadratic
control problems. In this class of problems, the control system is a linear
evolution equation, whereas the cost functional is a quadratic functional of
the general form

J (u, v) =

∫ T

0

(||C1u(t)− U(t)||2H + ||C2v(t)||2V)dt+ ||C3(u(T )− UT )||2H,

where H and V are proxies for the state and the control space of the sys-
tem, respectively. The operators C1,C2,C3 are operators that quantify the
relative importance of the intertemporal deviation from a desired path U(t)
ending at UT , the cost of the control procedure and the deviation from the
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desired final state, respectively, in the overall cost functional. An optimal
control problem consists of finding v ∈ V such that J (u, v) is minimised.

Problems of this form can be solved using the infinite-dimensional Riccati
equation, or generalisations of the Pontryagin maximum principle (see, e.g.,
[58], [146], [275]). This theory can be extended in a perturbative fashion,
via fixed point arguments, to include the effects of the convolution terms;
however, that is beyond the scope of the present work.

8.6.4 Controllability for time-harmonic fields

Suppose that the electromagnetic fields we are interested in are all time-
harmonic of a given frequency $. We consider z to be an electric current
that acts on a subset Γ0 of the boundary ∂O. This electric current is con-
sidered a control and is chosen in such a way as to drive the system to a
desired state. The problem we have to treat then consists of the following
equations in O:

iε$ (E + β curlE) + curlH = 0 ,

iµ$ (H + β curlH)− curlE = 0 ,

with boundary conditions

H × n = z , on Γ0 ,

H × n = 0 , on ∂O \ Γ0 .

Recall that L2
t (∂O\Γ0) is the space of tangential fields that vanish on Γ0.

In [117] the following result concerning controllability of the time-harmonic
system is proved.

Theorem 8.6.1 There exists an open dense subset I of R+ such that if
ε, µ,$ satisfy 1

εµ$2 ∈ I, then, as z ∈ L2
t (Γ0) varies, the set of curlH

restricted to ∂O \ Γ0 is dense in L2
t (∂O \ Γ0), for sufficiently small β > 0.

This theorem provides an interesting approximate controllability result for
time-harmonic fields in chiral media. One may interpret the density of the
set of curlH in L2

t (∂O \ Γ0), as z varies, as follows: it is possible to choose
z so as to bring curlH as close as we wish to a chosen field in L2

t (∂O \ Γ0);
therefore, we may choose the boundary control to drive the state of the
system as close as we wish to a given state.
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Chapter Nine

Homogenisation

9.1 INTRODUCTION

Composite materials containing finely mixed constituent parts, possibly ex-
hibiting a well-defined structure, are encountered almost everywhere, either
in natural forms or as fabricated materials (e.g., bones, wood, metals, rocks,
polycrystalline materials, or concrete, carbon fibres, ceramics, foams, etc., re-
spectively; see, e.g., [322]). They are designed to display desirable properties
that may not be exhibited by homogeneous media. Complex electromagnetic
media are often composite materials.

The evolution of physical phenomena in composite materials may be mod-
elled using boundary value problems with a periodic structure. This peri-
odic structure leads to complications in both the analytic and the numerical
treatment of these problems, especially if the period of the structure is small
compared to the size of the region in which the system is to be studied.
In such cases an asymptotic analysis is often useful in obtaining a simpler,
average description of the phenomenon that models the bulk properties of
the material. If we define a parameter ε = `m

`M
as the ratio of the char-

acteristic length scales `m and `M of the microstructure and the size of
the material, respectively, then the asymptotic description is valid in the
limit as ε → 0. This asymptotic theory, which started in terms of formal
asymptotic expansions and gradually developed into a well-founded rigorous
mathematical theory, is called homogenisation theory and aims at establish-
ing the macroscopic behaviour of such systems. This is effected by proving
that in the limit as, ε→ 0, the phenomenon may be modelled in terms of a
boundary value problem, often similar in form to the original problem but
with constant coefficients rather than variable (periodic) ones. This means
that the inhomogeneous material is replaced by a homogeneous fictitious
one (the “homogenised” material) whose global characteristics are a good
approximation of the initial ones.

The theoretical background of homogenisation has developed considerably
since the first results were reported by Spagnolo [391] in the early 1960s,
using the method of G-convergence. Later, the methods of Γ-convergence and
H-convergence were introduced by De Giorgi and Franzoni (see [119], [129],
[130], [333]), and Tartar [404], respectively. Murat [329] and Tartar [403]
introduced the compensated compactness theorem (or div-curl lemma) which
is a powerful tool with which to prove convergence; representative of the
mathematical work on homogenisation are the monographs [59], [97], [216],
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[375]; see also [405] for optimisation problems leading to homogenisation
questions. See also [331], [332], [375], [407], [421].

Within the electromagnetic community, homogenisation of composites has
a huge literature - see [381] and references therein - the major part of which
is devoted to dielectrics. The literature on bianisotropic composites is much
smaller. Among the recent developments are the work on Maxwell Garnett
and Bruggeman formalisms for different classes of bianisotropic inclusions
(see [317], [382] and the references therein) and work on the strong prop-
erty fluctuation theory for bianisotropic composites (see [296], [317] and the
references therein). See also [274], [296], [297], [316].

We work in the time domain and consider dissipative bianisotropic media
along the lines of [51] and [395]. For the corresponding problem for isotropic
media, see [18], [302], [374], [425] and the references therein.

The structure of this chapter is as follows. In Section 9.2 we formulate
our model and the homogenisation problem for a complex electromagnetic
medium. In Section 9.3 we present a formal two-scale expansion that mo-
tivates our approach and allows us to predict the form of the homogenised
system. In Section 9.4 we provide a rigorous approach to the homogenisation
problem for media in the optical response region, which is then generalised in
Section 9.5 for dispersive media. The convergence of the evolution equations
for the fields in periodic media to those for a homogenised medium is proved
and the coefficients of the homogenised medium are identified in terms of
auxiliary elliptic problems. Finally, in Section 9.6 we collect some general
comments and alternative approaches to the homogenisation problem.

9.2 FORMULATION

Let O be a domain in R3, filled by a complex electromagnetic medium mod-
elled by constitutive relations of the general form (2.12),

d = Aoru+ Gd ? u, (9.1)

where now the material is spatially inhomogeneous, i.e., Aor = Aor(x), Gd =
Gd(x). The evolution of the field u = (u1, u2)tr in O is governed by the
Maxwell equations, which can be expressed in six-vector notation as

(Aoru+ Gd ? u)′ = Mu+ j, (9.2)

which without loss of generality1 is complemented with the initial condition,

u = 0, x ∈ O, t = 0, (9.3)

and the perfect conductor boundary condition,

n× u1 = 0, t > 0, x ∈ ∂O, (9.4)

where n is the outward unit normal on ∂O.
We now assume a special type of spatial inhomogeneity for the medium;

1The effects of nonzero initial conditions are treated in detail in Section 9.5.2.
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Assumption 9.2.1 The medium exhibits small-scale periodicity, i.e.,

Aor = Aε
or

(x) = Aper

or

(x
ε

)
,

Gd = Gεd(x) = Gper

d

(x
ε

)
,

(9.5)

where Aper
or (·), Gper

d (·) are periodic matrix-valued functions on the set (paral-
lelepided) Y = [0, `1]× [0, `2]× [0, `3] ⊂ R3 and 0 < ε� 1.

Remark 9.2.2 Without loss of generality we may assume `1 = `2 = `3,
so that Y is a cube. The set Y may be considered the fundamental cell of
the medium; the whole medium structure can be generated by repeating the
structure in Y using translations.

Remark 9.2.3 In what follows, to ease notation, we will often drop the
superscript per from Aper

or and Gper
d and use the notation Aεor(x) = Aor

(
x
ε

)
and

Gεd(x) = Gd

(
x
ε

)
instead.

We will also need the following definition.

Definition 9.2.4 If a : Y → R is a periodic function, then the periodic
averaging operator is defined by

〈a〉 :=
1

|Y |

∫
Y

a(y) dy,

where |Y | is the Lebesgue measure2 of Y .

To be able to model the small-scale periodic microstructure, we must let
ε vary over a range of arbitrarily small values. Since Aper

or (x) is periodic
with period Y , it follows that Aper

or

(
x
ε

)
is periodic with period εY . We are

therefore led to a sequence of boundary value problems,

(Aε
or
uε + Gε

d
? uε)′ = Muε + j, (9.6)

with initial condition uε = 0, and the perfect conductor boundary condition

n× uε1 = 0, on O. (9.7)

The explicit t and x dependence is omitted for simplicity.
The solution of the above sequence of boundary value problems exists

for all ε > 0 (by Theorem 9.2.5). This generates a sequence of functions
uε = uε(x, t).

Theorem 9.2.5 (Existence and uniform bounds) Assume that j is lo-
cally Hölder continuous, and further that j ∈ L1([0, T ],X). Then the Maxwell
system (9.6)–(9.7) has a unique solution uε = (uε1, u

ε
2)tr = (Eε, Hε)tr in

C([0, T ],X) satisfying the uniform bounds ||uε(t)||X < C, ε > 0.

2Clearly, |Y | = `1 `2 `3 in the case where Y = [0, `1]× [0, `2]× [0, `3] ⊂ R3.
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Proof. The claim follows either by minor adjustments of the results of Sec-
tion 7.4 (using semigroup theory) or by minor modifications of the Faedo-
Galerkin approach of Section 7.5.2. 2

The question of interest to homogenisation theory is what happens in the
limit of very small-scale microstructures. This corresponds to considering
the limit as ε → 0 in the above mathematical formulation, which in turn
corresponds to considering boundary value problems with very rapidly os-
cillating coefficients and solutions. The presence of fast oscillations requires
special attention to the concept of limit that should be adopted, as in gen-
eral, sequences of fast oscillating functions fail to be convergent, as a whole
or even up to subsequences, in the usual (strong) sense. One can escape this
situation by “smoothing out” the fast oscillations, achieved by multiplying
by suitable test functions, integrating, and then taking the limit. This con-
vergence corresponds to the notion of weak convergence. For certain classes
of sequences of functions, even the notion of weak convergence is not ade-
quate; one has to employ the notion of weak-∗ convergence (see Appendix
C). The situation becomes even more complicated if one considers derivatives
of such functions.

Remark 9.2.6 The standard notations “⇀” and “
∗
⇀” for weak and weak-∗

convergence, respectively, will be used in what follows.

The following example (see, e.g., [97]) is illustrative.

Example 9.2.7 Consider the sequence of functions f ε(x) = sin
(
x
ε

)
. In the

limit as ε → 0, these functions present fast oscillations, which may provide
a model for the material microstructure. However, the limit limε→0 f

ε(x) is
not defined at almost any point. On the other hand, one can see easily that
the sequence f ε ⇀ 0, in L2([−`, `]) for any ` > 0, but not strongly!

Suppose now that in the limit as ε→ 0, the sequence uε(x, t) converges to
a limit, u∗ = u∗(x, t), in some weak sense. Can this limit u∗ be considered an
electromagnetic field that is physically acceptable? In other words, is there
a (fictitious) homogeneous (in space) material, modelled by a constitutive
relation

d∗ = Ah
or
u∗ + Gh

d
? u∗,

with Ahor, Ghd matrices with spatially independent coefficients, such that the
limit u∗ of the sequence of fields uε satisfies the Maxwell equation

(Ahor
u∗ + Gh

d
? u∗)′ = Mu∗ + j,

equipped with some appropriate initial and boundary conditions? If the an-
swer to this question is positive, then the remaining tasks are (a) to identify
the homogenised coefficients Ahor

, Gh
d

in terms of the parameters of the orig-
inal medium Aε

or
, Gε

d
and (b) to identify the initial and boundary conditions

for the homogenised problem. None of these tasks is simple. Concerning
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the former, we need to provide an averaging procedure that will lead to the
homogenised medium parameters; this is not simply a straightforward av-
eraging of the original medium coefficients (see Remark 9.2.8) but requires
averaging over properly selected periodic “weight” functions that may be ob-
tained as the solution of auxiliary periodic problems called the cell problems.
Regarding the latter, the homogenised problem may have to be solved using
modified initial or boundary conditions obtained from those of the original
problem, once more using some kind of weighted averaging in terms of the
solutions of the cell problems.

The physical intuition behind the above procedure is the following: the
fine microstructure of the medium is not “felt” by the electromagnetic field
created by an external excitation. The field “feels” a simpler medium that
is spatially independent, the homogenised medium. This allows a simplified
and more efficient approximate description of the material.

Remark 9.2.8 At this point, let us recall that if φ : Y ⊂ R3 → R is periodic
and φε(x) = φ(x/ε), then

φε ⇀ 〈φ〉 in Lp(O0) , 1 < p < +∞,
for all bounded O0 ⊂ R3. In this respect it is remarkable (and against
intuition) that the homogeneous susceptibility matrices Ahor and Ghd (t) are
in fact not obtained by simply averaging the functions Aor(y) and Gd(y, t)
over Y . A very nice intuitive example of this surprising fact is furnished
by the simple one-dimensional heat equation ∂tu

ε = ∂x(a(x
ε
)∂x u

ε), where
a : [0, `] → R is a periodic function of period `. In this case, one may show
explicitly that the sequence of functions {uε} converges weakly to a function
u∗, which solves the constant coefficient heat equation ∂tu

∗ = ∂x(ah ∂xu
∗),

but ah 6= 〈a〉. The proper constant is instead given by ah = 〈a−1〉. This
remark shows that special care should be taken when trying to define the
parameters of the homogenised medium.

9.3 A FORMAL TWO-SCALE EXPANSION

To provide some insight concerning the structure of the homogenised system
for the Maxwell equations in a periodic medium we give some formal argu-
ments using a two-scale expansion. As we shall see, this expansion will give
us an idea of what the coefficients of the homogenised system should look
like, thus facilitating the rigorous treatment that will follow.

To make the exposition more clear, we abandon the six-vector notation
and work in terms of the electromagnetic fields (Eε, Hε). After taking the
Laplace transform3 of the Maxwell equations (with respect to t), and drop-
ping the explicit dependence on the Laplace variable p for simplicity of no-

3Recall that the Laplace transform ŝ(p), p ∈ C+ = {p ∈ C : Re p > 0} of a function
s(t), t > 0, is defined as ŝ(p) :=

∫∞
0 e−pts(t)dt. For a complete account of the theory of

the Laplace transform, readers are referred to the classical monograph [429].
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tation, we obtain

curlĤε = p(εεL Ê
ε + ξεL Ĥ

ε) + Ĵ ,

−curlÊε = p(µεL Ĥ
ε + ζεL Ê

ε),
(9.8)

where4 εε
L
, ξε

L
, µε

L
, ζε

L
are the Laplace transforms of the matrices composing

Aεor(x) + Gεd(x, t).
We now assume that the fields have an expansion in power series in terms

of the small coefficient ε of the form

Êε(x) = Ê(0)(x) + ε Ê(1)(x) + ε2 Ê(2)(x) + · · · ,
Ĥε(x) = Ĥ(0)(x) + ε Ĥ(1)(x) + ε2 Ĥ(2)(x) + · · · ,

Because of the special choice for the structure of the medium coefficients,
as expressed in equation (9.5), the functions Ê(j)(x), Ĥ(j)(x) will be of the
form

Ê(j)(x) = Ê(j)
(
x,
x

ε

)
, Ĥ(j)(x) = Ĥ(j)

(
x,
x

ε

)
,

so that we may consider them functions of two variables x and y = x
ε , which

hereafter are considered independent variables. Because of the periodicity
of the fields, the functions gradyÊ

(j)(x, y), gradyĤ
(j)(x, y) will be periodic

in y.
Using this two-scale expansion, we see that the curl operator becomes

curlu = curlxu+
1

ε
curlyu ,

so when acting on Ê, Ĥ and using the power series expansion we obtain to
order ε−1 that

curlyÊ
(0) = 0 , curlyĤ

(0) = 0 , (9.9)

a fact that implies the existence of two scalar functions, Ψ1(x, y), Ψ2(x, y),
such that

Ê(0)(x, y) = Ê1(x) + gradyΨ1(x, y) ,

Ĥ(0)(x, y) = Ĥ1(x) + gradyΨ2(x, y) .
(9.10)

Combining this with the chosen boundary conditions and the periodicity
arguments, we see that when averaging over the small-scale dependence, we
obtain

〈Ê(0)(x, y)〉 = Ê1(x) , 〈Ĥ(0)(x, y)〉 = Ĥ1(x) .

We now proceed to the next order O(ε0). This gives the equations

+curlyĤ
(1) = p

(
εLÊ

(0) + ξL Ĥ
(0)
)
− curlxĤ

(0),

−curlyÊ
(1) = p

(
µLĤ

(0) + ζL Ê
(0)
)

+ curlxÊ
(0).

(9.11)

4The same notation (9.5) is employed for the submatrices εε(x), ξε(x), µε(x), ζε(x) and
their Laplace transforms εεL, ξ

ε
L, µ

ε
L, ζ

ε
L with respect to t, as for the matrices Aεor(x), Gεd(x).
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We substitute (9.10) into (9.11) and then take the divergence of (9.11) with
respect to y. Noting that

divy curlxÊ
(0) = divy curlx Ê1(x) + divy curlx gradyΨ1,

divy curlxĤ
(0) = divy curlx Ĥ1(x) + divy curlx gradyΨ2,

and since divycurlxΨi = 0, i = 1, 2, this gives a consistency condition for
the scalar functions Ψ1(x, y), Ψ2(x, y) in terms of the elliptic system

0 = divy(εL gradyΨ1) + divy (ξLgradyΨ2) + divy(εLÊ1(x)) + divy(ξLĤ1(x)),

0 = divy(ζLgradyΨ1) + divy(µLgradyΨ2) + divy(ζLÊ1(x)) + divy(µLĤ1(x)),
(9.12)

where the solution (Ψ1,Ψ2) is considered to be periodic in y.
The solvability of this system can be guaranteed by the Lax-Milgram

lemma. The solution of the system can be written in the form

Ψ1(x, y) = Λ(1)(y) · Ê1(x) + Λ(2)(y) · Ĥ1(x),

Ψ2(x, y) = Λ(3)(y) · Ê1(x) + Λ(4)(y) · Ĥ1(x),
(9.13)

where Λ(i)(y) = (Λ
(i)
1 ,Λ

(i)
2 ,Λ

(i)
3 ), i = 1, 2, 3, 4, are three-vectors.

Remark 9.3.1 Let s be a proxy for a 3 × 3 matrix. We use the notation
s],m for the mth column and sk,] for the kth row of the matrix s, respectively.

Substituting the ansatz (9.13) into (9.12) and separating terms that are

proportional to Ê1(x) and to Ĥ1(x), we obtain that the components of Λ(i),
i = 1, 3, solve the following system:

0 = divy((εL)],j) + divy(εLgradyΛ
(1)
j ) + divy(ξLgradyΛ

(3)
j ),

0 = divy((ζL)],j) + divy(ζLgradyΛ
(1)
j ) + divy(µLgradyΛ

(3)
j ),

(9.14)

for j = 1, 2, 3, and the components of Λ(i), i = 2, 4, solve the following
system:

0 = divy((ξL)],j) + divy(εLgradyΛ
(1)
j ) + divy(ξLgradyΛ

(3)
j ),

0 = divy((µL)],j) + divy(ζLgradyΛ
(1)
j ) + divy(µLgradyΛ

(3)
j ),

(9.15)

for j = 1, 2, 3. The equations (9.14) and (9.15) are elliptic systems that by
the Lax-Milgram lemma are well posed, yielding unique solutions for Λ(i),
i = 1, 2, 3, 4, when considered periodic functions in y, with zero mean.

We now average (9.11) with respect to the y variable (the fast scale). In
view of (9.9), we note that the terms containing the curls with respect to y
give a zero contribution in the average because of periodicity. The remaining
terms yield

curlxĤ1(x) = p (εhL Ê
1(x) + ξhL Ĥ

1(x)),

−curlxÊ1(x) = p (ζh
L Ê

1(x) + µh
L Ĥ

1(x)),
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for constant matrices εhL, ξ
h
L, ζ

h
L , µ

h
L given by

εhL :=
〈
εL + εLgradyΛ(1) + ξLgradyΛ(3)

〉
,

ξh
L

:=
〈
ξL + εLgradyΛ(2) + ξLgradyΛ(4)

〉
,

ζh
L

:=
〈
ζL + ζLgradyΛ(1) + µLgradyΛ

(3)
〉
,

µhL :=
〈
µL + ζLgradyΛ(2) + µLgradyΛ(4)

〉
,

(9.16)

where by gradyΛ(k), k = 1, 2, 3, 4, we denote the 3× 3 matrix

gradyΛ(k) =

 ∂y1
Λ

(k)
1 ∂y1

Λ
(k)
2 ∂y1

Λ
(k)
3

∂y2Λ
(k)
1 ∂y2Λ

(k)
2 ∂y2Λ

(k)
3

∂y3
Λ

(k)
1 ∂y3

Λ
(k)
2 ∂y3

Λ
(k)
3

 .

Observe that (9.16) corresponds to the Laplace transform of the Maxwell

equation for the average fields Ê1(x), Ĥ1(x). The Laplace transform of the
corresponding constitutive relations is given as a multiplicative linear rela-
tion in terms of the constant matrices εh, ξh, ζh, µh that when transformed
back to the time domain, becomes a convolution-type linear operator with
spatially independent coefficients. This is the form of the homogenised sys-
tem whose coefficients are obtained as in (9.16) through averaging of the
original coefficients multiplied by solutions of the cell equations (9.14)-(9.15).

Remark 9.3.2 The above scheme for obtaining the homogenised system,
useful and insightful as it may be, is nothing but a formal argument based
on a simple power series expansion of the Maxwell equations and their solu-
tions. It should be treated with caution, since there is no way for its validity
to be checked unless a rigorous mathematical theory is formulated. There
are many instances in which this formal argument may break down. First,
the basic assumption that the solution of the Maxwell system (Eε, Hε) is
expandable in a power series in ε has to be checked by a rigorous analysis
of the full Maxwell system. Second, the argument is based on the series
expansion, with only the first two terms in the series kept. Therefore, the
homogenisation result obtained by this formal expansion is valid only if the
remaining terms in the series that have been discarded are really negligible.
This cannot be based simply on the observation that they are multiplied
by terms of order ε2, because there is no guarantee that E(2) and H(2) are
(uniformly in x and t) of order 1. A rigorous proof that the remaining terms
in the series do not change the results of the formal expansion needs to be
completed before the result of this formal argument can be trusted.

The remaining sections of the chapter provide a rigorous justification of
the above described homogenisation procedure.
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9.4 THE OPTICAL RESPONSE REGION

We first consider the optical response region, assuming for the time being
that Gd(x) = 0. The analysis extends the results of [51].

9.4.1 An auxiliary elliptic homogenisation problem

In this section we study the homogenisation theory for an auxilliary ellip-
tic homogenisation problem, which will lead us to homogenisation of the
Maxwell system. For ease of notation, and since the discussion below may
be of more general interest than merely serving for the homogenisation of
the Maxwell system, we state the elliptic system in more general form.

We first introduce the following notation:

Definition 9.4.1 Define

Ae` :=

(
a b
c d

)
,

where the 3×3 matrices a, b, c, d are periodic functions of y. The definition
of Aεe` is as above, replacing s by sε, where s is a proxy for a, b, c, d.

The following standing assumption holds throughout this chapter:

Assumption 9.4.2 The matrix Ae` ∈ L∞(O,R6×6) satisfies the following
conditions:

(i) There exists a positive constant c1 such that |Ae` (x) y · y| ≥ c1 |y|, for
almost all x ∈ O and all y ∈ R6.

(ii) There exists a positive constant c2 such that |A−1
e`

(x) y · y| ≥ c2 |y|, for
almost all x ∈ O and all y ∈ R6.

Remark 9.4.3 This assumption is technical (related to H-convergence) and
strengthens Assumption 2.3.5 since we do not restrict ourselves to the ho-
mogenisation of symmetric elliptic systems only. Note that this assumption
is equivalent to stating that Ae` ∈ M(c1, c2,O) (see Definition C.3.1 in Ap-
pendix C and the discussion concerning elliptic equations on p. 81 in [407]).

In our subsequent analysis we will need the function space H1
per

(Y ) (de-
fined as the closure of the set of C∞, Y -periodic functions in the H1 norm;
see Section C.1 in Appendix C), as well as the following auxiliary elliptic
operators:

Definition 9.4.4

(i) The “cell” operator Lper : H1
per

(Y )×H1
per

(Y )→ (H1
per

(Y )×H1
per

(Y ))′:

Lper := −divy(Ae` (y) grady ). (9.17)



rsy-book-final December 7, 2011

HOMOGENISATION 189

(ii) The “microstructure” operator Lε : H1
0 (O) × H1

0 (O) → H−1(O) ×
H−1(O):

Lε := −divx(Aε
e`

(x) gradx ). (9.18)

Remark 9.4.5 The elliptic operators defined above are matrix elliptic op-
erators, used for abbreviating the notation for the corresponding systems.
For instance,

Lper =

(
−divy(a grady) −divy(b grady)
−divy(c grady) −divy(d grady)

)
,

where a, b, c, d are 3 × 3 matrices. This operator acts on two-vector w =
(w1, w2)tr as follows:

Lper

(
w1

w2

)
=

(
−divy(a gradyw1)− divy(b gradyw2)
−divy(c gradyw1)− divy(d gradyw2)

)
.

Further, the adjoint operator turns out to be

L∗per =

(
−divy(atr grady) −divy(ctr grady)
−divy(btr grady) −divy(dtr grady)

)
.

Similarly, Lε is given in an analogous block form where a, b, c, d are replaced
by aε, bε, cε, dε.

The coercivity assumption 9.4.2 implies that Lper is invertible modulo con-
stants, so that the elliptic system

Lperu = f (9.19)

has a unique solution in terms of the two-vector u = (u1, u2)tr ∈ H1
per

(Y )×
H1

per
(Y ) for all f ∈ (H1

per
(Y ) ×H1

per
(Y ))′. Similarly, the coercivity assump-

tion, in conjunction with the generalisation of the Lax-Milgram lemma for
systems, guarantees the solvability in H1

0 (O)×H1
0 (O) of the elliptic system

Lεwε = g (9.20)

for every two-vector g = (g1, g2)tr ∈ H−1(O)×H−1(O).
We consider the homogenisation theory for the system (9.20). To motivate

the theory, we briefly describe a formal two-scale expansion based on the
introduction of the independent variables x and y = x

ε
, and the subsequent

expansion of the operator Lε as

Lε = ε2 L−2 + ε−1 L−1 + L0,

where

L−2 := −divy(Ae` grady· ),
L−1 := −divx(Ae` grady· )− divy(Ae` gradx· ),
L0 := −divx(Ae` gradx· ).

Letting

wε = w(0) + εw(1) + ε2w(2) + · · ·
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and substituting into the above operator expansion, we obtain5 to various
orders of powers of ε

L−2 w
(0) = 0,

L−2 w
(1) = −L−1w

(0),

L−2 w
(2) = −L−1w

(1) − L0w
(0) + g

(9.21)

Observe that L−2 = Lper.
A particular solution6 of the first of equations (9.21) is w(0) = w(0)(x) =

(w
(0)
1 (x), w

(0)
2 (x))tr. We substitute this solution into the second of equations

(9.21) to obtain

Lperw
(1) =

( ∑
j divya],j ∂xjw

(0)
1 +

∑
j divyb],j ∂xjw

(0)
2∑

j divyc],j ∂xjw
(0)
1 +

∑
j divyd],j ∂xjw

(0)
2

)
. (9.22)

We look for a solution of the above system of the form

w
(1)
` =

∑
j

r
(j)
` ∂xjw

(0)
1 +

∑
j

v
(j)
` ∂xjw

(0)
2 , ` = 1, 2, (9.23)

where r
(j)
` , v

(j)
` , j = 1, 2, 3, ` = 1, 2, are functions of y (12 in total), to be

determined. Upon substitution of the ansatz (9.23) into (9.22), we observe

that r
(j)
` , v

(j)
` , j = 1, 2, 3, ` = 1, 2, can be chosen as the solutions of the

elliptic systems

Lper

(
r

(j)
1

r
(j)
2

)
=

(
divya],j
divyc],j

)
, Lper

(
v

(j)
1

v
(j)
2

)
=

(
divyb],j
divyd],j

)
. (9.24)

The system of equations (9.24) is called the cell system and has a unique
periodic solution (modulo constants).

We now average the third equation of (9.21) over y. Observe first that

〈L−2w
(2)〉 = 0,

〈L0w
(0)〉 = −divx(〈Ae` 〉 gradxw

(0)),

〈divy(Ae` gradxw
(0))〉 = 0.

Next we calculate the term divx(Ae` gradyw
(0)), regrouping the terms pro-

portional to gradx(w
(0)
1 ) and gradx(w

(0)
2 ). After some algebra we obtain

〈divx(Ae` gradyw
(0))〉 =

(
divx(ahgradxw

(0)
1 ) + divx(bhgradxw

(0)
2 )

divx(chgradxw
(0)
1 ) + divx(dhgradxw

(0)
2 )

)
,

5In similar spirit as for the Maxwell equations in Section 9.3.
6The general solution contains a term related to the curly of a vector field; this is

omitted here for simplicity but is fully taken into account in the subsequent rigorous
analysis of the problem.
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where ah,bh, ch, dh are 3× 3 matrices consisting of constant elements

(ah)ij = 〈
3∑

k=1

aik∂ykr
(j)
1 +

3∑
k=1

bik∂ykr
(j)
2 〉,

(bh)ij = 〈
3∑

k=1

aik∂ykv
(j)
1 +

3∑
k=1

bik∂ykv
(j)
2 〉,

(ch)ij = 〈
3∑

k=1

cik∂ykr
(j)
1 +

3∑
k=1

dik∂ykr
(j)
2 〉,

(dh)ij = 〈
3∑

k=1

cik∂ykv
(j)
1 +

3∑
k=1

dik∂ykv
(j)
2 〉.

Collecting all these terms together, we obtain that w(0) satisfies the elliptic
system

Lhw(0) = g ,

where Lh is the matrix elliptic operator

Lh := −div(Ah
e`

gradx) ,

Ahe` is the constant coefficients matrix, which in block form is expressed as

Ah
e`

=

(
ah bh

ch dh

)
, (9.25)

the 3× 3 matrices ah, bh, ch, dh being defined as

(ah)ij = 〈aij +
3∑
k=1

aik∂ykr
(j)
1 +

3∑
k=1

bik∂ykr
(j)
2 〉,

(bh)ij = 〈bij +

3∑
k=1

aik∂ykv
(j)
1 +

3∑
k=1

bik∂ykv
(j)
2 〉,

(ch)ij = 〈cij +

3∑
k=1

cik∂ykr
(j)
1 +

3∑
k=1

dik∂ykr
(j)
2 〉,

(dh)ij = 〈dij +

3∑
k=1

cik∂ykv
(j)
1 +

3∑
k=1

dik∂ykv
(j)
2 〉,

(9.26)

r
(j)
` , v

(j)
` , j = 1, 2, 3, ` = 1, 2, being the solutions of the cell systems (9.24).

The above discussion motivates the following definitions:

Definition 9.4.6 (Homogenised diffusion matrix) The constant coef-
ficient matrix (9.25) with coefficients defined as in (9.26) is called the ho-
mogenised diffusion matrix.

With the aid of the homogenised matrix Ahe` we define:
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Definition 9.4.7 (Homogenised operator and system) The homoge-
nised (matrix) elliptic operator Lh : H1

0 (O)×H1
0 (O)→ H−1(O)×H−1(O),

is defined by

Lh = −divx(Ahe` gradx ). (9.27)

The elliptic system

Lhw = g (9.28)

is called the homogenised system.

It is not obvious, but it is easy to prove that the block matrix Ahe` is
positive definite. The operator Lh is a constant coefficient matrix elliptic
operator.

The formal two-scale expansion for the elliptic system provided above
suffers from the same problems concerning rigour as the relevant expansion
for the Maxwell system (see Remark 9.3.2). The following theorem, which
is a slight modification of Theorem 9.1 in [59], guarantees that the result
obtained by this formal expansion indeed provides the right answer.

Theorem 9.4.8 For f = (f1, f2)tr, consider the solution uε = (uε1, u
ε
2)tr

of the elliptic system Lεuε = f . As ε → 0, we have that uε ⇀ u∗, in
H1

0 (O)×H1
0 (O), where u∗ = (u∗1, u

∗
2)tr is the solution of the elliptic system

Lhu∗ = f . Furthermore, Aε
e`

uε ⇀ Ah
e`

u∗, in L2(O).

Remark 9.4.9 In the proof of Theorem 9.4.8, to ease notation, we denote
gradx, divx, curlx simply by grad, div, curl, respectively, but to avoid confu-
sion, we always retain the explicit notation grady, divy, curly when referring
to the rescaled variable y.

Proof. We rewrite the cell equations in a more general form as

− divy(atr (q1 + gradyw1))− divy(ctr (q2 + gradyw2) = 0,

− divy(btr (q1 + gradyw1))− divy(d
tr (q2 + gradyw2) = 0,

(9.29)

where q1, q2 are arbitrary vectors in R3. Naturally, w depends on the choice
of q1, q2, a fact that is suppressed in the subsequent notation. Let ej be the
unit vector in the j direction. Note that for the choice q1 = ej , j = 1, 2, 3,

q2 = 0, we recover the transposed cell equations for (r
(j)
1 , r

(j)
2 ), whereas

for the choice q1 = 0, q2 = ej , j = 1, 2, 3, we recover the transposed cell

equations for (v
(j)
1 , v

(j)
2 ).

In what follows, by sε we denote s
(
x
ε

)
for s = a, b, c, d. We also define wε1 =

εw1

(
x
ε

)
, wε2 = εw2

(
x
ε

)
. By the a priori estimates of the elliptic system and

the properties of the matrix Ae` we have that graduε is bounded in H1(O)×
H1(O), so that by the weak compactness results (see A.2 in Appendix A),
we see that (at least up to a subsequence) there exists a function u∗ =
(u∗1, u

∗
2) such that (graduε1, graduε2) ⇀ (gradu∗1, gradu∗2) in L2(O) × L2(O).

Furthermore, by the a priori estimates of the elliptic system, and once more
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invoking weak compactness arguments, we have that there exists a function
r∗ = (r∗1 , r

∗
2)tr such that

aε graduε1 + bε graduε2 ⇀ r∗1, c
ε graduε1 + dε graduε2 ⇀ r∗2 , in L2(O) .

By similar estimates for the cell equation and using periodicity and Theorem
C.1.4 in Appendix C we have

gradwε1 = q1 + gradyw1
∗
⇀ q1,

gradwε2 = q2 + gradyw2
∗
⇀ q2,

atr,εgradwε1 + ctr,εgradwε2
∗
⇀ atr,hq1 + ctr,hq2,

btr,εgradwε1 + dtr,εgradwε2
∗
⇀ btr,hq1 + dtr,hq2,

in L∞(O), where the matrices ah, bh, ch, dh are such that

atr,hq1 + ctr,hq2 = 〈atr(q1 + gradyw1)〉+ 〈ctr(q2 + gradyw2)〉,
btr,hq1 + dtr,hq2 = 〈btr(q1 + gradyw1)〉+ 〈dtr(q2 + gradyw2)〉,

(9.30)

for all q1, q2 ∈ R3.
We now observe that

(atr,εgradwε1 + ctr,εgradwε2)trgraduε1 =
(
(gradwε1)traε + (gradwε2)trcε

)
graduε1,

(btr,εgradwε1 + dtr,εgradwε2)trgraduε2 =
(
(gradwε1)trbε + (gradwε2)trdε

)
graduε2.

We add these two equations and rearrange terms to obtain

(atr,εgradwε1 + ctr,εgradwε2)trgraduε1 + (btr,εgradwε1 + dtr,εgradwε2)trgraduε2 =

(gradwε1)tr(aεgraduε1 + bεgraduε2) + (gradwε2)tr(cεgraduε1 + dεgraduε2), (9.31)

and apply the div-curl lemma (see Theorem C.2.2 in Appendix C) on the
products of both sides. This is possible since gradwε1, gradwε2 are curl free,
whereas

atr,εgradwε1 + ctr,εgradwε2 = atr(y)(q1 + gradyw1) + ctr(y)(q2 + gradyw2),

btr,εgradwε1 + dtr,εgradwε2 = btr(y)(q1 + gradyw1) + dtr(y)(q2 + gradyw2),

are divergence free, since w = (w1,w2)tr satisfies the cell equations (9.29).
Further, if h = (h1, h2)tr is such that divhi = gi, i = 1, 2, then by the elliptic
system aεgraduε1 + bεgraduε2 − h1, cεgraduε1 + dεgraduε2 − h2 are divergence
free, and h is independent of ε. Using the above, we identify the limit of the
products in (9.31) as

(atr,hq1 + ctr,hq2)trgradu∗1 + (btr,hq1 + dtr,hq2)trgradu∗2 = qtr1 r
∗
1 + qtr2 r

∗
2.

Since this is valid for all q1, q2 ∈ R3, we finally obtain that

r∗1 = ahgradu∗1 + bhgradu∗2,

r∗2 = chgradu∗1 + dhgradu∗2,

which is the stated result. The identification of the homogenised diffusion
matrix comes from (9.30) by proper choices of the vectors q1, q2. Noting that
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w = (w1,w2)tr are the solutions of the transposed cell equations (9.24) and
using an integration by parts argument7 similar to the one employed in [97]
for the scalar case, we see that the homogenised diffusion matrix is given by
(9.26). 2

Remark 9.4.10 The weak convergence in H1
0 (O) × H1

0 (O) can be turned
into a strong one as long as an appropriate term, called the corrector, is
added to the solution (see, e.g., [59], [97], [407]).

9.4.2 The homogenisation of the Maxwell system

We now turn to the homogenisation of the Maxwell system. As mentioned
earlier, we will treat this problem using a suitably selected auxiliary elliptic
system and applying the results for the elliptic homogenisation theory pro-
vided in Section 9.4.1 and Section C.3 in Appendix C. For reasons that will
become apparent in the proof of the subsequent Theorem 9.4.14, consider
the following.

Definition 9.4.11 The auxiliary “microstructure” elliptic operator associ-
ated with the Maxwell system is

LεM = −divx(Aε,tr
or

gradx·) , (9.32)

and the auxiliary “cell” elliptic operator associated with the Maxwell system
is

Lper,M = −divy((Aper

or )trgrady·) . (9.33)

Definition 9.4.12 Set Aεe` = Aε,tror and let Ahe` be the homogenised diffusion
matrix defined as in (9.26), for a = εtr, b = ζtr, c = ξtr, d = µtr. The matrix

Ahor := Ah,tre` is the homogenised optical response matrix of the medium.

Remark 9.4.13 By the symmetry of the optical response matrix (Assump-
tion 2.3.5), we have Atror

= Aor. Nevertheless, since the arguments in the
following proof will also be used for the dispersion part Gd, which is non-
symmetric, we perform the proof without assuming the symmetry of Aor.

The above procedure leads to explicit relations for the homogenised optical
response matrix of the medium as

εh = 〈ε+ gradyR1 ε+ gradyR2 ζ〉,
ζh = 〈ζ + gradyV1 ε+ gradyV2 ζ〉,
ξh = 〈ξ + gradyR1 ξ + gradyR2 µ〉,
µh = 〈µ+ gradyV1 ξ + gradyV2 µ〉,

(9.34)

where

gradyS` =

 ∂y1
s
(1)
` ∂y2

s
(1)
` ∂y3

s
(1)
`

∂y1
s
(2)
` ∂y2

s
(2)
` ∂y3

s
(2)
`

∂y1
s
(3)
` ∂y2

s
(3)
` ∂y3

s
(3)
`

 , ` = 1, 2,

7The argument is similar to the one used in the proof of Proposition 9.4.16.
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and S and s are proxies for R, V and r, v, respectively.
We shall prove the following.

Theorem 9.4.14 Let j = (−J, 0)tr satisfy the assumptions of Theorem
9.2.5 and let uε = (Eε, Hε)tr be the solution of the Maxwell system (9.6)-
(9.7). Then

uε
∗
⇀ u∗, in L∞([0, T ],X),

where u∗ = (E∗, H∗)tr is the unique solution of the Maxwell system

(d∗)′ = Mu∗ + j, in (0, T ]×O (9.35)

with the perfect conductor boundary condition and subject to the homoge-
neous constitutive relations

d∗ = Ahoru
∗. (9.36)

The matrices εh, ξh, ζh, µh that constitute the homogenised optical response
Ahor are given by (9.34).

Proof. We break the proof into three parts:

(i) u∗ = (E∗, H∗)tr satisfies the Maxwell system:

By Theorem 9.2.5 we have the uniform bounds

‖Eε‖X ≤ C1, ‖Hε‖X ≤ C2, ε > 0, t > 0. (9.37)

The boundedness of Aεor
, together with (9.37), implies that Dε and Bε are

also bounded in X uniformly in ε, t > 0. It is then standard [97, Theorem
1.26] that there exist E∗, H∗, D∗, B∗ ∈ L∞([0, T ],X) such that, up to taking
a subsequence ε→ 0, there holds

Eε
∗
⇀ E∗, Hε ∗⇀ H∗

Dε ∗⇀ D∗, Bε
∗
⇀ B∗

in L∞([0, T ],X) . (9.38)

The ensuing arguments will identify (E∗, H∗)tr and will establish that any
∗-weakly convergent subsequence of (Eε, Hε)tr has (E∗, H∗)tr as its limit.
This implies the convergence of the full sequence (Eε, Hε)tr (see Theorem
1.26 in [97]).

Taking the Laplace transform of the Maxwell equations, we obtain for
p ∈ C+, x ∈ O,

pD̂ε = curlĤε − Ĵ ,
pB̂ε = −curlÊε .

(9.39)

Moreover, (9.38) implies that

Êε ⇀ Ê∗ Ĥε ⇀ Ĥ∗

D̂ε ⇀ D̂∗ B̂ε ⇀ B̂∗
, in X (fixed p ∈ C+). (9.40)

Combining (9.39) and (9.40) implies that for fixed p ∈ C+, the vector fields

curlÊε and curlĤε remain bounded in X as ε → 0. Hence they have weak
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limits in X. It then follows from (9.40) that Ê∗ and Ĥ∗ belong to H(curl,O),
and moreover,

Êε ⇀ Ê∗, Ĥε ⇀ Ĥ∗ in H(curl,O). (9.41)

Letting ε→ 0 in (9.39), then, for p ∈ C+, x ∈ O, yields

pD̂∗ = curlĤ∗ − Ĵ ,
pB̂∗ = −curlÊ∗,

(9.42)

which implies that E∗, H∗, D∗, B∗ satisfy the Maxwell system

∂tD
∗ = curlH∗ − J, in (0, T ]×O,

∂tB
∗ = −curlE∗, in (0, T ]×O,

E∗(x, 0) = 0, H∗(x, 0) = 0, in O.
(9.43)

Hence it remains to establish that the boundary condition n × E∗ = 0 is
also satisfied and that the vector fields E∗, H∗, D∗, B∗ are related by the
constitutive relations (9.36).

(ii) Validity of the boundary condition:

We first note that the boundary condition is understood in the sense of the
trace operator γτ : H(curl,O)→ H−1/2(∂O) (see Section 3.5). Let us fix a
function φ ∈ H1/2(∂O). There exists (see [126] p. 341]) ψ ∈ H1(O) such
that ψ|∂O = φ. Now, for ε > 0 there holds∫

O
curlψ · uε dx =

∫
O

curlEε · ψ dx+

∫
∂O

ψ(n× Eε) ds,∫
O

curlψ · E∗ =

∫
O

curlE∗ · ψ dx+

∫
∂O

ψ(n× E∗) ds.

In the limit as ε→ 0 and using the fact that n×Eε|∂O = 0 and the relations∫
O

curlψ · Eε dx→
∫
O

curlψ · E∗ dx,∫
O

curlEε · ψ dx→
∫
O

curlE∗ · ψ dx,

we obtain ∫
∂O

φ(n× E∗) ds =

∫
∂O

ψ(n× E∗) ds = 0.

Since φ ∈ H1/2(∂O) is arbitrary, we conclude that n× E∗ = 0 on ∂O.

(iii) Validity of the constitutive relations:

Let us fix a bounded domain O0 with O0 ⊂ O. Since div curlu = 0, (9.39)

and (9.42) imply that divD̂ε = divD̂∗ and divB̂ε = divB̂∗, and (9.40) then
yields

D̂ε ⇀ D̂∗, B̂ε ⇀ B̂∗ in H(div,O0). (9.44)
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The elliptic operator Lε (Definition 9.4.4) is invertible for all ε > 0. For
g = (g1, g2)tr ∈ H−1(O0)×H−1(O0) fixed, let wε = (wε1, w

ε
2)tr ∈ H1

0 (O0)×
H1

0 (O0) solve the elliptic system

Lεwε = g. (9.45)

Moreover, let Lh be the constant coefficient operator elliptic operator of
Definition 9.4.7, and consider the solution w = (w1, w2)tr of the problem

Lhw = g. (9.46)

By Theorem 9.4.8,

gradwε1 ⇀ gradw1, gradwε2 ⇀ gradw2 in X , (9.47)

which, together with the fact that curl grad = 0, implies that

gradwε1 ⇀ gradw1, gradwε2 ⇀ gradw2 in H(curl,O0). (9.48)

SinceDε ⇀ D∗ inH(div,O0) (by (9.44)) and gradwε1 ⇀ gradw1 inH(curl,O0)
(by (9.48)), the product of the two sequences will converge strongly to the
product of the limits in D′(O0) by compensated compactness (see Theorem
C.2.1 in Appendix C), and similarly for the sequences Bε and wε2. Therefore,

D̂ε · gradwε1 → D̂∗ · gradw1

B̂ε · gradwε2 → B̂∗ · gradw2
, in D′(O0). (9.49)

Moreover, by Theorem 9.4.8,

aεgradwε1 + bεgradwε2 ⇀ ahgradw1 + bhgradw2,
cεgradwε1 + dεgradwε2 ⇀ chgradw1 + dhgradw2

, in X. (9.50)

By the definition of wε and w, as solutions of (9.45) and (9.46), respectively,

−div(aεgradwε1 + bεgradwε2) = g1 = −div(ahgradw1 + bhgradw2),
−div(cεgradwε1 + dεgradwε2) = g2 = −div(chgradw1 + dhgradw2),

and these, together with (9.50), imply

aεgradwε1 + bεgradwε2 ⇀ ahgradw1 + bhgradw2

cεgradwε1 + dεgradwε2 ⇀ chgradw1 + dhgradw2
, in H(div,O0). (9.51)

The convergence results (9.41) and (9.51) allow us to apply again the com-
pensated compactness result (Theorem C.2.1 in Appendix C) twice, once to

the pair of sequences aεgradwε1 + bεgradwε2 and Êε and once to the pair of

sequences cεgradwε1 + dεgradwε2) · Ĥε and Ĥε, to obtain

(aεgradwε1 + bεgradwε2) · Êε → (ahgradw1 + bhgradw2) · Ê∗
(cεgradwε1 + dεgradwε2) · Ĥε → (chgradw1 + dhgradw2) · Ĥ∗

, (9.52)

in D′(O0).
Now we observe that the left-hand side of the sum of the two relations in

(9.49),

D̂ε · gradwε1 + B̂ε · gradwε2
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and the left-hand side of the sum of the two relations in (9.52),

(aεgradwε1 + bεgradwε2) · Êε + (cεgradwε1 + dεgradwε2) · Ĥε =

(aε,trÊε + cε,trĤε) · gradwε1 + (bε,trÊε + dε,trĤε) · gradwε2,

coincide, as long as

aε,tr = εε, cε,tr = ξε, bε,tr = ζε, dε,tr = µε,

i.e., Ae` = Atr
or

. For this choice, the corresponding right-hand sides

D̂∗ · gradw1 + B̂∗ · gradw2

and

(ahgradw1 + bhgradw2) · Ê∗ + (chgradw1 + dhgradw2) · Ĥ∗,

respectively, are also equal, which on rearrangement yields

D̂∗ · gradw1 + B̂∗ · gradw2 =

(ah,trÊ∗ + ch,trĤ∗) · gradw1 + (bh,trÊ∗ + dh,trĤ∗) · gradw2.

The fact that g1 and g2 were arbitrary, so that gradw1, gradw2 are also
arbitrary, implies that

D̂∗ = ah,trÊ∗ + ch,trĤ∗,

B̂∗ = bh,trÊ∗ + dh,trĤ∗,

and this can be interpreted as a homogenised constitutive relation of the
form

D̂∗ = εhÊ∗ + ξhĤ∗,

B̂∗ = ζhÊ∗ + µhĤ∗,

by setting

εh := ah,tr, ξh := ch,tr, ζh := bh,tr µh := dh,tr,

or in compact notation, Ahor := (AM ,h
e` )tr.

Since O0 is arbitrary, we obtain the Laplace transforms of the stated
constitutive relations. This completes the proof. 2

Remark 9.4.15 The result may be extended for T =∞ using energy con-
siderations for properly selected data.

We complete this section by showing the equivalence between the two
representations for the homogenised coefficients.

Proposition 9.4.16 The representations (9.16) and (9.34) for the homoge-
nised optical response matrix Ahor are equivalent.

Proof. We perform the calculation for εh only; the calculation for the other
elements proceeds analogously. Our claim is that

〈gradyR1 ε+ gradyR2 ζ〉 = 〈εgradyΛ(1) + ξgradyΛ
(3)〉.
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Consider the (i, j) element of the matrix on the left-hand side:

(LHS)ij :=〈
3∑
k=1

εkj∂ykr
(i)
1 +

3∑
k=1

ζkj∂ykr
(i)
2 〉

=− 〈(
3∑

k=1

∂ykεkj)r
(i)
1 + (

3∑
k=1

∂ykζkj)r
(i)
2 〉

=− 〈(divyε],j) r
(i)
1 + (divyζ],j) r

(i)
2 〉 .

We now use (9.14) to write

(LHS)ij =〈(divy(ε gradyΛ
(1)
j ) + divy(ξ gradyΛ

(3)
j )) r

(i)
1 +

(divy(ζ gradyΛ
(1)
j ) + divy(µ gradyΛ

(3)
j )) r

(i)
2 〉

=− 〈ε gradyΛ
(1)
j · gradyr

(i)
1 + ξ gradyΛ

(3)
j · gradyr

(i)
1 +

ζ gradyΛ
(1)
j · gradyr

(i)
2 + µ gradyΛ

(3)
j · gradyr

(i)
2 〉.

Consider now the (i, j) element of the matrix on the right-hand side:

(RHS)ij :=〈
∑
k

εik∂ykΛ
(1)
j +

∑
k

ξik∂ykΛ
(3)
j 〉

=− 〈(divyεi,]) Λ
(1)
j + (divyξi,]) Λ

(3)
j 〉 .

We now recall (9.24). Since a = εtr, divya],i = divyεi,], for i = 1, 2, 3.
Similarly, since c = ξtr, divyc],i = divyξi,], for i = 1, 2, 3. Therefore,

(RHS)ij = 〈(divy(εtrgradyr
(i)
1 ) + divy(ζtrgradyr

(i)
2 ) Λ

(1)
j

+ (divy(ξ
trgradyr

(i)
1 ) + divy(µtrgradyr

(i)
2 ) Λ

(3)
j 〉

= −〈εtrgradyr
(i)
1 · gradyΛ

(1)
j + ζtrgradyr

(i)
2 · gradyΛ

(1)
j

+ ξtrgradyr
(i)
1 · gradyΛ

(3)
j + µtrgradyr

(i)
2 · gradyΛ

(3)
j 〉

= −〈gradyr
(i)
1 · ε gradyΛ

(1)
j + gradyr

(i)
2 · ζ gradyΛ

(1)
j

+ gradyr
(i)
1 · ξ gradyΛ

(3)
j + gradyr

(i)
2 · µ gradyΛ

(3)
j 〉 .

Clearly, (LHS)ij = (RHS)ij for all i, j = 1, 2, 3. 2

9.5 GENERAL BIANISOTROPIC MEDIA

We now include the effects of dispersion, modelled in the constitutive rela-
tion through Gεd(x). There are several ways to address this problem, each
having its own advantages and disadvantages. We choose here to sketch two
alternative ways based, respectively, either on the reduction to a properly
selected elliptic homogenisation problem, which in essence is a generalisation
of the approach adopted for the optical response model, or on a rigorisation
of the double-scale expansion method, the periodic unfolding method.



rsy-book-final December 7, 2011

200 CHAPTER 9

In the first approach, we apply the Laplace transform on the Maxwell
system, reducing the problem to a static one similar in form to that addressed
for the optical response. In principle, the whole argument we have presented
for the optical response may be translated almost verbatim for the Laplace
transform of the full model, and we show that the Laplace transforms of
the fields ûε = (Êε, Ĥε)tr, d̂ε = (D̂ε, B̂ε)tr have well-defined weak limits

û∗ = (Ê∗1 , Ĥ
∗
2 )tr and d̂ε = (D̂ε, B̂ε)tr, respectively, as ε → 0, which solves a

static equation similar to (9.42). This homogenisation procedure, based on
the connections with relevant problems for elliptic systems, provides a linear
relationship between d̂∗ and û∗ in terms of a constant coefficients matrix

Âor

h
, such that d̂∗ = Âor

h
û∗. However, although this approach yields nice

expressions for Âor

h
, this is not exactly what we are interested in, and we

need to invert the Laplace transform before we obtain a useful answer in
the time domain. The inversion of Laplace transforms is not an easy task;
however, various analytic and numerical techniques are available.

There are technical intricacies involved in this approach. Two of these
consist (a) in proving that û∗, d̂∗ are vector valued functions that corre-
spond to the Laplace transform of suitable vector fields u∗, d∗ in the time
domain and (b) that the homogenised equation in a form similar to (9.42)
can indeed be transformed by the inverse Laplace transform to a Maxwell-
type system in the time domain. These problems are related to the fact
that now the equation contains a complex parameter p; the solution of the
equation must be a holomorphic function of this parameter so that it corre-
sponds to a well-defined Laplace transform of a vector field. Furthermore,
the corresponding auxiliary elliptic system will now be an elliptic system
with complex coefficients, the homogenisation of which requires some extra
care. These technical matters can be dealt with in a satisfactory manner,
but rather advanced techniques from complex analysis are needed. How-
ever, leaving the above complications aside, homogenisation analysis for the
Laplace transformed problem remains useful when treated for fixed p, as it
leads to fixed frequency homogenisation results, which may often lead to
interesting conclusions regarding the behaviour of composite materials (see,
e.g., [428]). For this reason, in Section 9.5.1 we sketch the homogenisa-
tion problem for dispersive media using the Laplace transform and provide
expressions for the coefficients of the homogenised medium.

The second approach to treating the problem with dispersion is to work
directly in the time domain, introducing the concepts of two-scale conver-
gence and the periodic unfolding method. This approach bypasses the need
to use the Laplace transform and provides results for the homogenised con-
stitutive relations directly in the time domain, rather than their Laplace
transformed versions. In Section 9.5.2 we present a detailed discussion of
the homogenisation problem using the periodic unfolding method.
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9.5.1 Homogenisation using Laplace transforms

Definition 9.5.1 Let

AL(y, p) :=

(
ε+ ε̂d ξ + ξ̂d
ζ + ζ̂d µ+ µ̂d

)
=:

(
εL ξL
ζL µL

)
,

where ŝ denotes the Laplace transform of s.

We impose the following assumption on the matrix AL(y, p):

Assumption 9.5.2

(i) The matrix AL(y, p) satisfies

(ReAL(y, p))u · u ≥ c‖u‖2, y ∈ Y, p ∈ C+, u ∈ R6. (9.53)

(ii) The matrix AL(y, p)−1 satisfies

(ReAL(y, p)−1)u · u ≥ c‖u‖2, y ∈ Y, p ∈ C+, u ∈ R6. (9.54)

This is, e.g., satisfied if Gd(y, t) is small compared to Aor(y), y ∈ Y .

Let r(j) = (r
(j)
1 , r

(j)
2 )tr, v(j) = (v

(j)
1 , v

(j)
2 )tr, j = 1, 2, 3, be the solutions of

the elliptic systems

LL,per

(
r

(j)
1

r
(j)
2

)
=

(
divy(εL)j,]
divy(ξL)j,]

)
, LL,per

(
v

(j)
1

v
(j)
2

)
=

(
divy(ζL)j,]
divy(µL)j,]

)
,

(9.55)
where

LL,per = divy(Atr
L

(y, p) grady).

Define

εhL := 〈εL + εL gradyR1 + ζL gradyR2〉,
ζhL := 〈ζL + εL gradyV1 + ζL gradyV2〉,
ξhL := 〈ξL + ξL gradyR1 + µL gradyR2〉,
µhL := 〈µL + ξL gradyV1 + µL gradyV2〉,

(9.56)

where

gradyS` =

 ∂y1
s
(1)
` ∂y2

s
(1)
` ∂y3

s
(1)
`

∂y1
s
(2)
` ∂y2

s
(2)
` ∂y3

s
(2)
`

∂y1
s
(3)
` ∂y2

s
(3)
` ∂y3

s
(3)
`

 , ` = 1, 2,

and S and s are proxies for R, V and r, v, respectively.
The matrices defined in (9.56) are constant matrices, depending on p ∈ C+

as a parameter. Assuming for the time being (see the comments in the
proof of Theorem 9.5.4) that the dependence in p is such that the result
corresponds to the Laplace transform of a function in the time domain, we
have the following.
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Definition 9.5.3 The Laplace transform of the homogenised constitutive
relation is given by

d̂h = AhLû ,

where

AhL =

(
εhL ξhL
ζh
L

µh
L

)
.

Inversion of the Laplace transform will then lead to a homogenised con-
stitutive relation in the time domain in the form of a convolution operator

d = Ahoru+ Ghd ? u,

where the homogenised optical response matrix Ahor
and the homogenised

dispersion matrix Ghd are obtained from AhL by the inversion of the Laplace
transform.

The following theorem holds.

Theorem 9.5.4 The solution uε = (Eε, Hε)tr of system (9.6-9.7) satisfies

uε
∗
⇀ u∗, in L∞([0, T ],X),

where u∗ = (E∗, H∗)tr is the unique solution of the homogeneous Maxwell
system

(d∗)′ = Mu∗ + j, in (0, T ]×O, (9.57)

with zero initial conditions and the perfect conductor boundary condition,
and subject to the constitutive relations

d∗ = Ah
or
u∗ + Gh

d
? u∗ (9.58)

such that Ah
or

+ Ĝh
d

= Ah
L

, where Ah
L

is defined as in Definition 9.5.3.

Proof. The greatest part of the proof is analogous with that of the proof
of the optical response case (see Theorem 9.4.14) and is therefore omitted.
The elliptic homogenisation result is complicated by the observation that
now the components of the elliptic system depend on p ∈ C+. Assumption
9.5.2 allows us to homogenise the auxiliary elliptic problems for all p and,
following similar arguments as for the optical response problem, identify the
Laplace transform of the homogenised constitutive relation as the one given
in Definition 9.5.3. This relation depends on p as a parameter. For fixed p,
these results can be used as fixed frequency homogenisation results. To be
able to invert the Laplace transform and find homogenised constitutive rela-
tions in the time domain, we must show that the homogenised constitutive
relation corresponds to the Laplace transform of a vector valued function.
This requires detailed estimates on the dependence of the Laplace transform
on p. These estimates can be obtained by extending the techniques of [206]
or [374]. 2

Remark 9.5.5 Theorem 9.5.4 can be extended under additional assump-
tions about the data of the problem (e.g., under the assumption of positivity
of the kernels Gd) to include the case T =∞.

Remark 9.5.6 It is clear that J can also depend on ε > 0, provided one
makes suitable assumptions about its behaviour as ε→ 0.
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9.5.2 The periodic unfolding method

In 1990, Arbogast, Douglas and Hornung defined a “dilation” operator in
[17] to study homogenisation for a periodic medium with double porosity. In
2002, Cioranescu, Damlamian and Griso expanded this idea and presented,
in [95], a general and simple approach for classical or multiscale periodic
homogenisation under the name periodic unfolding method, a complete pre-
sentation of which can be found in [96]. The periodic unfolding method is
essentially based on two ingredients: the “unfolding operator” (which is sim-
ilar to the dilation operator and whose effect is to “zoom” the microscopic
structure in a periodic manner), and the separation of the characteristic
scales by decomposing every function φ ∈W 1,p(O) into two parts; this scale
splitting can be achieved either by using the local average or by a procedure
inspired by the finite element method. Let us also mention that the periodic
unfolding method simplifies many of the two-scale convergence proofs.

Let Y = [0, `1] × [0, `2] × [0, `3] be the reference periodic cell and for

each x ∈ R3, define [x]Y :=
∑3

i=1 ki`i as the unique integer combination
of periods such that {x}Y := x − [x]Y ∈ Y . This definition implies that

x = ε
([
x
ε

]
Y

+
{
x
ε

}
Y

)
a.e. for all x ∈ R3. Define Ôε as the largest union of

translated and rescaled ε (k + Y ) cells that are included in O, Λε = O \ Ôε
is the subset of O containing the translated and rescaled cells that intersect
∂O.

Definition 9.5.7 (The periodic unfolding operator) The periodic
unfolding operator T ε : L2(O)→ L2(O × Y ) is defined by

T ε(u)(x, y) =

{
u
(
ε
[
x
ε

]
Y

+ εy
)

for x ∈ Ôε, y ∈ Y,
0 for x ∈ Λε, y ∈ Y.

If u = aε(x) = aper

(
x
ε

)
, where aper is a periodic function of period Y , then

T ε(aε)(x, y) = aper(y). This shows that the action of the operator T ε is to
“magnify” the periodic microstructure. Clearly, for functions of the special
type considered above, T ε(a)(x, y) → aper(y), a.e. in O × Y . This result
extends trivially for matrix valued functions of this special type.

Furthermore, the following properties of T ε are very important:

Theorem 9.5.8 (Properties of T ε [70])

(i) T ε is a linear and continuous operator.

(ii) For all u, v ∈ L2(O), T ε(u v) = T ε(u) T ε(v).

(iii) For all u ∈ L2(O),∫
O
u(x) dx =

1

|Y |

∫
O×Y

T ε(u)(x, y) dx dy + C (ε),

where C (ε) is a correction term that may be shown to be negligible in
the limit as ε→ 0.
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The following convergence results hold for T ε:

Theorem 9.5.9 (Weak compactness results [70])

(i) If {uε} is uniformly bounded in L2(O), then there exists u ∈ L2(O×Y )
such that T ε(uε) ⇀ u in L2(O × Y ) (up to subsequences).

(ii) If {uε} is uniformly bounded in H(curl,O), then there exists a triplet
(u, v,w) ∈ H(curl,O) × L2(O, H1

per(Y ;R)) × L2(O, H1
per(Y ;R3)), with

divyw = 0 so that

uε ⇀ u, in H(curl,O),

T ε(uε) ⇀ u + gradyv in L2(O × Y ;R3),

T ε(curluε) ⇀ curlxu + curlyw in L2(O × Y ;R3).

(iii) If {uε} is bounded in L2(O) and such that T ε(uε) ⇀ û in L2(O × Y ),
then

uε ⇀ u :=
1

|Y |

∫
Y

û dy.

Remark 9.5.10 The functions v, w are to be understood as “correctors”.
v(x, y) is a scalar and v can be understood as a function v : O → H1

per
(Y ),

such that
∫
O ||v||

2
H1

per(Y )dx <∞, whereas w(x, y) is a three-vector and w can

be understood as a function w : O → H1
per

(Y ;R3) ' (H1
per

(Y ))3, such that∫
O ||w||

2
H1

per(Y ;R3)dx <∞.

Remark 9.5.11 Some of the weak compactness results stated in Theorem
9.5.9 hold in the Lp setting for 1 ≤ p <∞.

The above weak compactness results allow us to derive a homogenised
Maxwell equation. We first define the following auxiliary system:

Definition 9.5.12 (Cell equations) Let rk ∈ H1
per(Y ) × H1

per(Y ), mk ∈
W 2,1([0, T ];H1

per
(Y ) × H1

per
(Y )), hk ∈ W 1,1([0, T ];H1

per
(Y ) × H1

per
(Y )), k =

1, . . . , 6 be the solutions of the following systems

− divy(Aor(y)gradyrk) = divy(Aor(y)ek),

− divy
(
Aor(y)gradymk(t, y) + (Gmk)(t, y)

)
= −divy(Aor(y)ek),

− divy
(
Aor(y)gradyhk(t, y) + (G hk)(t, y)

)
= −divy(Gd(t, y)(ek + gradyrk(y))),

where (G s)(t, y) :=
∫ t

0
Gd(t− s, y)gradys(s, y)ds and ek is the canonical basis

in R6.

Remark 9.5.13 Note that if k = 1, 2, 3, then

divy(Aor(y)ek) = (divyε],k,divyζ],k)tr.

On the other hand, if k = 4, 5, 6, then

divy(Aor(y)ek) = (divyξ],k−3,divyµ],k−3)tr.
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By the symmetry properties of Aor, this shows that the equations for rk,
k = 1, 2, · · · , 6 are related to the equations for r(j), v(j), j = 1, 2, 3 (see
(9.24), where rk, k = 1, 2, 3 corresponds to r(k) and rk, k = 4, 5, 6 corre-
sponds to v(k−3). The equations related to mk were not encountered before
since they correspond to correctors related to the initial conditions, and in
the previous sections we were considering the initial conditions to be ho-
mogeneous. The integrodifferential equations related to hk in their Laplace
transformed version are similar to those encountered before in Section 9.5.1.

Definition 9.5.14 (Homogenised coefficients) The homogenised op-
tical response matrix Ahor and the family of homogenised dispersion matrices
{Ghd (t)}, t ∈ [0, T ] consist of the columns

(Ah
or

)],k =

∫
Y

Aor(y)rk(y)dy,

(Ghd (t))],k =

∫
Y

Gd(t, y)rk(y)dy +

∫
Y

Aor(y)gradyhk(t, y)dy +

∫
Y

(G hk)(t, y)dy

for k = 1, . . . , 6, where rk := ek + gradyrk(y)) and (G hk)(t, y) is as in
Definition 9.5.12.

Remark 9.5.15 In view of Remark 9.5.13, we observe that the results for
the homogenised optical response Ahor provided by the periodic unfolding
method in Definition 9.5.14 (see Theorem 9.5.16) coincide with the results
for the homogenised optical response provided by the Laplace transform
method (see Section 9.4.2, equation (9.34)). Furthermore, the results for the
homogenised dispersive part, when Laplace transformed, coincide with those
obtained by the Laplace transform method in Section 9.5.1.

The following theorem [70] provides a rigorous homogenisation result for
the Maxwell equations, including the effects of dispersion in the time domain.
Note that for the sake of completeness and to show the effects of nonhomoge-
neous initial conditions in the homogenisation procedure, for the rest of this
section we relax the assumption that the initial condition of system (9.6) -
(9.7) is the homogeneous one, and we substitute for it uε(0) = u0.

Theorem 9.5.16 The solution uε of (9.6-9.7) is such that

uε
∗
⇀ u in L∞([0, T ],XM) ,

where u is the solution of the homogenised Maxwell system

(Ah
or
u+ Gh

d
? u)′ = Mu+ jh ,

with Ahor, Ghd given as in Definition 9.5.14 and jh = j + (J0u0)′ where J0 is
a matrix valued function of t with columns defined by

(J0(t))],k =

∫
Y

(
Aor(y) gradymk(t, y) +

∫ t

0

Gd(t− s, y) gradymk(s, y)

)
dy.
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Proof. The solvability results, which yield uniform bounds in ε and t > 0
for the sequences uε and (uε)′ in XM and X, respectively, combined with
the weak compactness results of Theorem 9.5.9 guarantee the existence of a
triplet of functions (u, v, w) such that

uε
∗
⇀ u in L∞([0, T ],XM),

T ε(uε) ∗⇀ u+ gradyv in L∞([0, T ], L2(O, H(curl, Y ))),

T ε((uε)′) ∗⇀ u′ + gradyv
′ in L∞([0, T ], L2(O × Y ;R6)),

T ε(curlxu
ε)
∗
⇀ curlxu+ curlyw in L∞([0, T ], L2(O × Y ;R6)).

(9.59)

We now use Theorem 9.5.8 to deduce that

T ε(Aεoru
ε + Gεd ? u

ε)
∗
⇀ Ahor(u+ gradyv) + Ghd ? (u+ gradyv)

in L∞([0, T ], L2(O× Y )), for some matrices Ah
or

, Gh
d

to be specified later on.
Consider the weak formulation of the original Maxwell system using a

test function of the form θε = φ(x)ψ
({

x
ε

})
for φ ∈ D(O), ψ ∈ D(Y ).

Applying the essential identity of the periodic unfolding method (Theorem
9.5.8, statement (iii)) three times, (i) for u = (Aε

or
uε + Gε

d
? uε) · θε, (ii) for

u = Muε · θε, and (iii) for u being the product of the source terms and the
initial conditions with the test function, and using the results concerning the
action of the operator T ε on the test function, as well as the results on the
weak star convergences presented in (9.59), we obtain that in the limit as
ε→ 0, the weak form of the full Maxwell equation converges to∫
O×Y

L(u+gradyv)·θ dx dy =

∫
O×Y

(Mxu+Myw+j+Ahoru0)·θ dx dy, (9.60)

for all v ∈ L2(O × Y ), where we have also used the density of the tensor
product D(O)⊗D(Y ) in L2(O×Y ), and L denotes the constitutive operator.

We now wish to identify the matrices Ahor and Ghd in (9.60). This is done
by considering properly selected test functions. We first choose in (9.60) test
functions of the form

θ(x, y) = φ(x) gradyψ = (φ(x) gradyψ1(y), φ(x) gradyφ2(y))tr,

where φ ∈ L2(O), ψ1, ψ2 ∈ H1
per(Y ) are scalar functions. For this choice of

test functions, the only nonvanishing terms in the weak formulation (9.60)
are ∫

Y

L(u+ gradyv) · gradyψdy =

∫
Y

Ah
or
u0 · gradyψdy, (9.61)

for all ψ ∈ H1
per

(Y )×H1
per

(Y ). In the above equation, u = u(t, x), u0 = u0(x)
are known fields (in principle), whereas v = v(t, x, y) is a corrector field to be
determined. Thus, equation (9.61) can be considered an integrodifferential
equation for v, driven by Lu, so that we may look for a solution in the form

v(t, x, y) = R‡(y) ·u(t, x)+M‡(y) ·u0(x)+

∫ t

0

H‡(t−s, y) ·u(s, x) ds (9.62)
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where R‡,M‡, H‡ are six-vectors. Rather than splitting the six-vectors in
two three-vectors, as, e.g., in u = (u1, u2)tr, it is convenient to re-express
u as u = (u1, . . . , u6)tr, and similarly for the initial condition, to avoid
any confusion. On the other hand, for the components of R‡, M‡ and
H‡, we use the standard notation for the components S = (s1, . . . , s6)tr, to
avoid awkward notation in the homogenisation formulae. With this notation,
(9.62) becomes

v =

6∑
k=1

rku
k +

6∑
k=1

mku
k
0 +

6∑
k=1

hk ? u
k, (9.63)

where v = v(t, x, y), rk = rk(y), mk = mk(t, y), hk = hk(t, y). Substituting
this ansatz to (9.61), we observe that rk, mk and hk, k = 1, . . . , 6, satisfy the
weak form of the systems in Definition 9.5.12. Observe that the first equation
in the system of Definition 9.5.12 is equivalent to the elliptic system obtained
in Section 9.4.2.

We now try to obtain the homogenised Maxwell system. We choose test
functions θ ∈ X depending only on x and insert them into (9.60). Note that
this is equivalent to averaging the system over the fast scale y. As a result
of that, we have∫

O×Y
(Mxu+ Myw) · θ dx dy =

∫
O×Y

Mxu · θ dx dy

for all t, which is equivalent to the Maxwell operator acting on the averaged
field over the fast scale. We consider next the term

∫
O×Y L(u+ gradyv) · θ,

which will give us the homogenised constitutive relation. Substituting the
expression (9.63) into this integral and integrating by parts over Y , we obtain
the required result. This concludes the proof. 2

Remark 9.5.17 As seen by Theorem 9.5.16 the effect of nonzero initial con-
ditions is to introduce a correction term in the homogenised source term jh

which is related to the initial condition u0, as well as the composition of the
material through Aor, Gd. For zero initial conditions we have jh = j. The
effect of nonzero initial conditions on homogenisation is an important issue
and can cause interesting phenomena depending on whether the initial con-
dition u0 presents small-scale variability or not. This phenomenon appears
in many important differential equations; to the best of our knowledge it
was first observed for the wave equation in [77].

9.6 MISCELLANEA

9.6.1 Two-scale convergence

Two-scale convergence is a special type of convergence in Lp spaces. Let O
be an open bounded subset in RN , Y the unit cube in RN and {ε} a sequence
of positive numbers converging to 0. In 1989 Nguetseng (see [337]) proved
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that for each bounded sequence {uε} in L2(O) there exists a subsequence,
still indexed by ε, and a u ∈ L2(O × Y ) such that∫

O
uε(x)φ

(
x,
x

ε

)
dx→

∫
O×Y

u(x, y)φ(x, y) dv , (9.64)

where dv = dx dy, for every sufficiently smooth φ(x, y) that is Y –periodic in
y. Nguetseng also proved that for a bounded sequence {uε} ∈ H2(O) there
exist functions u ∈ L2(O × Y ) and u1 ∈ L2(O, H2

per(Y )) such that, up to a
subsequence,

uε ⇀ u , in H2(O) ,∫
O

graduε(x) · ψ
(
x,
x

ε

)
dx→

∫
O×Y

(
gradu(x) + gradyu1(x, y)

)
· ψ(x, y)dv,

for every sufficiently smooth ψ(x, y). The latter result made it possible for
Nguetseng to make a new proof of the homogenisation result corresponding
to the linear elliptic equations of the general form studied in Section 9.4.1.
Later on Allaire (see [2]) started to call the type of convergence defined
by (9.64) two-scale convergence. Allaire also developed the theory further
by studying some general properties of two-scale convergence. Moreover, he
used two-scale convergence to analyse several homogenisation problems, both
linear and nonlinear. Two-scale convergence has also been generalised to n-
scale convergence (or multiscale convergence) in the obvious way. Two-scale
convergence is now a well-known concept within the (rigorous) homogeni-
sation community. A lot of different homogenisation problems have been
analysed using this tool. There is also a relation of two-scale convergence
to strong and weak convergence in Lp(O), [96]. Let us also mention that
the periodic unfolding method simplifies many of the two-scale convergence
proofs.

9.6.2 On the term “structure” in homogenisation

Homogenisation theory requires the passage to a suitable limit in a fam-
ily of media. This question is a meaningful one if the medium displays
certain properties that allow this transition to the limit; loosely speaking
the medium must display some sort of “self-repeating” (or “self-averaging”)
structure. In the classical case, the medium is assumed to have a periodic
structure. However, for the majority of inhomogeneous media the right struc-
ture hypothesis is far from being the periodicity hypothesis. In such cases
periodicity has to be replaced by quasi-periodicity (the medium coefficients
are linear combinations of periodic functions of incommensurate periods) or
almost-periodicity (closure of quasi-periodic). Homogenisation problems in
structures beyond the above mentioned remain in general unsolved because
of the lack of the necessary mathematical framework.

In [338], Nguetseng assigned a self-contained mathematical meaning to the
word structure in the context of homogenisation. New tools were required
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like the notion of a homogenisation algebra and the underlying concept of
mean value; homogenisation algebras were introduced in [216], under the
names of algebras with mean values. In [338] a systematic utilisation of such
algebras leads, by means of the Gelfand representation theory and two-scale
convergence, to a general mathematical framework that includes the model
of classical periodic homogenisation theory.

9.6.3 Memory effects in homogenisation

In the 1970s E. Sanchez-Palencia made the observation that the homogeni-
sation procedure of the Maxwell equations for periodic materials even in
the optical response region may lead to a homogenised system with mem-
ory terms of the convolution type, as long as the effects of conductivity are
taken into account. This remarkable observation was taken up by Tartar,
who studied the problem extensively in its general form (for general equa-
tions of the hyperbolic type) and showed, using rigorous homogenisation
theory, that this phenomenon is common in hyperbolic equations (see [407]
for a thorough exposition). In the early 1990s Antonić studied memory ef-
fects in the homogenisation of the Maxwell equations [15] and reconfirmed
the observation of Sanchez-Palencia. The theme of memory terms intro-
duced through homogenisation to the Maxwell equations was taken up by
other authors as well (see, e.g., [215] or [216]). These works consider di-
electric electromagnetic media, but their arguments may be generalised to
complex media. To clarify the effect of conductivity in generating the mem-
ory term we summarise the relevant arguments (see, e.g., [215]) in a very
simple model where Aor consists of εε(x) = ε(xε ), ξ = ζ = 0, µ = I, but with
a spatially dependent conductivity term σε(x) = σ(xε ). This contributes to
the Maxwell equations an effective source term jε = (σε(x)u1, 0)tr, where as
usual u = (u1, u2)tr = (E,H)tr. Repeating the formal two-scale expansion
for this simplified version of the Maxwell equations (in the time domain) we
obtain from the O(ε−1) terms that the average of the fields over the peri-

odic cell Y satisfy E(0)(x, y)− Ê1(x) = gradyΨ1(x, y), H(0)(x, y)− Ĥ1(x) =
gradyΨ2(x, y), where Ψi, i = 1, 2 are scalar functions (we use the notation
of Section 9.3, dropping the hats, since we no longer work in terms of the
Laplace transforms of the fields). After insertion of this expression into the
expansions and subsequent application of the divy operator, we obtain

divy

[
(∂t + σ(y))(gradyΨ1 + Ê1)

]
= 0,

divygradyΨ2 = 0.
(9.65)

Application of the mean operator to O(ε0) terms yields the homogenised
Maxwell equations. Repeating the arguments of Section 9.3 and using the
second of equations (9.65), we obtain

∂tB
1 = −curlE1,

where B1 = 〈Bε〉. We now consider the first of equations (9.65). Following
[15] (and restricting our arguments to the simplified version of the model
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employed here8), we rewrite this equation in variational form (including
the periodic boundary conditions in y), and then treat it as an ordinary
differential equation in H1

per(Y ),

(Ψ1 + hE1)′ + SΨ1 + g · E1 = 0, (9.66)

with initial condition Ψ1, where S is the bounded linear operator generated
in variational form by the coercive bilinear form a : H1

per
(Y )×H1

per
(Y )→ R,

a(φ, θ) :=

∫
Y

σ(y)gradyφ · gradyθ, ∀φ, θ ∈ H1
per(Y ),

(Sφ, θ)H1
per(Y ) := a(φ, θ),

and h, g ∈ (H1
per

(Y ))3 are such that

(h, v)(H1
per(Y ))3 =

∫
Y

ε(y) · gradyv dy, ∀v ∈ (H1
per

(Y ))3,

(g, v)(H1
per(Y ))3 =

∫
Y

σ(y) · gradyv dy, ∀v ∈ (H1
per(Y ))3.

The existence and the properties of the operator S, as well as the existence
of h, g, are guaranteed by the Lax-Milgram lemma and the Riesz represen-
tation theorem, respectively. The differential equation (9.66) can be solved
in terms of the semigroup generated by S as

Ψ1 = −h · E1 +

∫ t

0

exp(−(t− s)S)(Sh− g) ds ,

and this specifies completely E(0). Inserting this expression for E(0) into the
expansions and averaging over y, we obtain the homogenised equation

∂t(ε
hE1 +K1 ? E

1) = curlxH
1 + σhE1 +K2 ? E

1 ,

where εh is a constant obtained by an averaging formula equivalent to those
provided in Section 9.4.2 and

K1 = 〈ε · (grady(exp(−(t− s)S) (Sh− g))tr〉 ,
and similarly for σh and K2. The important observation here is that the
homogenised constitutive relation now includes a convolution term, which is
generated by the periodic conductivity coefficient. In the absense of conduc-
tivity σ = 0, this term vanishes. The above results can be made rigorous
(see, e.g., [15], [407]).

The work in [215] is devoted to the memory effect induced by homogeni-
sation of the Maxwell system for conducting media. The memory kernel is
described by a Volterra integral equation. Furthermore, it can be charac-
terised explicitly in terms of Young measures, and the kinetic formulation
of the homogenised equation is also obtained. The kinetic formulation al-
lows obtaining the homogenisation of the energy density and the associated
conservation law with the Poynting vector. The interesting interaction phe-
nomenon of the microscopic and macroscopic scales is also discussed, and
the memory effect qualitatively explains something about irreversibility.

8Antonić [15] deals with the dielectric case where Aor is a block diagonal matrix with
spatially dependent (periodic) coefficients, while dispersive terms are absent.
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9.6.4 The Bloch-wave homogenisation method:

The Floquet-Bloch expansion and the corresponding Bloch-wave homogeni-
sation method (see [59], [110] and the references in the latter) is a high-
frequency method that provides dispersion relations for wave propagation in
periodic structures.

9.6.5 Further references for the Maxwell equations:

Regarding the homogenisation of the Maxwell equations, an indicative but
incomplete list of important studies conducted within the framework of rig-
orous mathematical analysis would comprise [18], [52], [59], [86], [215], [302],
[374], [387], [389], and the important contributions of Wellander ([193], [390],
[425], [426], [427], [428]).

9.6.6 Numerics

The numerical treatment of the homogenisation problems for the Maxwell
equations in complex media is a very interesting topic in its own right. Such
problems require the use of the analytic results of homogenisation theory,
such as multiscale expansions, correctors, etc. For example, in [86] the mul-
tiscale analysis of the Maxwell equations in composite materials with a pe-
riodic microstructure is discussed. The new contributions in this paper are
the determination of higher-order correctors and the explicit convergence
rate for the approximate solutions. Further, the multiscale finite element
method is presented and the convergence result is derived. The numerical
results demonstrate that higher-order correctors are essential for solving the
Maxwell equations in composite materials. See also [449].
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Chapter Ten

Towards a Scattering Theory

10.1 INTRODUCTION

Scattering theories can provide methods for developing robust approxima-
tion methods for solving wave problems. In this chapter we indicate how
such theories can be developed when wave motions in chiral media are stud-
ied; we show, for the sake of illustration, how a relatively simple scattering
theory involving achiral materials can be modified to accommodate problems
involving a class of chiral materials (see also [368]).

We begin by remarking that a scattering process describes the effects of
a perturbation on a system about which everything is known in the ab-
sence of the perturbation. Such a process can be conveniently characterised
in terms of three main features; generation, interaction and measurement.
In the generation stage an incident wave, a signal, is generated, far away
in both space and time (to ensure complete independence of the two sys-
tems) from any perturbation that might have to be considered, e.g., a target
body or some potential. At this stage the interaction between an incident
wave and the perturbation is negligible and the system evolves as though it
were a free system, that is, a system in which there are no perturbations.
Eventually, however, the incident wave and the perturbation interact and
exert considerable influence on each other. The resulting effects, that is, the
scattered waves, often have a very complicated structure. After the interac-
tion during which the scattering occurred, the now scattered wave and the
perturbation can once more become quite distant from each other and the
interaction effects again become negligible. Consequently, any measurement
of the scattered wave at this stage would indicate that the system is once
again evolving as a free system, but not necessarily the same free system as
that considered originally.

In practical situations, measurements of a wave far away from any pertur-
bation are really the only data available. Consequently, the asymptotic be-
haviour of solutions to wave equations, and especially the asymptotic equal-
ity of solutions of the associated free and perturbed systems becomes of
particular interest.

The structure of the chapter is as follows. In Section 10.2 we present a
general formulation of the class of problems described above in terms of evo-
lution operators, while in Section 10.3 we outline an approach to scattering
theory in the time domain. In this section we introduce the basic concepts
and tools of scattering theory, such as the wave operators and the scattering
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operator. In Section 10.4 we show how the use of spectral theory allows the
explicit construction of solutions to abstract initial boundary value prob-
lems in terms of generalised integral transforms. In Section 10.5 we show
how these generalised integral transforms can be used for the construction
of the wave operators and the scattering operator. Finally, in Section 10.6
we explore the extension of these ideas to the study of electromagnetics of
complex media.

10.2 FORMULATION

The above remarks can be conveniently expressed in symbolic form as fol-
lows.

Consider first a system that has no inhomogeneities. Let ff(s, x) be a
quantity that characterises the state of the system at some initial time t = s
and let uf(t, x) be a quantity that characterises the state of the system at
some later time t > s. We shall be concerned with systems for which states
can be related by means of an “evolution rule”, denoted by Uf(t− s), which
determines the evolution, in time, of the system from its initial state ff(s, x)
to a state uf(t, x) at a later time t > s. This being the case, we write

uf(t, x) = Uf(t− s)ff(s, x),

where it is understood that Uf(0) = I, the identity. The evolution rule can
be understood as a semigroup or as an evolution family.

In a similar manner, when inhomogeneities are present in the system, then
we will assume we can express the evolution of the system from an initial
state fp(s, x) to a state up(t, x) at a later time t > s in the form

up(t, x) = Up(t− s)fp(s, x), Up(0) = I,

where Up(t− s) denotes an appropriate “evolution rule”. Thus, we see that
we are concerned with two classes of problem. When there are no inhomo-
geneities present in the system, we shall say that we have a free problem.
When inhomogeneities are present in a system, we shall say that we have a
perturbed problem. We express this situation symbolically in the form

uκ(t, x) = Uκ(t− s)fκ(s, x), Uκ(0) = I, κ = f, p,

where, when κ = f, we shall assume that we have a free problem, while when
κ = p we will have a perturbed problem.

With the construction of approximation methods in mind, we shall always
asssume that the free problem is one that can be readily solved. Conse-
quently, it would seem natural to investigate under what conditions solutions
of the free problem and perturbed problem could be considered equal. This
is essentially what a scattering theory does.

In connection with the possible equality of the uκ(t, x), κ = f, p, we first
recognise and make use of the fact that in most experimental procedures,
measurements in a system are made far away from any inhomogeneities that
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might exist in the system. Consequently, we are mainly concerned here with
the nature of the solutions uκ(t, x) , κ = f, p and of their difference in the
so-called far-field of any inhomogeneity, that is, with the behaviour of the
uκ(t, x), κ = f, p as t→∞. Once this asymptotic behaviour is known, then
we can clarify what we mean by the equality of the uκ(t, x), κ = f, p and
turn attention to determining the conditions that will actually ensure when,
in the far field at least, the uκ(t, x), κ = f, p can be considered equal. A
detailed mathematical analysis of such questions can be technically very de-
manding. However, this chapter is simply meant to provide a guide through
the various technical areas, with the intention of highlighting their uses in
practical problems of interest. Consequently, the presentation in this chapter
is frequently quite formal, and we rely very much on the frequently expressed
view that “any formal manipulations which are not obviously wrong are as-
sumed to be correct” ([162], p. 173). Nevertheless, references will always
be given in the text to where more precise and often quite general details
can be found. Furthermore, we emphasise that in this monograph we are
not interested in investigating the evolutionary processes mentioned above
in full generality but rather confine our attention to those systems involving
waves.

One of the major differences from the problems that have been addressed
so far is that we are interested both in the case of unbounded domains, or
even the whole of R3, and in asymptotic behaviour with respect to time; i.e.,
we allow t ∈ R+ or even t ∈ R. This introduces several technical differences
that call for treatment using different techniques. One such candidate is
spectral theory. Furthermore, when perturbations are taken into account,
we may resort to the rich and extensive literature of perturbation theory for
linear operators (see, e.g., [229]) to draw useful and interesting results on the
qualitative or even quantitative behaviour of the inhomogeneous (perturbed)
system.

10.3 SOME BASIC STRATEGIES

Before dealing with wave problems in chiral materials, we first illustrate
some of the strategies that will have to be adopted when developing scatter-
ing theories by considering somewhat simpler systems that are governed by
initial value problems of the form

{∂2
t + Lf}uf(t, x) = 0 , uf(0, x) = ϕf(x) , ∂tuf(0, x) = ψf(x), (10.1)

{∂2
t + Lp}up(t, x) = 0 , up(0, x) = ϕp(x) , ∂tup(0, x) = ψp(x), (10.2)

where (t, x) ∈ R×R3 and we have set, for ease of presentation and without
any loss of generality, the initial time t = 0.

In (10.2) the differential operator Lp is assumed to be some perturbation of
the differential operator Lf = −∆ , the three-dimensional Laplacian. There-
fore, (10.1) is one component of a vector Helmholtz equation, which often
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arises in the modelling of wave phenomena in electromagnetics in the absense
of chirality. Equation (10.2) will be considered a perturbation of the vector
Helmholtz equation when taking into account the effects of chirality. We
shall refer to (10.1) as a free problem and to (10.2) as a perturbed problem.

We shall consider the initial value problems (10.1), (10.2) in appropriate
function spaces. In terms of the spatial behaviour of the solutions, a suitable
choice is the function space L2(R3), of (possibly complex-valued) functions
that are square integrable with respect to the spatial variables. Such a
selection is compatible with energy considerations for the wave equation. We
then introduce spatial operators, Aκ : D(Aκ)→ L2(R3), κ = f, p, defined by
Aκuκ = Lκuκ, uκ ∈ D(Aκ), with

D(Aκ) = {uκ ∈ L2(R3) : Lκuκ ∈ L2(R3), uκ ∈ (bc)},

where the qualifier (bc) denotes that uκ satisfies an appropriate boundary
condition; in the event that we are dealing only with potential scattering
problems, this qualifier is omitted from the definition of D(Aκ). The def-
inition of D(Aκ) ensures that throughout any mathematical manipulations
involving Aκ we always “stay in L2(R3)”.

Remark 10.3.1 We have assumed, for ease of presentation, that (10.1) and
(10.2) can be posed on the same function space. This will not always be the
case.

If we now define the functions uκ : R → L2(R3), such that for each
t ∈ R, uκ(t) ∈ L2(R3) and (uκ(t))(x) = uκ(t, x), κ = f, p, then the classical
initial value problems (10.1) and (10.2) can now be replaced by the abstract
differential equations on L2(R3):

u′′κ(t) +Aκuκ(t) = 0,

uκ(0) = ϕκ,

u′κ(0) = ψκ,

(10.3)

for κ = f, p. Consequently, with this understanding, the problems (10.3)
have solutions (in L2(R× R3)), which can (formally) be expressed as

uκ(t) = (cos tA1/2
κ

)ϕκ +A−1/2
κ

(sin tA1/2
κ

)ψκ, κ = f, p, (10.4)

where {cos(tAκ)}t∈R, {sin(tAκ)}t∈R are families of linear operators gener-
ated by the operators Aκ. These families (the cosine and the sine family,
respectively) are similar to the exponential family through which the semi-
groups were defined. In fact, this is a generalisation of semigroup theory that
allows the treatment of second-order abstract ordinary differential equations
in function spaces, in a fashion similar to the treatment of first-order abstract
ODEs in function spaces, by semigroup theory.

The solutions of (10.3) can be expressed more compactly using the complex-
valued functions

vκ(t) = exp(−itA1/2
κ )hκ =: Uκ(t)hκ,

hκ = ϕκ + iA−1/2
κ ψκ,

(10.5)
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so that

uκ(t) = Re {vκ(t)}. (10.6)

Remark 10.3.2 The above problems are written in second-order form so
as to resemble the wave equation that has been a standard paradigm for the
development of scattering theory. By a standard transformation of variables
it may be brought into the form of a first-order system v′ = Gv, where
v = (u, u′)tr and G is a matrix operator of the form

G =

(
0 I
−A 0

)
.

The system is then subject to the usual semigroup theory treatment.

With all this in mind, we shall compare the solutions of the free prob-
lem and the perturbed problem by considering an expression of the form
‖vp(t)− vf(t)‖, where ‖·‖ denotes the norm in L2(R3). Assume that Uf(t) is
a unitary operator whose formal adjoint U∗

f (t) is equal to its inverse U−1(t)
for all t ∈ R. We then find that

‖vp(t)− vf(t)‖ = ‖Up(t)hp − Uf(t)hf‖ =

‖U∗f (t)Up(t)hp − hf‖ = ‖W (t)hp − hf‖ ,
(10.7)

where W (t) := U∗f (t)Up(t). Assuming that limits as t→ ±∞ exist we obtain

lim
t→±∞

‖vp(t)− vf(t)‖ = ‖W±hp − hf‖ , (10.8)

where

W± := lim
t→±∞

W (t) = lim
t→±∞

U∗f (t)Up(t) = lim
t→±∞

exp(itA
1/2
f ) exp(−itA1/2

p )

(10.9)
are the so-called wave operators. The rigorous proof of existence of the wave
operators is an important problem.

When all of the above has been achieved, we see that if the initial data
for the free problem and the perturbed problem are related according to

hf = W±hp, (10.10)

then the limit in (10.8) is zero, thus indicating that the perturbed problem is
asymptotically free as t→ ±∞. That is, solutions of the perturbed problem
with initial data hp are asymptotically equal in time to solutions of a free
problem with initial data hf which is given by (10.10).

Consequently, if solutions of the two systems are known to exist, then we
would expect the existence of elements h± ∈ L2(R3) such that

vp(t) ∼ Uf(t)h± as t→ ±∞, (10.11)

where∼ denotes asymptotic equality and the± signs are used to indicate (the
possibly different) limits as t→ ±∞. We emphasise that it is not automatic
that both limits implied by (10.11) should exist. Indeed, a solution such
as vp could be asymptotically free as t → +∞ but not as t → −∞. Thus,
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the wave operators W± can be considered as mapping h1 to the elements
h±. Indeed, if we use (10.11) in conjunction with the definition vκ = Uκhκ,
κ = f, p, then we have

U∗
f (t)Up(t)hp = W (t)hp ∼ h±,

which in the limit as t→ ±∞ yields the stated result.
Furthermore, the two initial conditions h± for the free problem are related

by

h+ = W+hp = W+W
∗
−h− =: Sh−.

The operator S := W+W
∗
− that connects h− with h+ is called the scatter-

ing operator for the problem. The scattering operator provides important
information on the effect of the perturbation on the system. The proof of
the existence of the scattering operator, through the construction of the
wave operators, the study of its properties, and its calculation, is one of the
fundamental problems of scattering theory.

10.4 ON THE CONSTRUCTION OF SOLUTIONS

Questions regarding the existence and uniqueness of solutions of the initial
value problems (10.3) can be treated using techniques from abstract differ-
ential equations, e.g., semigroup methods or variational methods such as
the Faedo-Galerkin method (see Chapter 7 and Section A.8 in Appendix A).
Once questions of existence and uniqueness of solution have been settled, we
can turn our attention to methods for actually determining such solutions.
This can be effected using the spectral decomposition of the operator Af .

We first notice that whenever the spectral theorem (see Section A.4 in
Appendix A) is applicable, it provides a useful tool for interpreting the so-
lution forms (10.4) and (10.6). For example, according to this theorem, if
{Eκ(λ)}λ∈σ(Aκ) denotes the spectral family of Aκ (see Section A.4 in Ap-
pendix A), then we have the spectral representation

Aκ =

∫ ∞
0

λdEκ(λ). (10.12)

Furthermore, using the spectral theorem we may define functions of the
operators Aκ. For Φ : C → C, bounded and Lebesgue measurable, we may
define the operators Φ(Aκ) by the spectral representation

Φ(Aκ) =

∫ ∞
0

Φ(λ)dEκ(λ). (10.13)

However, a difficulty associated with the results (10.12) and (10.13) concerns
the practical determination of the spectral family {Eκ(λ)}λ∈σ(Aκ).

For the case of the free problem (κ = f) that we are concerned with, the
situation can be eased by introducing the results of Fourier transforms in
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L2(R3). The Plancherel theory indicates that the operator Ff : L2(R3) →
L2(R3), such that

(Fff)(q) = f̃(q) :=
1

(2π)
3
2

∫
R3

exp(−ix · q)f(x)dx, (10.14)

is well defined (where the improper integral is considered a limit in the
L2(R3) sense). This operator is the Fourier transform and according to the
Plancherel theory is a unitary operator defining an isometry in L2(R3) so

that F ∗f = F−1
f ; therefore, if f̃ = Fff is the Fourier transform of f ∈ L2(R3),

then

f(x) = (F ∗f f̃)(x) :=
1

(2π)
3
2

∫
R3

exp(ix · q)f̃(q)dq, x,∈ R3. (10.15)

It can also be shown that, ifAf = −∆, for any bounded, Lebesgue measurable
function Φ we have

(Φ(Af)f)(x) =
1

(2π)
3
2

∫
R3

exp(ix · q)Φ(|q|2)f̃(q)dq, (10.16)

i.e., Ff(Φ(Aff)) = Φ(|q|2)f̃(q).
The above limits are very close in form to the spectral expansions needed

for the operator Af in fact, as we shall see, they can be identified exactly
as such. Note that for q, x ∈ R3, wf(q, x) = (2π)−3/2 eix·q satisfies the

Helmholtz equation (∆ + |q|2)wf(q, x) = 0, so that wf might be thought of

as an eigenfunction of Af = −∆ with associated eigenvalue |q|2. However, a
direct calculation shows that wf /∈ L2(R3), and so wf must be a generalised
eigenfunction of Af . Nevertheless, the Fourier-Plancherel theory1 indicates
that (10.15) can be perceived as an expansion of the function f ∈ L2(R3)
in terms of the generalised eigenfunctions wf of the Laplace operator, with
a similar interpretation for (10.16). This implies that the spectral decompo-
sition of Af can be written as a generalised eigenfunction expansion in the
form

(Φ(Af)f)(x) =

∫
q∈R3

wf(q, x)Φ(|q|2)f̃(q)dq. (10.17)

It will be useful later on to bear in mind the decomposition (10.17) can
also be written in the form

Ff(Φ(Af)f)(q) = Φ(|q|2)(Fff)(q).

These various results imply that the wave function vf introduced in (10.5)
can be interpreted in the form

vf(t, x) =

∫
R3

wf(q, x) exp(−it |q|)h̃f(q)dq, (10.18)

where h̃f = Ffhf is the Fourier transform of the initial condition. Therefore,
once the h̃f is known, the solution is reconstructed in terms of the improper

1Which has been developed independently of any scattering aspects.
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integral (10.18), which involves only the Fourier basis wf . This representation
has an interesting physical meaning, which becomes clear as long as we notice
that

wf(q, x) exp(−it |q|) =
1

(2π)
3
2

exp(i(x · q − t |q|)) (10.19)

are solutions of (10.3) with κ = f and as such represent plane waves propa-
gating in the direction of the vector q. Therefore, the wave function given by
(10.18) is a representation of a wave (acoustic) in terms of elementary plane
waves (10.19).

The above result concerning expansion of the solution in terms of eigen-
functions holds more generally than in the special case where Af = −∆.
Of course, in the more general case the eigenfunctions will no longer coin-
cide with the Fourier basis and our line of reasoning will no longer be able
to stand on the shoulder of Fourier-Placherel theory. However, this theory
can be generalised in terms of generalised integral transforms, in which the
generalised eigenfunctions of the operators Aκ play the rôle of the Fourier
basis. As a consequence, we could interpret (10.5), for κ = p, in a form
similar to (10.18), where of course now wf will have to be replaced by a
more suitable set of functions. Specifically, associated with Ap we want a
generalised eigenfunction expansion theorem, now in terms of the set of gen-
eralised eigenfunctions {wp} of the operator Ap. This set consists of the
kernels wp(q, x), which are solutions of

(Ap − |q|2)wp(q, x) = 0, x, q ∈ R3 .

Using the kernels wp(q, x) we may define the operator Fp : L2(R3)→ L2(R3)
by

(Fpf)(q) := f̌(q) :=

∫
R3

wp(q, x)f(x)dx. (10.20)

The operator Fp can be considered as defining an integral transform that is
a generalisation of the Fourier transform (10.14) in terms of the new set of
functions {wp}. As long as {wp} enjoy certain properties, it can be shown
that F ∗

p = F−1
p has an integral representation of the form

f(x) = (F ∗p f̌)(x) :=

∫
R3

wp(q, x)f̌(q)dq. (10.21)

Furthermore, the following spectral representation holds:

(Φ(Ap)f)(x) =

∫
R3

wp(q, x)Φ(|q|2)f̌(q)dq, (10.22)

so that in terms of the new integral transform, we have Fp(Φ(Ap)f) =

Φ(|q|2)f̌ . As in the case of the Fourier transform, the above improper inte-
grals have to be interpreted as limits in the L2(R3) sense.

We emphasise that for any specific perturbed problem, it has to be proved
that a generalised eigenfunction expansion (spectral decomposition) such as
(10.20) to (10.22) is indeed available for use. For specific physical problems
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this can often involve a great deal of work. A full spectral analysis of Ap

is required, and functions such as wp, that are intimately connected with
the particular problem being considered have to be determined. For the
remainder of this chapter, we assume that such generalised eigenfunction
expansions are available. Consequently, we are able to write (10.5) in the
following form:

vp(t, x) =

∫
R3

wp(q, x) exp(−it |q|)f̌p(q)dq, (10.23)

which is interpreted in the same way as (10.18).
We remark that in (10.18) and (10.23), the q need not be the same for

both. It is associated with eigenvalues of Af in (10.18) and with eigenvalues
of Ap in (10.23).

From (10.18) and (10.23), it is a straightforward matter to obtain the
representations

uf(t, x) =

∫
R3

wf(q, x)

{
ϕ̃f(q) cos t |q|+ ψ̃f(q)

sin t |q|
|q|

}
dq, (10.24)

up(t, x) =

∫
R3

wp(q, x)

{
ϕ̌p(q) cos t |q|+ ψ̌p(q)

sin t |q|
|q|

}
dq. (10.25)

Hence, provided we can establish an eigenfunction expansion theorem of the
form (10.20) - (10.22), then, since all the terms in (10.24) and (10.25) are
computable, we have available, in (10.24) and (10.25), a practical means of
constructing solutions to the free problem and perturbed problem, respec-
tively.

For the purpose of developing a scattering theory, it remains to investigate
whether or not these solutions can be considered asymptotically equal, in
some sense, as t → ±∞. We begin to investigate this aspect in the next
section.

10.5 WAVE OPERATORS AND THEIR CONSTRUCTION

The discussion in Section 10.3 can be restated more abstractly as follows:
let H be the Hilbert space that serves as the state space of the system2 and
consider the existence of two orthogonal subspaces D± ⊂ H such that

(i) U(t)D± ⊂ D±, t ∈ R±.

(ii)
⋂
t∈R± U(t)D± = {0}.

(iii)
⋃
t∈R∓ U(t)D± is dense in H.

2For example, L2(R3) in the case of the Helmholtz equation or (L2(R3))3× (L2(R3))3

in the case of the Maxwell system.
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These subspaces are called the outgoing and the incoming subspace, respec-
tively. With the use of these two subspaces, every element of H can be
represented as the sum of an outgoing and an incoming element. The scat-
tering operator S is an operator that maps the incoming component w− to
the outgoing component w+. In this respect, it quantifies the effect that
the physical system has to whatever is incoming from the distant past (and
from x → −∞) to the state of the system in the distant future (and to
x → ∞). If we consider a wave propagation phenomenon with finite speed
of propagation, it is physically right to connect space with time in this way.
The usual context of scattering theory is the comparison of an unperturbed
with a perturbed system. The concept of perturbation is rather general; for
instance, we may consider a complex medium that is situated in a bounded
domain O ⊂ R3 while the rest of R3 is the vacuum. Then the unperturbed
system is the Maxwell equations in the vacuum, whereas the perturbed sys-
tem is the Maxwell equations in the chiral medium in O, complemented with
the Maxwell equations in R3 \ O. This is a typical problem of scattering by
a chiral obstacle. We may consider the incoming element to be an electro-
magnetic wave in the vacuum, whereas the outgoing element (wave) conveys
the information of the interaction of the incoming wave with the complex
medium. Therefore, the scattering operator provides information concern-
ing the effects of the medium on the electromagnetic wave. Other similar
examples can be sketched.

The abstract formulation calls for two evolution operators, Uf(t), Up(t),
where the first one corresponds to the unperturbed system while the second
corresponds to the perturbed system. The scattering operator is expressed
in terms of the wave operators W±, defined as

W± = lim
t→±∞

Up(−t)Uf(t),

by the relation S = W−1
+ W−. The unperturbed problem is frequently used

to motivate the definitions of the incoming and the outgoing elements D±.
This requires a detailed study of the unperturbed system. In the case of
interest here, this corresponds to the Maxwell equations in the vacuum.
This to some extent can be effected using the relevant theory for the vector
Helmholtz equation, via the reduction of the Maxwell equation to the wave
equation, but it can also be done using the original form of the Maxwell
system.

We now turn to the construction of the wave operators W± and the scat-
tering operator S, and show how the spectral expansions of the solutions
introduced above may provide us with explicit expressions for these quanti-
ties. To do this, it is important to identify the subspaces D±. This problem
depends on the particular nature of the application under consideration. We
consider here the relevant problem for the Helmholtz equation before turning
to the Maxwell system.

It is easy to check that u(t, x) = exp(−i$t)(u+(x)+u−(x)), where u±(x) =
e±i$x, is a solution of the one-dimensional wave equation. Recalling the
d’Alembert representation of solutions of the wave equation, we see that u+
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characterises a wave moving from left to right and u− a wave moving from
right to left, both having the same time dependence exp(−i$t). Equiva-
lently, we can say that u+ is an outgoing wave since it is moving away from
the origin while u− is an incoming wave as it is moving towards the origin.
Motivated by the above discussion in one dimension, we generalise this ap-
proach to higher spatial dimensions (n = 2, 3), where now the shapes of the
incoming and the outgoing waves will be the solutions u± of the equation

(∆ +$2)u±(x) = f(x), x ∈ Rn,
which are assumed to satisfy (see Remark 2.4.3) the Sommerfeld radiation
conditions

{∂r ∓ i$}u±(x) = o
(
r

1−n
2

)
, u±(x) = O

(
r

1−n
2

)
as r = |x| → ∞, (10.26)

uniformly with respect to the direction x/ |x| . The estimate (10.26) taken
with a minus (plus) sign is called the Sommerfeld outgoing (incoming) ra-
diation condition. These outgoing and incoming solutions provide the basis
for the construction of a scattering theory.

We now consider the problem of expressing wp, the kernel function in
the generalised eigenfunction expansion theorem (10.20) - (10.22), in a form
convenient for perturbation analysis. Considering the nature of the prob-
lem, it is reasonable to assume that wp is a perturbation of wf and since wf

characterises a plane wave, we shall refer to wp as a distorted plane wave.

Definition 10.5.1 An outgoing (resp. incoming) distorted plane wave
w+(q, x) (resp. w−(q, x)) satisfies

(i) (∆ +$2)w±(x) = 0 , for x, q ∈ Rn, |q|2 = $2.

(ii) w+(q, x)− wf(q, x) satisfies the outgoing radiation condition
(resp. w−(q, x)− wf(q, x) satisfies the incoming radiation condition).

Consequently, we assume here that the kernel w1 (q, x) is either an outgo-
ing or an incoming distorted plane wave, and we write

w1 (q, x) ≡ w± (q, x) = w0 (q, x) + w±(q, x), (10.27)

where w+(w−) behaves like an outgoing (incoming) wave.

Remark 10.5.2 Of course, when dealing with specific physical problems,
we must establish the existence and structure of the distorted plane waves.
One way of achieving this is by means of the limiting absorption principle3

([136], [137], [367]), which is based on noticing that if A is a self-adjoint,
linear operator in a Hilbert space H and if λ = τ + iν ∈ C , with ν 6= 0,
then the equation (A − λI)u(λ, x) = f(x) has a solution u(·, λ) ∈ H for
each f ∈ H because λ /∈ σ(A). In the limiting absorption principle method
we look for solutions in the form u±(τ, x) = limν→0± u(λ, x). The difficulty
with this approach is centred on the interpretation of this limit, which can be

3See Section 5.7.4.
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understood as the limit only in appropriate subspaces of H. Physically, the
quantity u(λ, x), ν 6= 0 describes a steady-state wave in an energy-absorbing
medium with an absorption coefficient proportional to ν ([432]).

If we assume the existence of the w± and, moreover, that they form
two complete sets of generalised eigenfunctions for Ap, then we may define
the generalised integral transforms F±, using w± as kernels in (10.20). In
particular,

f̌±(q) = (F±f)(q) = lim
r→∞

∫
|x|≤r

w± (q, x)f(x)dx, (10.28)

with similar expressions for F ∗± and the spectral representation of Ap, pro-
vided these limits exist. We refer to F+ as an outgoing generalised Fourier
transform and F− as an incoming generalised Fourier transform.

On the basis of these various assumptions, we try to express vp in two
different manners, as

vp(t, x) = v±f (t, x) + v±(t, x).

In the above expressions, v±f are solutions of the unperturbed system to
which the solution of the perturbed system converges as t → ±∞, respec-
tively. The terms v± are terms such that limt→±∞ v± = 0, and that model
the transient effects of the perturbation on the system. On the other hand,
the terms v±f model the “permanent” effects of the perturbation. As stated
above it is of interest to specify the initial conditions h± of the unperturbed
system, such that Uf(t)h± = v±f (t, x). Furthermore, the comparison of h+

and h−, through the scattering operator S will provide information on the
effect of the perturbation.

The solution of the perturbed system vp(t, x) given in (10.23) has two
spectral representations, depending on whether w+ or w− is used in the
expansion theorem (10.28). Specifically, we have ([369])

vp(t, x) = lim
r→∞

∫
|q|≤r

w+(q, x) exp(−it |q|)ȟ+(q)dq (10.29)

and

vp(t, x) = lim
r→∞

∫
|q|≤r

w−(q, x) exp(−it |q|)ȟ−(q)dq, (10.30)

where

ȟ±(q) =

∫
R3

w±(q, x)h(x)dx.

Since w+(resp. w−) is an outgoing (resp. incoming) distorted plane wave,
we refer to (10.29) (resp. (10.30)) as the outgoing (resp. incoming) spectral
representations of vp.

We are now in a position to construct a useful form for the wave operators
W±. If we substitute the decomposition (10.27) for w− into (10.30), we
obtain

vp(t, x) = v−f (t, x) + v−(t, x), (10.31)
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where

v−f (t, x) = lim
r→∞

∫
|q|≤r

wf(q, x) exp(−it |q|)h̃−(q)dq, (10.32)

v−(t, x) = lim
r→∞

∫
|q|≤r

w−(q, x) exp(−it |q|)h̃−(q)dq. (10.33)

We now notice that since the kernel function in the integral (10.32) is wf ,
then it follows that v−f represents a free wave. Therefore we can write

v−f (t, x) = Uf(t)h
−
f (x) = exp(−itA1/2

f )h−f (x).

The above discussion motivates the relation

h−f (x) = v−f (0, x),

which leads to

h−f (x) = v−f (0, x) = (F ∗f h̃−)(x) = (F ∗f F−hp)(x). (10.34)

Now, (10.34) relates the initial data for a free problem and the initial data for
an associated perturbed problem. Therefore, we conclude that as t→ −∞,
we might expect that

h−f (x) = (F ∗f F−h)(x) = W−h(x),

that is, we might expect that

W− = F ∗f F−.

It turns out that this is indeed the case, provided we have local energy
decay of the form limt→−∞ v−(t, ·) = 0, which by (10.31) is equivalent to
limt→−∞ ‖vp(t, ·)− v−f (t, ·)‖ = 0. It now follows that∥∥vp(t, ·)− v−f (t, ·)

∥∥ =
∥∥∥exp(−itA1/2

p )hp − exp(−itA1/2
f )h−f

∥∥∥
=
∥∥∥{exp(itA

1/2
f ) exp(−itA1/2

p )− F ∗f F−}hp

∥∥∥ , (10.35)

so that by the definition of the wave operators given in (10.9) W− exists and
is given by

W− = F ∗f F−.

Working in similar fashion in terms of the decomposition vp = v+
f + v+, we

find that

W+ = F ∗f F+.

Once we have determined the existence and the form of the wave operators
W±, then a scattering operator, S, that links the initial conditions h±f can
be introduced as follows.

The above results indicate that

h±f = W±hp = F ∗f F±hp.
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This in turn implies

Ffh
±
f = ȟ±f = F±hp.

Hence,

ȟ+
f = F+hp = F+F

∗
− ȟ
−
f =: S ȟ−f ,

and we see that

S := F+ F
∗
− : ȟ−f 7→ ȟ+

f .

This operator and the unitarily equivalent operator

F ∗f SFf := F ∗f F+ F
∗
− Ff : h−f 7→ h+

f

are particularly useful when discussing the theoretical and practical details
of the asymptotic condition and the associated asymptotic equality results.

10.6 COMPLEX MEDIA ELECTROMAGNETICS

In this section we present the first steps in an attempt towards a Lax-Phillip -
like scattering theory, for general linear complex media in the time domain.
Such a theory involves complicated technical issues, not analogous to the
ones presented in detail for bounded domains in Chapter 7. It is intended
to give a sketch of the approach required and as such is only a descriptive
account of work in progress. For noncomplex linear media this problem is
studied in detail in [376]. For a particular class of constitutive relations for
complex media and under specific assumptions on the fields, this problem
has been treated in detail in [37].

In this section we consider electromagnetic waves propagating in a ho-
mogeneous, three-dimensional chiral medium. Then the Maxwell equations
assume, in terms of the six-vector notation u = (u1, u2)tr = (E,H)tr, the
following form:

u′ = MA u+ GA ? u+ JA, (10.36)

and the fields are assumed to be divergence free. We assume without loss
of generality that JA = 0 and that the material parameters are spatially
homogeneous and isotropic.

To apply the general theory sketched in the previous sections, it is conve-
nient to reduce the Maxwell equations (10.36) to an equation for the electric
field component resembling the wave equation. We need to define the fol-
lowing intermediate operators and matrices:

C =

(
curl 0

0 curl

)
, L =

(
0 −ε−1 ∆

µ−1∆ 0

)
, Υ =

(
0 ε−1

−µ−1 0

)
.

In what follows, for simplicity of presentation and without loss of generality,
we assume ε = µ = 1. We now take the curl of the Maxwell equation and
use the vector identity curlcurl v = grad div v − ∆ v , where ∆ denotes the
vector Laplacian, to obtain

(Cu)′ = Lu+ GA ? Cu. (10.37)
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Furthermore, we differentiate the Maxwell equation with respect to time to
obtain

u′′ = Υ(Cu)′ + G′
A
? u, (10.38)

where we have assumed appropriate regularity for GA and (without loss
of generality) that GA(0) = 0. After some algebraic manipulations, this
Maxwell system reduces to the following system of coupled vector Helmholtz
equations:

u′′ + Af = G′
A
? u+ K ? Cu, (10.39)

where

Af = diag(−∆,−∆), K = ΥGA.

In the absence of chirality and dispersion effects, the right-hand side of
(10.39) vanishes and this system reduces to the vector Helmholz equation,
whereas for complex media we obtain a perturbed vector Helmholtz equation.
This may be rewritten in abstract form as

u′′ + Apu = 0, (10.40)

where Apu = Afu − G′
A
? u − K ? Cu. We are thus in the familiar situation

described in Section 10.3, where now Af = Af and Ap = Ap.
Concerning the unperturbed problem (10.40), this is simply equivalent to

the Maxwell equation in R3. This system is well studied (see, e.g., [278],
[376]). All the various assumptions introduced in the abstract formulation
above hold for MA for instance, the existence of the group Uf for the unper-
turbed problem in R3 is given by the following result.

Theorem 10.6.1 The Maxwell operator MA is skew adjoint on H(div0,R3)×
H(div0,R3), and generates a group.

Furthermore, there is a one-to-one correspondence between the solutions
of the Helmholtz equation (10.40) and the Maxwell equations ([376]). This
correspondence has several useful implications. For instance, as Af is noth-
ing but multiple copies of the Laplacian, the spectral decomposition of Af

can be effected through a standard extension of the Fourier-Plancherel the-
ory in (L2(R3))3 × (L2(R3))3. Also, this correspondence allows us to obtain
some information concerning the propagation properties of the wave solu-
tions to the unperturbed Maxwell problem. These are summarised in the
next theorem.

Theorem 10.6.2 ([376]) Suppose that the initial data are in H(div0,R3)×
H(div0,R3).

(i) If u f,0 has support in |x−x0| ≥ ρ, then for |t| < ρ, Uf(t)u f,0 has support
in |x− x0| ≥ ρ− |t|.

(ii) If u f,0 has support in |x−x0| ≤ ρ, then for |t| < ρ, Uf(t)u f,0 has support
in |x− x0| ≥ |t| − ρ.
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(iii) If u f,0, v f,0 are two initial conditions such that Uf(t)u f,0 vanishes for
|x| < t, for all t > 0, and Uf(t)v f,0 vanishes for |x| < −t, for all t < 0,
then u f,0 and v f,0 are orthogonal.

(iv) Let v be an element of D(MA). If (MA − iλ)v vanishes for |x| > ρ for
some real but nonzero value of λ, then v vanishes for |x| > ρ.

The above propagation properties help in the construction of the outgoing
and incoming subspaces for the Maxwell system as

Dρ
+ = {v ∈ (L2(R3))3 × (L2(R3))3 : Ufv = 0 for |x| < ρ+ t, t > 0},

Dρ
− = {v ∈ (L2(R3))3 × (L2(R3))3 : Ufv = 0 for |x| < ρ− t, t < 0,

which can be shown to be orthogonal ([376]). Finally, the spectral theory
of the Maxwell operator guarantees that the spectrum is purely absolutely
continuous ([278]). The above facts allow us to validate for the unperturbed
Maxwell system all the assumptions that were introduced in the formal de-
velopment of the scattering theory above.

We now turn to the perturbed problem. Our first concern is to show
global existence for the complex Maxwell equations in the whole of R3. This

can be guaranteed if the Fourier transform with respect to time G̃A of GA

is antisymmetric. Then the Fourier transform of the Maxwell system yields

iqũ = MAG̃Aũ, and by the antisymmetry of G̃A the operator MA + G̃A, acting
on Fourier transformed fields, is skew adjoint. This provides information on

the spectrum of MA + G̃A, which guarantees that the solution ũ of iqũ =

MAG̃Aũ is such that its inverse Fourier transform with respect to time is well
defined over the whole of R× R3. This yields global solutions.

The scattering theory for the perturbed operator Ap = Ap is a more del-
icate issue, especially since the perturbation is no longer autonomous as in
the case described in Section 10.3 but rather nonautonomous. However, a
perturbation theory approach (of the general type presented in [368]) may
be employed in order to develop an appropriate scattering theory.

The key to this approach is the generalisation of the one-parameter family
of operators Up(t), to a two-parameter family, Up(t, s), called the propagator.
This family plays the rôle of the evolution operator in nonautonomous sys-
tems. Of course, the unperturbed system, being an autonomous system can
still be studied in terms of the evolution operator Uf(t). For the special case
in which the perturbation is due to a convolution-type integral operator, the
evolution operator can be given in terms of a one-parameter family of linear
operators called the resolvent operator.

Definition 10.6.3 Consider the problem

u′ = MAu+ GA ? u+ JA. (10.41)

A family of continuous linear operators {R(t)}t ≥ 0 is called a resolvent to
(10.41) if

(i) R(0) = I.



rsy-book-final December 7, 2011

228 CHAPTER 10

(ii) For all x ∈ H, the map t 7→ R(t)x is a continuous function R+ → H.

(iii) For all t ≥ s, U(s, t) is a continuous linear operator on D(MA), en-
dowed with the graph norm, and for all y ∈ D(MA) the map t 7→ R(t)y
belongs to C1(R+, D(MA)) ∩ C1(R+,H), and satisfies

(R(t)y)′ = MAR(t)y +

∫ t

0

GA(t− τ)R(τ)y dτ,

(R(t)y)′ = R(t)MAy +

∫ t

0

R(t− τ)GA(τ)y dτ

For properties of the resolvent, see [133]. For the resolvent, existence implies
uniqueness. The solution in C(R+, D(MA)) ∩ C1(R+,H) of the problem
(10.41) can be expressed in terms of the resolvent as

u(t) = R(t)u0 +

∫ t

0

R(t− s)JA(s) ds

as long as JA ∈ C(R+,H). It can be seen that for JA = 0, the resolvent
family plays the rôle of the propagator. In the special case where GA ≡ 0,
the resolvent becomes a C0 semigroup with infinitesimal generator A.

Theorem 10.6.4 Under the assumptions on GA of Theorem 7.4.12, with
[0, T ] replaced by R+, a resolvent family exists for (10.41).

This follows from the general results of [133] on perturbations of resolvent
families, in conjunction with Theorem 10.6.1.

Proposition 10.6.5 The propagator can be obtained through the solution
of a Volterra integral equation of the form

R(t) = TMA
(t) +

∫ t

0

TMA
(t− τ)

(∫ τ

0

GA(τ − r)R(r) dr

)
dτ, (10.42)

where TMA
is the semigroup generated by MA.

The proof follows easily by noting that the solution of (10.41) for JA = 0
can be expressed as u(t) = R(t)u0, while at the same time, employing a
fixed point scheme, it can be expressed in terms of TMA

as u(t) = TMA
(t)u0 +∫ t

0
TMA

(t− τ)(
∫ τ

0
GA(τ − r)u(r) dr) dτ .

The expression of the resolvent through the solution of the Volterra inte-
gral equation (10.42) is useful because it allows the perturbative construc-
tion of the resolvent. Assuming that GA is small, in an appropriate norm,
a Neumann series expansion for R(t) can be constructed. The assumption
of smallness of GA is physically a reasonable one, as in general, the chirality
effects are considered to be small. Assume that GA = ϑG]A, where ϑ is a small
parameter denoting the order of magnitude of GA in the relevant norm, the
resolvent can be expanded in the Neumann series

R(t) =

∞∑
j=0

ϑjR(j)(t),
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where the R(j) are given by the iterative procedure

R(0)(t) = TMA
(t),

R(j)(t) =

∫ t

0

TMA
(t− τ)

(∫ τ

0

G]
A
(τ − r)R(j−1)(r) dr

)
dτ, j = 1, 2, · · · .

The terms in the series are easy to calculate, thus yielding approximate
expressions for u(t, x).

The resolvent family R(t) coincides with U(t, 0), where U is the propaga-
tor. Clearly, by a simple modification, all the above results can be stated
for s ≥ 0. Furthermore, for the needs of scattering theory, we have to work
in R instead of R+; the above results may be extended to this setting under
proper technical modifications, thus allowing for s < 0. In this task we need
to consider the two-parameter family generalisation of the resolvent family
as introduced in Definition 10.6.3, R(t, s), s ≤ t.

The wave operators in the present case have to be modified, and under-
stood as the operators that connect the condition of the perturbed and the
unperturbed system, respectively, at time s. Note that since the system is
nonautonomous, they can be defined as the strong limits

W±s = lim
t±∞

Uf(s, t)Up(t, s),

where Uf(s, t) = Uf(s − t) is the propagator for the unperturbed system,
which can be expressed in terms of the Fourier-Plancherel theory. As stated
above, Up(t, s) may be expressed through a convergent Neumann series in-
volving Uf and the perturbation operator Ap − Af , which in turn may be
approximated using the Fourier-Plancherel theory. Therefore, in principle,
the wave operators, if they exist, can be approximated constructively. The
existence of the wave operators is related once more to the spectral theory
of the perturbed Maxwell operator and can be treated by the extension of
methods used in the perturbation theory of linear operators, similar to those
presented in [229]; see also [277], [362].

10.7 MISCELLANEA

10.7.1 Scattering problems with boundary conditions

Extension to the analysis of electromagnetic scattering problems involving
boundary conditions is in principle a reasonably straightforward but lengthy
matter; see [432] and [369] for more details. Specific applications for special
types of complex media can be found in [37]. Consideration of these problems
when, e.g., the chiral parameters are time dependent4 can be found in [368].

10.7.2 Perturbed stratified media

Another class of very interesting problems of scattering theory refers to strat-
ified media. Stratified media are media whose physical properties depend

4For a general introduction to time-dependent scattering theory, see [377].
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on a single coordinate, and they can produce guided waves propagating in
directions orthogonal to that of the stratification, in addition to the free
waves propagating in a homogeneous medium. The perturbation of such a
stratified medium may produce waves whose propagation properties are very
important for a number of applications. In the case of noncomplex media,
this problem has been studied in [423]; see also [32]. The extension of these
ideas to complex media is an interesting problem that to the best of our
knowledge has not been studied.

10.7.3 Inverse scattering problems

In this chapter we have introduced a few ideas concerning direct scattering
problems, i.e., determining the scattering operator S and the initial data
h± from knowledge of Uf and Up and up(0). Of at least equal importance
are inverse scattering problems, which consist in determining Up from the
knowledge of S and Uf . Inverse scattering problems are nonlinear and ill
posed.

Inverse problems are particularly useful in applications since S can be
determined from experimental data; therefore, the solution of the inverse
problem allows us to obtain information on the structure of the perturbed
system such as the composition of the medium. For example, one could
formulate an inverse scattering problem so as to reconstruct the susceptibility
kernel matrix, GA, from measurements of the incoming and outgoing waves.
To the best of our knowledge, this problem is open.
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Chapter Eleven

Nonlinear Problems

11.1 INTRODUCTION

Nonlinearity is inherent in nature and accounts for a number of interesting
phenomena. To keep within the context of electromagnetic media, non-
linearity appears in a number of cases in which the dispersion relations or
equivalently the coefficients of the constitutive relations change as a function
of the field amplitudes. This behaviour is very common in dielectrics, where
it has been experimentally verified, theoretically studied, and widely studied
mathematically. Furthermore, the interplay between dispersion and nonlin-
earity in dielectrics has led to the observation of solitary waves, which has
important applications to optical communications. Regarding chiral media,
although third-order nonlinear effects were predicted as early as 1967, non-
linear optical rotation experiments were not undertaken before 1993. Out of
a long list, the papers [313] and [314] can serve as representative of related
important experimental work.

The structure of this chapter is as follows. In Section 11.2 we introduce
a model for the study of nonlinear phenomena in complex media, and in
Section 11.3 we provide some rigorous results concerning the solvability and
well posedness of the nonlinear model using techniques from the theory of
nonlinear PDEs.

11.2 FORMULATION

We consider a nonlinear complex electromagnetic medium modelled by con-
stitutive relations of the form

d = Lu = A0u+ G0 ? u+ G0,n` ? N(u)u

(see Section 2.3.5, equation (2.24)). The spatiotemporal evolution of the
fields is given by the Maxwell equation

(A0u+ G0 ? u+ G0,n` ? N(u)u)′ = Mu+ j,

in a domain O, supplemented with appropriate boundary conditions, e.g.,
the perfect conductor boundary condition n× u1 = 0, on ∂O.

Assuming that the convolution kernels G0 and G0,n` are smooth enough
that we may differentiate (weakly) Lu with respect to time, we obtain

(Lu)′ = A0u
′ + G0 (0)u+ G0,n` (0) N(u)u+ G′0 ? u+ G′0,n` ?N (u)u.
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Assuming further, as usual without loss of generality, that G0 (0) = 0 and
defining BA := A−1

or
G0,n` (0) and GA,n` := A−1

or
G′

0,n`
, the Maxwell system

assumes in O × [0, T ] the explicit form

u′ + BAN(u)u+ GA,n` ? N(u)u = MAu+ GA ? u+ JA (11.1)

with initial condition

u(0, x) = u0(x), x ∈ O , (11.2)

and the perfect conductor boundary condition

n× u1 = 0, (t, x) ∈ [0, T ]× ∂O . (11.3)

Remark 11.2.1 An alternative problem would be to add Ohmic effects,
possibly nonlinear, to the above system. The inclusion of such a term does
not introduce any significant complications into the mathematical treatment
of the problem.

11.3 WELL POSEDNESS OF THE MODEL

In this section we study the well posedness of the nonlinear evolution equa-
tion (11.1). To make the presentation clearer we make a simplifying assump-
tion according to which the nonlinear convolution effects in (11.1) are weaker
than all the other effects, so that they may be neglected. This assumption
models the fact that dispersion and nonlinearity are both weak effects, so
that in general, GA,n` ?N(u)u� BA N(u)u. This assumption is a temporary
one and will soon be relaxed to take into account the effect of both terms
(see Section 11.3.4).

The above discussion motivates the following:

Assumption 11.3.1 G0,n` is weakly differentiable and the order of magni-
tude of G′0,n` is negligible compared to the order of magnitude of G0,n` (0).

Under this assumption, the governing equation (11.1) becomes

u′ + BAN(u)u = MAu+ GA ? u+ JA. (11.4)

As far as the linear dispersive effects modelled by the convolution kernels
GA are concerned, we keep the standing assumptions of Chapter 7. However,
we need some extra assumptions about the nonlinear terms.

We will adopt the following assumptions concerning the nonlinearity.

Assumption 11.3.2 The nonlinearity BAN(u)u is monotone, i.e., there ex-
ists a p ∈ N such that for all v ∈ R6,

N(v)v · v ≥ c |v|p, c > 0.

Assumption 11.3.3 There exists a constant α such that for all v ∈ R6,

|N(v)v| ≤ α (1 + |v|p−1).
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Assumption 11.3.4 The nonlinearity BAN(u)u satisfies

Dv

(
BAN(v)v

)
w · w ≥ 0 for all v,w ∈ R6,

where Dv denotes the derivative with respect to the vector v.

Remark 11.3.5 It is easily seen that for nonlinearities of the form given
by equations (2.24) and (2.25) assumed here, Assumptions 11.3.2 (for p =
q + 2) and 11.3.4 hold provided that the matrices N1, N2 out of which N is
composed, are positive definite.

Remark 11.3.6 The above assumptions on the nonlinearity are common in
the mathematical modelling and study of nonlinear electromagnetic media.
For instance, they are used by Wellander [426] in the study of nonlinear
dielectric materials. On the mathematical side, these assumptions allow
us to employ the powerful techniques of monotone operators to study the
well posedness of these models. The second assumption corresponds to the
convexity of the energy functional of the medium.

We now turn to the problem of existence. We will consider weak solutions,
which are defined in a similar manner to that of Chapter 7, with the im-
portant difference that because of the nonlinearity the test functions will no
longer belong to the same space as the solution, hence the corresponding in-
tegrals are to be understood as duality pairings between the involved spaces.
The strategy of the proof is to construct finite-dimensional approximations
of the system, show the existence of these approximations, and then use the
a priori bounds to show that a limit exists that is a solution of the original
(infinite-dimensional) problem.

11.3.1 A priori bounds

To prove the local existence of a weak solution of the initial boundary value
problem (11.2)-(11.4), we will apply the Faedo-Galerkin method. At the first
step of the method we need some a priori estimates.

We prove the following.

Proposition 11.3.7 Assume that the nonlinearity satisfies the monotonic-
ity Assumption 11.3.2, the kernel GA ∈ W 1,1([0, T ], (L∞(O))36), the ini-
tial condition u0 ∈ (Lq+2(O))3 × (Lq+2(O))3, and the forcing term JA ∈
L1([0, T ],X). Then any sufficiently regular solution u of (11.3)-(11.4) satis-
fies the following energy estimates:

sup
0≤t≤T

|| u(t) ||(Lq+2(O))6≤ C, sup
0≤t≤T

||u(t)||X ≤ C, (11.5)

where the constant C depends on O, q and T.

Proof. To obtain the energy estimates (11.5), we use a standard technique
introduced first for parabolic equations ([263]). Taking the L2(O) inner
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product of (11.4) with u, we obtain∫
O
u′ · u dx+

∫
O

(BAN(u)u) · u dx

=

∫
O

MAu · udx+

∫
O

(GA ? u) · udx+

∫
O

JA · u dx ,

or, equivalently,

1

2

d

dt
||u||2X +

∫
O

BAN(u)u dx ≤ C1(T ) sup
s∈[0,T ]

||u(s)||2X +
ε

2
||u||2X +

1

2ε
||JA||2X ,

(11.6)
where we have used the property that

∫
OMAu·u dx = 0 (recall the properties

of the matrix A0) and the Cauchy-Schwarz inequality to estimate
∫
O JA ·u dx,

for an arbitrary ε > 0. On the right-hand side we have estimates of the
convolution term GA ?u, and this explains the explicit dependence of C1 and
C2 on the length of the time interval [0, T ].

Using Assumption 11.3.2 (monotonicity of the nonlinearity N), the esti-
mate (11.6) yields

1

2

d

dt
||u||2X ≤ C1(T ) sup

s∈[0,T ]

||u(s)||2X +
1

2ε
||JA||2X, (11.7)

which, by Gronwall’s inequality, for any bounded T > 0 gives

sup
t∈[0,T ]

||u(t)||2X < C(T ) <∞ ,

for a constant C in general dependent on the time horizon T . Therefore,
this a priori bound guarantees that u ∈ L∞([0, T ];X).

We now return to estimate (11.6), reinserting the nonlinear term into the
left-hand side, which, combined with the monotonicity assumption for the
nonlinearity, yields

1

2

d

dt
||u||2X + Cλ||u||q+2

(Lq+2(O))6 ≤ C1(T ) sup
s∈[0,T ]

||u(s)||2X + ||JA||2X . (11.8)

Integrating with respect to time over the interval [0, T ] and using the previ-
ous estimate, we obtain∫ T

0

||u||q+2
(Lq+2(O))6(s) ds < C3(T ) <∞

for some constant C3; hence u ∈ Lq+2([0, T ]; (Lq+2(O))3 × (Lq+2(O))3). By
(11.7) and (11.8) we obtain the L∞([0, T ]; (Lq+2(O))3× (Lq+2(O))3) bound.
The assumption T <∞ is crucial in the above estimates. 2

Remark 11.3.8 The above result can be obtained under a weaker assump-

tion on the forcing term: JA ∈ L1([0, T ], (L1+ 1
p (O))3 × (L1+ 1

p (O))3).

We now obtain a priori bounds for the temporal derivative of the fields.
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Proposition 11.3.9 Under the assumptions of Proposition 11.3.7, and ad-
ditionally if Assumptions 11.3.3, 11.3.4 are true and JA ∈ W 1,1([0, T ];X),
the following a priori bounds hold:

||u′||L2([0, T ]; X) ≤ C1 , ||MAu||Lp′ ([0, T ]; (Lp
′
(O))6

≤ C2 ,

where p = q + 2, and 1
p′

+ 1
p

= 1. Furthermore,

sup
t∈[0,T ]

||u′(t)||X < C3, sup
t∈[0,T ]

||MAu(t)||
(Lp
′
(O))6

< C4.

Proof. We differentiate the equation (11.1) formally with respect to t to
obtain

u′′ +Du(BAN(u)u)u′ = MAu
′ + C + J′

A
, (11.9)

where C(t) = (GA ? u)′ = GA(0)u(t) + G′A ? u, the second equality being
true provided appropriate temporal regularity of the convolution kernels is
assumed.

We now take the inner product of (11.9) with u′ in X. Since
∫
OMAu

′ ·
u′ dx = 0, this gives∫
O
u′′ · u′ dx+

∫
O
Du(BAN(u)u)u′ · u′ dx =

∫
O
C(t) · u′ dx+

∫
O

J′
A
· u′ dx.

The term
∫
O C(t) · u

′ dx consists of convolution integrals which can be
estimated as∣∣∣∣∫

O
(G′A ? u)(t)u′(t) dx

∣∣∣∣ ≤ ε||u′(t)||X +
1

2ε
C(t) sup

s∈[0,T ]

||u(s)||X.

Therefore, for every ε > 0,

1

2

d

dt
||u′||2X +

∫
O

BADu(N(u)u)u′ · u′dx ≤ ε||u′||2X +
1

4ε
||J′A||2X + C,

where C is an appropriate constant. By Assumption 11.3.4, the second term
in the left-hand side of the above inequality is always non-negative. Hence,
by choosing ε as small as necessary and applying Gronwall’s inequality, we
obtain that u′ ∈ L2([0, T ];X). Then, integration of the above inequality
yields that u′ is bounded in L∞([0, T ];X).

We now use the above obtained bounds for u′ to obtain a bound for MAu.
By equation (11.4) we have

MAu = u′ + BAN(u)u− GA ? u− JA.

Since u ∈ Lp([0, T ], (Lp(O))3×(Lp(O))3) (by Proposition 11.3.7), we observe
by Assumption 11.3.3 that N(u)u ∈ Lp′([0, T ], (Lp

′
(O))3×(Lp

′
(O))3), where

1
p + 1

p′ = 1. Furthermore, since u′ ∈ L2([0, T ];X), we have that MAu ∈
Lp
′
([0, T ], (Lp

′
(O))3×(Lp

′
(O))3) by the standard Lebesgue embeddings (for

p > 2). By further applying the L∞([0, T ];X) bound for u′, we obtain the
required L∞([0, T ]; (Lp

′
(O))6) bound for MAu. In all the above estimates

the assumption that T <∞ is crucial. 2

Remark 11.3.10 Analogous a priori estimates can also be established under
the assumption of Remark 11.3.8. Clearly, in this case u′ will no longer be
in L2.
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11.3.2 Finite-dimensional approximation

To construct an approximation sequence to a (weak) solution to (11.4),
(11.2), (11.3), we first consider an orthonormal base {ek}∞k=1 of XM. Then
we define for any n > 1 the approximating sequence {un}, where un(t, x) =∑n
k=1 ϑk(t)ek(x) and the (scalar) coefficients ϑk(t) are to be determined.

This expansion simplifies the finite-dimensional projection of the nonlinear
terms. Since {ek} is also a basis of X, we can expand the initial datum and
source terms similarly. In what follows we identify un = (ϑ1, . . . , ϑn)tr ∈ Rn
with an element (also denoted by un) un ∈ Vn := span({ek}nk=1) ⊂ X.

The approximating problem satisfied by un is the following:

un(t) = φ(un(0))−
∫ t

0

BA N(un(s))un(s) ds−
∫ t

0

(GA ? un)(s) ds

+

∫ t

0

MAun(s) ds+

∫ t

0

(JA)n(s) ds ,

(11.10)

where the subscripts n denote the projections of the relevant quantities onto
the space spanned by the first n elements of {ek}, and in φ(un(0)) we collect
all contributions of the initial conditions. In accordance with the previous
comment on the nature of un, this integral equation can be treated either as
an equation in Vn ⊂ X or as an equation in Rn. In fact Vn ' Rn.

Remark 11.3.11 To arrive at (11.10), we need to take the weak form of
the equation using appropriate test functions (e.g., Φ(x, t) ∈ H1([0, T ],XM),
with Φ(x, T ) = 0). We also consider as initial condition un,0 the projection
of u0(x) on XM.

The finite-dimensional approximation (11.10) is a nonlinear integral equa-
tion of Volterra type, the well posedness of which is shown in the next
proposition.

Proposition 11.3.12 Assume that the nonlinearity has the following prop-
erties1:

(i) For all v ∈ R6 such that |v| ≤ M , there exist p ∈ N and α > 0 such2

that |BAN(v)v| ≤ αMp.

(ii) For all vi ∈ R6 such that |vi| ≤M , i = 1, 2, the nonlinearity is locally
Lipschitz, i.e., |BAN(v1)v1 − BAN(v2)v2| ≤ Λ(α,M)|v1 − v2|.

Then the finite-dimensional approximation (11.10) admits a unique solution
in C([0, T ],Rn), for all n ∈ N.

1These assumptions on the nonlinearity BAN(v)v are very reasonable and hold for, e.g.,
polynomial-type nonlinearities.

2The value of α may depend on M and by proper choice of M , α may be chosen as
small as possible.
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Proof. The proof uses a standard fixed point argument (see, e.g., [82]), which
we sketch briefly. We choose an interval [t0, t0 + θ] and consider (11.10) in
this interval. This yields the following nonlinear Volterra equation in Rn:

un(t) = φ(un(t0))−
∫ t

t0

BA N(un(s))un(s) ds−
∫ t

t0

(GA ? un)(s) ds

+

∫ t

t0

MAun(s) ds+

∫ t

t0

(JA)n(s) ds ,

(11.11)

where in φ(un(t0)) we collect all the “initial” value terms, i.e., the terms that
contain the functions un calculated at t0.

We now define the operator F : C([0, T ],Rn)→ C([0, T ],Rn) by

(Fs)(t) := φ(s(t0))−
∫ t

t0

BA N(s(s))s(s) ds−
∫ t

t0

(GA ? s)(s) ds

+

∫ t

t0

MAs(s) ds+

∫ t

t0

(JA)n(s) ds ,

or, in compact notation,

(Fs)(t) = φ(s(t0)) + F`(s)(t) + Fn`(s)(t) ,

where F` contains all the linear terms and Fn` contains all the nonlinear
terms of the operator F.

Then the nonlinear integral equation (11.11) is written in operator form
as

un = Fun ,

and the solution un being the fixed point of the operator F. We will employ
a fixed point theorem to show that the operator F has a fixed point.

Consider:

Sθ,ν,λ := {s ∈ C([t0, t0 +θ];Rn : |s(t)−φ| ≤ νλ, |s(t1)−s(t2)| ≤ λ |t1− t2|},
where φ := φ(un(t0)) and θ, ν, λ are to be determined later on. The set
Sθ,ν,λ is convex. Further, by the Arzelà-Ascoli theorem (see Theorem A.5.1
in Appendix A), it is compact.

We will show first that F leaves Sθ,ν,λ, invariant for a suitable choice of
θ, ν, λ.

As a first step we can show that if |s(t) − φ| ≤ νλ then |Fs(t) − φ| ≤ 1.
Indeed,

|(Fs)(t)− φ| ≤ |(F`s)(t) + (Fn`s)(t)| ≤ C(α,M, θ, ν, λ) ,

where C(α,M, θ, ν, λ) is a finite constant that can be made as small as
possible for small enough α, θ, ν and λ, as can be easily seen by the properties
of the nonlinearity. We choose the constants so that C(α, θ, ν, λ) < νλ.

We now address the question of whether (F(s)(t) is a Lipschitz continuous
function of t. To this end we calculate |(Fs)(t1)− (Fs)(t2)|, which consists of
integrals of linear and nonlinear terms, as follows:

|(Fs)(t1)− (Fs)(t2)| ≤ |(F`s)(t1)− (F`s)(t2)|+ |(Fn`s)(t1)− (Fn`s)(t2)|.
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The contribution of F` consists of terms of the form∫ t1

t0

KG(t1, s)u(s)ds−
∫ t2

t0

KG(t2, s)u(s)ds =

∫ t2

t0

K♦
G (s)ds+

∫ t2

t1

KG(t1, s)u(s)ds,

where the kernel KG(t, s) contains the convolution integral G′A ? u (i.e., the
above term consists of iterated integrals) and K♦

G (s) := KG(t1, s) − KG(t2, s).
The fact that KG is defined in terms of convolution integrals guarantees that
KG(t, s) is a Lipschitz function with Lipschitz constant LK with respect to
its first argument. Combining the above, we see that

|(F`s)(t1)− (F`s)(t2)| ≤ C1(LK,M) |t1 − t2|.
A similar argument in which we also use the fact that the nonlinearity is
locally Lipschitz shows that a Lipschitz estimate holds for the nonlinear
term:

|(Fn`s)(t1)− (Fn`s)(t2)| ≤ C2(LK, λ,M,α) |t1 − t2| .
Therefore,

|(Fs)(t1)− (Fs)(t2)| ≤ (C1(LK,M) + C2(LK, λ,M, α)) |t1 − t2| ,
so that as long as λ is chosen so that (C1(LK,M) + C2(LK, λ,M,α)) ≤
λ (which is always feasible as long as α is small enough), F leaves Sθ,ν,λ
invariant. Therefore, by the Schauder fixed point theorem (see Theorem
A.9.3 in Appendix A), the operator F has a fixed point that corresponds to
a local solution of the nonlinear integral equation in the interval [t0, t0 + θ].
Using a standard continuation argument (see, e.g., [82]), we extend this
solution in the whole interval [0, T ]. Uniqueness follows by the Lipschitz
assumption. 2

11.3.3 Solvability

We now pass to the limit as n→∞ in the finite-dimensional approximations
{un}. It is immediately evident that the finite-dimensional approximations
of the solution satisfy the a priori bounds obtained in the previous section
(see Proposition 11.3.7), and in particular with the right-hand side indepen-
dent of n.

We will need the following lemma.

Lemma 11.3.13 Let b ≥ 0. Then for any y1, y2 ∈ Rm, m ∈ N, there holds

(|y1|by1 − |y2|by2) · (y1 − y2) ≥ C(m, b) |y1 − y2|b+2.

Here “ · ” stands for the usual inner product in Rm.
For a proof, see [134], p. 13.

Now we are ready to prove our main result.

Theorem 11.3.14 Under the assumptions of Propositions 11.3.7 and 11.3.9
and further assuming that Gd ∈ W 1,∞([0, T ];L∞(O)36)3, problem (11.2)-
(11.4) has a unique weak solution,

u ∈ L∞([0, T ],XM) ∩ L∞([0, T ], (Lq+2(O))6) .

3This assumption is used for simplicity and can be relaxed.
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Proof. The basic argument of the proof goes as follows: let p = q + 2. By
the a priori estimates and the general weak compactness results (see, e.g.,
Section A.2 in Appendix A) it follows that:

(i) Since un is uniformly bounded in Lp([0, T ]; (Lp(O))3×(Lp(O))3), there
exists a subsequence {unk} and an element u such that

unk ⇀ u in Lp([0, T ], (Lp(O))3 × (Lp(O))3).

(ii) Since {vn} := {MAun} is uniformly bounded in Lp
′
([0, T ], (Lp

′
(O))3 ×

(Lp
′
(O))3) ' Lp

′
([0, T ], (Lp

′
(O))6), there exists a subsequence {vnm}

and an element υ such that

vnm ⇀ υ in Lp
′
([0, T ]; (Lp

′
(O))3 × (Lp

′
(O))3).

(iii) Since {zn} := {N(un)un} is uniformly bounded in Lp
′
([0, T ], (Lp

′
(O))3×

(Lp
′
(O))3), there exists a subsequence {znr} and an element z such

that

znr ⇀ z in Lp
′
([0, T ], (Lp

′
(O))3 × (Lp

′
(O))3).

As usual, for simplicity and to ease notation in what follows, all weakly
convergent subsequences are denoted by the same notation as their original
sequences.

By standard arguments the weak limit υ can be identified as υ = MAu.
Indeed, 〈MAun, φ〉 = −〈un,MAφ〉 for every test function φ, and using the
weak convergence properties of {un} leads us to 〈MAun, φ〉 → −〈u,MAφ〉 =
〈MAu, φ〉 for every test function φ; therefore this identification is valid.

Furthermore, by the properties of the convolution kernel GA, it holds that

G′
A
? un ⇀ G′

A
? u in Lp([0, T ], (Lp(O))3 × (Lp(O))3).

The troublesome term is the nonlinear one. Showing the convergence of
this term requires special attention to take into account the monotonicity
properties of the nonlinearity. We take the weak form of the equation, replace
the test function by un and integrate with respect to time to obtain∫ T

0

〈BAN(un)un, un〉dt =
1

2
(un(0), un(0))− 1

2
(un(T ), un(T ))

−
∫ T

0

〈G′
A
? un, un〉dt+

∫ T

0

〈(JA)n, un〉 dt ,
(11.12)

where we have used the properties of the Maxwell operator.
We assume further that the initial condition is such that un(0) → u(0)

in (Lp(O))3 × (Lp(O))3. Then, by the lower semicontinuity of the norm for
weak convergence, we have

lim inf
n
||un(T )||(Lp(O))6 ≥ ||u(T )||(Lp(O))6 .

Applying the above to (11.12) leads to

lim sup
n→∞

∫ T

0

〈BAN(un)un, un〉dt ≤
∫ T

0

〈JA, u〉dt+

1

2
(u(0), u(0))− 1

2
(u(T ), u(T ))−

∫ T

0

〈(G′A ? u)(t), u(t)〉 dt ,
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and the right-hand side is identified as
∫ T

0
〈z, u(t)〉dt. The last equality is

obtained from the observation that u′ = MAu − G′
A
? u − z + JA, which is

then multiplied by u and integrated over O.
Thus,

lim sup
n→∞

∫ T

0

〈BAN(un)un, un〉dt ≤
∫ T

0

〈z, u(t)〉 dt . (11.13)

We now show that the monotonicity and continuity of the nonlinearity allow
us to conclude from (11.13) that z = BAN(u)u. In the terminology of Showal-
ter (see [380], p. 38), we need to show that the nonlinear operator N(u)u is an
M -operator. According to Lemma 2.1 of [380] (see also Section A.12, in Ap-
pendix A) it suffices to show that BAN(u)u is hemicontinuous and monotone.
Monotonicity follows directly from Lemma 11.3.13. To prove hemicontinuity,
we need to prove that the real-valued function t 7→ BAN(u+ tv)(u+ tv)v is
continuous. This is immediately evident from the polynomial nature of the
nonlinearity and the fact that u, v are in Lp

′
(O). To show that the solution

is actually in L∞([0, T ],XM) ∩ L∞([0, T ], (Lq+2(O))6), we use the relevant a
priori bounds and the following observation, in the spirit of Lemma I.4.4.1 in
[181], is used: if vn ∈ L∞([0, T ];X), whereX is a reflexive Banach space, uni-
formly bounded in n, then4 there exists a subsequence vnk such that vnk ⇀ v
in Lr([0, T ];X) for every r ∈ (1,∞), where in addition v ∈ L∞([0, T ];X).
Working with this particular subsequence yields the required result.

Uniqueness follows by considering the evolution equation for the difference
between two solutions u♦ = u1−u2. Using the monotonicity of the nonlinear
operator and the a priori estimates above, we readily conclude that u♦ ≡ 0,
from which the uniqueness follows. 2

11.3.4 The effect of dispersion

We may now include the effect of dispersion in the constitutive relations
and reinsert the term GA,n` ? N(u)u into the Maxwell equations. The inclu-
sion of this term, which according to our model is a weak term, does not
change considerably the treatment of the evolution equations as long as the
convolution kernels are such that the monotonicity and the convexity of the
nonlinearity are conserved. For instance, consider the following assumption
of steep kernels for the nonlinear convolutions.

Assumption 11.3.15 We assume that the convolution kernel GA,n`, is steep
enough that there exists a constant C > 0 such that

(GA,n` ? N(u)u)(t) · u(t) ≥ C (BAN(u)u)(t) · u(t) ,

for every function u, t ∈ [0, T ].

Remark 11.3.16 This notion can be considered a generalisation in the
framework of nonlinear equations of the condition that the kernels are func-
tions of positive type (see the corresponding footnote on page 17), which is
consistent with energy considerations; for the linear case, see [227].

4This result follows from the weak compactness of bounded sets in reflexive spaces (see
Section A.2 in Appendix A).
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Under this assumption, the a priori estimates derived in Propositions
11.3.7, 11.3.9 can be easily obtained with minor modifications and then
the existence result can be established since the nonlinear operator with ac-
tion BAN(u)u + GA,n` ? N(u)u is monotone. However, this assumption can
be overly restrictive and may be relaxed (see [230]) using more advanced
techniques from the perturbation theory of monotone operators (see, e.g.,
[451]).

11.4 MISCELLANEA

11.4.1 On global existence

For global existence we need to impose extra conditions that will allow us
to obtain a priori bounds that hold globally in time. Such conditions can
be, e.g., BAN(y)y · y ≥ 0, for all y ∈ R6 and when −G0 (0) is a positive
definite matrix. These two conditions help us obtain some global bounds as
follows. Taking the inner product in X by u and using the monotonicity of
the nonlinear term and the Cauchy-Schwarz inequality on the convolution
term gives

d

dt
||u||2X − G0 (0) ||u||2X ≤ ε||u||2X +

1

2ε
||JA||2X , (11.14)

and by Gronwall’s inequality (using the positivity of −G0 (0)) we obtain

||u||2X(t) ≤ C(||u||2X(0)), ∀t ∈ [0,∞) .

Furthermore by the positivity of −G0 (0), (11.14) gives

d

dt
||u||2X ≤

1

2ε
||JA||2X .

Hence, repeating the arguments of Proposition 11.3.7, and using the above
inequality, u ∈ L∞([0,∞), Lq+2(O)).

11.4.2 Other approaches for solvability

In this chapter we have only touched the surface of the very important
problem of nonlinear complex media, using an approach based on the Faedo-
Galerkin approximation and monotonicity arguments. Other approaches are
possible that may yield well-posedness results under possibly weaker condi-
tions on the data of the problem. To the best of our knowledge, the problem
of nonlinear complex media has not been subjected to rigorous mathematical
analysis in its full generality, even though there exist a number of interesting
mathematical works for certain classes of nonlinear electromagnetic media.
We present a very partial list of approaches: An interesting approach to
nonlinear ferromagnetic media has been made by Ammari and Hamdache
[7], while Sjöberg has published interesting works ([386], [388]) on modelling
issues as well as on well-posedness results for nonlinear media. It is worth
mentioning both the abstract approach of Milani and Picard [320], which
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is based on operator theoretic considerations, and the approach of Visintin
[421], which relies on convex analysis techniques. The latter approach, which
is based on the assumption that the constitutive relations may be considered
the subdifferential of a convex functional, apart from its interesting math-
ematical aspects, provides some interesting physical intuition. Interpreting
this freely in terms of physics, one may state that Visintin’s approach is in-
spired by (generalised) energy considerations, which makes it very attractive
as an approach for handling such problems. Therefore, it is very interesting
to see how this approach may be generalised for the study of general complex
electromagnetic media. In closing this very brief tour through the literature
on the mathematical analysis of nonlinear problems in electromagnetics it
is worth mentioning the work of Wei and Yin [424] and [440] dealing with
singular nonlinear problems related to the Maxwell equations, which have a
parabolic limit, and the important work by Babin and Figotin [48]: assuming
the classical nonlinear optics representation for the nonlinear polarisation as
a power series, they show that - provided the excitation current is not too
large - the Maxwell equations are uniquely solvable for nonlinear inhomo-
geneous media; this solution is represented in a certain time interval as a
power series in terms of the solution to the corresponding linear Maxwell
equations.

11.4.3 Homogenisation of nonlinear media

Homogenisation theory can be extended, with necessary modifications, to
study composite nonlinear complex media. The basic compactness argu-
ments used for the existence of solutions can be extended to study the be-
haviour of families of solutions depending on a small parameter characteris-
ing the periodic structure of the media. Wellander [426] was one of the first
to address such issues for nonlinear dielectrics. Visintin’s convex analysis
approach [421] was also employed to obtain some very interesting homogeni-
sation results for specific class of media. However, the rigorous theory for
general nonlinear complex media still remains open. For certain results from
the engineering viewpoint see [297].

The strong property fluctuation theory (SPFT) is an alternative approach
to homogenisation wherein a Feynman diagram method is employed in an
iterative scheme to calculate successive refinements to a comparison medium.
Iterates are expressed in terms of statistical correlation functions of the spa-
tial distribution of the component phases. The zeroth-order SPFT coin-
cides with the Bruggeman homogenisation formalism [316]. The second-
order SPFT (known as BA-SPFT; or bilocally approximated SPFT) is most
commonly implemented for practical applications, although in principle, cor-
relation functions of arbitrary order may be considered. In [298] the SPFT
is formulated for cubically nonlinear isotropic chiral composite media. The
BA-SPFT and the third-order SPFT are developed from the corresponding
linear theories using Maclaurin expansions to accommodate nonlinear be-
haviour. By means of a numerical example, convergence is established at
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the level of BA-SPFT, with respect to both linear and nonlinear properties.
The phenomenon of nonlinearity enhancement is also explored.

11.4.4 Controllability of nonlinear media

The study of controllability may be extended to the case of nonlinear media.
The fixed point technique introduced in Chapter 8 can be modified accord-
ingly to prove the controllability of nonlinear media. The controllability of
nonlinear problems may require detailed and delicate estimates for the so-
lutions of either the forward or the backward problems and is beyond the
scope of the present work. Similar comments hold for boundary controllabil-
ity issues as well as for optimal control problems. For an excellent account
of control for nonlinear systems, see the monograph of Coron [112].

11.4.5 Soliton-type solutions

Nonlinear systems present interesting types of solutions in the form of trav-
elling waves that propagate with unchanged shape through the medium as
an effect of the interplay between dispersion and nonlinearity. This type of
behaviour is typical and is very well studied in integrable systems (see, e.g.,
[148]); however, solutions of similar type are often present in nonintegrable
systems and find important applications in various branches of science (see,
e.g., [200]). A formal approach to the evolution of nonlinear waves in chiral
media with weak dispersion and weak nonlinearity of the Kerr type in the
low chirality case is presented in [152], [413]. A set of modulation equations
is obtained for the evolution of the slowly varying field envelopes that is
in the form of four coupled nonlinear Schrödinger equations. This set of
equations is nonintegrable; however, with the use of reductive perturbation
theory, under certain conditions these equations may be reduced to an inte-
grable system, the Melnikov system. This system is known to possess vector
soliton solutions. Thus, by the above reduction, in certain (limiting) cases
the existence of vector solitons in chiral media may be shown; these appear
in pairs of dark and bright solitons . Depending on the boundary condi-
tions at infinity chosen, the dark component can be along the right-handed
component of the field and the bright component along the left-handed com-
ponent of the field, or vice versa. We refer to [191] for an account of the
reductive perturbation theory, to [243] for the properties of bright and dark
solitons, and to [310], [311], [312] for the properties of the Melnikov system.
Soliton-type solutions for the nonlinear wave equation in Kerr-type nonlin-
ear materials with uniaxial chirality have also been studied in [100], [55] and
[186].
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Chapter Twelve

Well Posedness

12.1 INTRODUCTION

The aim of this part of the book is to examine the effects of randomness on
the evolution and behaviour of electromagnetic fields in chiral media. Since
our basic interest is the development of a mathematically rigorous frame-
work for the study of this problem, our approach is to model random effects
through the introduction of a general class of random fields1 into the system
of equations that governs the evolution of the electromagnetic fields. We do
not take up the question of self-consistent mathematical modelling of the
random effects, starting from the starting point of first principles physical
theory. Such a task, although extremely interesting and important, is well
beyond the scope of this work. Instead, we assume that the randomness
follows some rather general and reasonable qualitative assumptions, e.g.,
Gaussian behaviour, etc., and use a well-founded mathematical model for
it, in terms of the Wiener process. This model is a very reasonable first ap-
proximation to the problem: because of arguments based on the central limit
theorem, the effect of independent and identically distributed perturbations,
under minimal assumptions on the existence of second moments, may be ap-
proximated as an infinite-dimensional generalisation of the Wiener process
(see Appendix B for the relevant definitions). Then we introduce this type
of random perturbation into our model as part of the externally imposed
sources or as part of the medium parameters, or both. The former models
the effect of uncertainty of the externally imposed sources in the medium,
e.g., experimental errors when designing source terms for the media. The
latter models more carefully the situation in which the chiral medium it-
self presents random properties, and in some sense reflects our uncertainty
about the actual properties of the medium. There are several reasons for
such effects, ranging from inability to experimentally specify the parameters
of the medium to the possible feedback of the various uncertainties and of
the fields themselves on the medium’s properties.

The introduction of these random perturbations has important effects on
the electromagnetic fields. The evolution equations for the fields now assume
the form of stochastic integrodifferential equations. It is very important and
interesting to study the effects of the randomness on well posedness and

1We use the term random field here in the standard fashion employed in the probability
literature, i.e., to denote a stochastic process with a multidimensional index set.



rsy-book-final December 7, 2011

248 CHAPTER 12

the properties of the solutions of the stochastic integrodifferential equations
for the field evolution. We shall see, for instance, that the introduction of
randomness into the model has important consequences on the temporal
regularity of the electromagnetic fields, as predicted by the solution of the
equations, and this may affect the spatial regularity as well.

The structure of this chapter is as follows. In Section 12.2 we present
a model for the Maxwell equations for complex random media in terms of
stochastic integrodifferential equations. In Section 12.3 we present the ap-
propriate functional framework that allows us to treat the problem as an
abstract stochastic integrodifferential equation in Hilbert space, and, ex-
ploiting this framework in Section 12.4, we provide some solvability and
well-posedness results for this model, using a semigroup-based approach.
In Section 12.5 we propose alternative approaches to solvability and well
posedness for the stochastic integrodifferential equations that arise in the
modelling of random complex electromagnetic media, using either the finite-
dimensional approximation (Faedo-Galerkin method) or the Wiener chaos
approach.

12.2 MAXWELL EQUATIONS FOR RANDOM MEDIA

The starting point for the analysis of this chapter is the Maxwell equations
for random chiral media in a bounded domain O, as expressed in Section
2.4.11 and in particular equation (2.56). We refer to that section for details
on the model and its assumptions. Here we merely state again the stochas-
tic integrodifferential equation for convenience. The integral form of the
equation is

u(t) = u(0) +

∫ t

0

(
MAu(s) +

∫ s

0

GA(s− r)u(r) dr + JA(s)

)
ds

+

∫ t

0

QA(s, ω) dW (s),

(12.1)

where the first integral is considered a Riemann-Stieltjes integral, whereas
the second integral is considered an Itō integral over the infinite-dimensional
Wiener process W (t). In the above equation QA is an operator valued
stochastic process that models the effect of spatial correlations of the fluctu-
ating terms. In the next section we provide the details of the exact conditions
this operator process has to satisfy. We just note here that QA may be either
independent of or dependent2 on the electromagnetic field. The first case,
especially if GA is not a random process, is called the additive noise case; the
second case is called the multiplicative noise case. The boundary conditions
are considered to be those of the perfect conductor. To simplify the notation,
occasionally we write the integral equation (12.1) in differential form as

du(t) = (MAu(t) + (GA ? u)(t) + JA) dt+ QA dW (t) , (12.2)

2Linearly or not.
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where we use the notation of Chapter 7. In principle, the matrices Aor, GA

may be random matrices, i.e., functionals of the Wiener process. To simplify
the exposition of our results, we assume here that they are deterministic
matrices and that the stochastic effects are introduced into the system only
through the operator term QA dW (t). This assumption is relaxed in Chapter
14, where we consider the medium to be random and discuss the problem of
homogenisation.

The evolution equation for the electromagnetic fields is in the form of a
stochastic integrodifferential equation of Volterra type. While the literature
on deterministic integrodifferential equations is extensive, relatively little
work has been done on stochastic integrodifferential equations of type (12.1)
(see, e.g., [167], [221], [231], [232], [233]). These studies concern only adapted
processes. We follow the approach of [120], [168] and [199] to stochastic dif-
ferential equations in Hilbert space concerning predictable processes, which
we modify accordingly for the case of stochastic integrodifferential equations.

Similarly, as for the deterministic case, equation (12.2) will be considered
either without reference to the divergence or with divergence-free conditions
on the electromagnetic field. The properties of the electromagnetic field with
respect to the divergence are included in the choice of functional setting for
the problem.

12.3 FUNCTIONAL SETTING

We will assume that the noise terms take values on a Hilbert space U , and
that the stochastic process {W (t)}t ∈ [0, T ] is a Q−Wiener process on a proba-
bility space (Ω,F , P ), where Q is a trace class operator from U into another
Hilbert space H, the state space of the system. We consider as F = {Ft}t
the filtration generated by the Wiener process. We will further need the
space L0

2 = L2(Q1/2(U),H), where by L2(X,Y ) we denote the space of all
Hilbert Schmidt operators for the Hilbert space X to the Hilbert space Y .
For definitions of the above concepts, see Appendix B.

As in the deterministic case, we consider a pair of Hilbert spaces (H,HM)
to be either (X,XM) or (X,XM), where (see Section 3.9.1):

X := (L2(O))3,

X := X× X,

XM := H0(curl,O)×H(curl,O),

X1 := H0(curl,O) ∩H(div0,O), X2 := H(curl,O) ∩H0(div0,O),

XM := X1 × X2 .

As in the deterministic case, we use the pair of function spaces (X,XM)
when considering the evolution equation without special reference to the
divergence properties of the electromagnetic field, whereas the pair (X,XM)
is used when we require divergence-free properties for the electromagnetic
field.
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The important difference in the stochastic case is that the electromagnetic
field is no longer considered a function from [0, T ]→ H, as in the determinis-
tic case, but rather a stochastic process on the probability space (Ω,F , P ),
taking values on H. We will thus employ the space of all continuous (in
mean square) and square integrable predictable processes:

C([0, T ];H) = {Y ∈ C([0, T ];L2(Ω,H) : Y is predictable}.

This space equipped with the norm

‖Y ‖C = sup
t∈[0,T ]

(
E
[
‖Yt‖2H

])1/2
is a Banach space (see Section 3.2.5). Furthermore, we will use the notation
Lp([0, T ];L2(Ω,F, P ;H)) for the random fields u : [0, T ] → H which consti-
tute a square integrable (with respect to the probability measure P ) stochas-

tic process, adapted to the filtration F = {Ft} such that
∫ T

0
E[||u(t)||pH]dt <

∞. For 1 ≤ p <∞ this is a Banach space with the obvious norm. The case
p = ∞ requires the usual modification of replacing the integral over [0, T ]
by the essential supremum.

Remark 12.3.1 The use of predictable processes in the definition of solu-
tions of stochastic Volterra equations is in line with other works (see, e.g.,
the monograph [225]). An alternative approach would be to work in terms
of adapted processes ([120]). The main arguments of this chapter remain
valid under minor modifications since an adapted process that is stochas-
tically continuous on an interval [0, T ] has a predictable version (see, e.g.,
Proposition 3.6 of [120]; see also Section B.2 in Appendix B).

Let the operator MA be defined from HM := D(MA) to H, where H and
HM are two Hilbert spaces (in the present context the pair (H,HM) will be
used as a proxy either for the pair (X,XM) or for (X,XM), where the second
constituent of the pairs is considered to be endowed with the graph norm).

The following assumption on the operator MA is crucial for our approach:

Assumption 12.3.2 The operator MA : HM → H is the generator of a uni-
tary group {TMA

(t)}t∈R on a Hilbert space H.

Remark 12.3.3 As in the deterministic case, we will choose the functional
environment for the problem so as to guarantee that the generalised Maxwell
operator MA satisfies this assumption.

12.4 WELL POSEDNESS

We now consider the problem of well posedness of the mathematical model
governing the evolution of electromagnetic fields in complex media under the
effects of noise in the time domain, as expressed by the stochastic integro-
differential equation (12.2).
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As in the deterministic case, several alternative approaches to treating
the system (12.2) can be used. For the reasons presented in Chapter 7, our
primary approach to this problem is to adopt a semigroup formulation of the
problem, based on the semigroup generated by the Maxwell operator, and
to treat the convolution terms, which model the chirality and the dispersive
effects, as perturbations of this semigroup. The results of this section are
based on [285].

12.4.1 Different notions of solutions

We now consider the abstract stochastic integrodifferential equation (12.2)
on a Hilbert space H.

A variety of different types of solutions for (12.2) of varying spatial reg-
ularity may be defined. The temporal regularity is not expected to be as
good as the spatial regularity because of the pathological properties of the
Wiener process with respect to temporal regularity that are inherited by the
solution of (12.2). We proceed with the relevant definitions.

Definition 12.4.1 A stochastic process u ∈ C([0, T ];H) is called a mild
solution of (12.2) if:

u(t) = TMA
(t)u0 +

∫ t

0

TMA
(t− s)

∫ s

0

GA(s− r)u(r) dr ds+

+

∫ t

0

TMA
(t− s)JA(s) ds+

∫ t

0

TMA
(t− s)QA(u(s)) dW (s),

for every t ∈ [0, T ], P -a.s.

Remark 12.4.2 Note that we include the condition of continuity of the
solution in the definition of a mild solution. An alternative would be to
require that u ∈ L2([0, T ],H) and then show using, e.g., the Lévy continuity
criterion (see, e.g., [120]) that this process admits a continuous version.

Definition 12.4.3 An H-valued predictable process {u(t)}t ∈ [0, T ], is called
a weak solution of (12.2) if:

(i)
∫ T

0
‖u(s)‖H ds <∞, P-a.s.

(ii) For every φ ∈ D(M∗A) = D(MA) it holds that

(u(t), φ) = (u0, φ) +

∫ t

0

[−(u(s),MAφ) + (JA(s), φ)] ds

+

∫ t

0

(

∫ s

0

GA(s− r)u(r)dr, φ)ds+

∫ t

0

(QA(u(s))dW (s), φ) ,

where (·, ·) denotes the inner product of the involved spaces, for every
t ∈ [0, T ], P -a.s.

Remark 12.4.4 In similar manner as for deterministic equations, the no-
tions of mild and weak solutions for stochastic equations coincide.
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Definition 12.4.5 An H-valued predictable process {u(t)}t ∈ [0, T ] is called
a strong solution of (12.2) if:

(i) u(t) ∈ D(MA), P -a.s., a.e. on [0, T ].

(ii)
∫ T

0
[ ‖MAu(s)‖H + ‖

∫ s
0

GA(s− r)u(r) dr‖H ] ds <∞, P -a.s.

(iii) The equality

u(t) =u0 +

∫ t

0

MAu(s) ds +

∫ t

0

JA(s) ds

+

∫ t

0

∫ s

0

GA(s− r)u(r)dr ds +

∫ t

0

QA(u(s)) dW (s),

holds for all t ∈ [0, T ], P -a.s.

Remark 12.4.6 It is important to emphasise that the notions of weak and
strong solutions employed here are considered in the sense used by the PDE
community rather than in the sense used by the probabilist community. In
particular, we consider the Wiener process W (t) to be given and not to
be determined, as is the case in the notion of weak solution used by the
probabilist community (see, e.g., [224] for stochastic ODEs and [159] for
stochastic PDEs).

We have the following result:

Theorem 12.4.7 Assume that u0 ∈ L2(Ω,F0,H), and that

(i) JA ∈ L1([0, T ];L2(Ω,F, P ;H)).

(ii) The operator QA(u) = QA,1 + QA,2u : H→ L0
2 satisfies the bound

||QA(u)||L0
2
≤ C0 + C1||u||H for all u ∈ H.

(iii) GA ∈ L2([0, T ]; (L∞(O))36).

Then (12.2) is weakly well posed in H.

Proof. Let b > 0. Consider the Banach space C([0, T ];H), endowed with the

norm ‖u‖b := supt∈[0,T ] e
−bt (E [‖u(t)‖2H

])1/2
, which is clearly equivalent to

the usual norm of C([0, T ];H) for T <∞. Define the map F : C([0, T ];H)→
C([0, T ];H) as follows:

F(u(t)) = TMA
(t)u0 + F1(u(t)) + F2(u(t)) + F3(u(t)), (12.3)

where

F1(u(t)) :=

∫ t

0

TMA
(t− s)

∫ s

0

GA(s− r)u(r) dr ds,

F2(u(t)) :=

∫ t

0

TMA
(t− s)JA(s) ds,

F3(u(t)) :=

∫ t

0

TMA
(t− s)QA(u(s)) dW (s).
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Note that F1, F2 are expressed as Riemann-Stieltjes integrals while F3 is
expressed as an Itō integral. We have already encountered F1, F2 in the
treatment of the deterministic problem (see Chapter 7), so we focus our
attention on F3, which is a stochastic convolution.

A straightforward application of Itō’s isometry (see Section B.5 in Ap-
pendix B), in conjunction with the properties of QA, shows that F3 leaves
C([0, T ];H) invariant. It remains to show that F3 is a contraction in C([0, T ];H).

To this end, take any pair of processes u(1), u(2) ∈ C([0, T ];H) and set

u♦(t) := u(1)(t)− u(2)(t),

Q♦
A(t) := QA(u(1)(t))− QA(u(2)(t)) = QA,1u

♦(t).

Following the proof of Theorem 1 in [199], we first use the Itō isometry (see
Section B.5 in Appendix B) to obtain

E[‖
∫ t

0

TMA
(t− s)Q♦

A(s)dW (s)‖2H] = E[

∫ t

0

‖TMA
(t− s)Q♦

A(s)‖2L0
2
ds],

and then, using that in conjunction with the Cauchy-Schwarz inequality, we
estimate

e−2btE[‖
∫ t

0

TMA
(t− s)Q♦

A(s)dW (s)‖2H] ≤
∫ t

0

e−2btE[‖Q♦
A(s)‖2L0

2
]ds

≤ C1{ sup
s∈[0,t]

e−2bsE[‖u♦(s)‖2H]}
(∫ t

0

e−2b(t−s)ds

)
.

A straightforward calculation shows that

‖F3(u♦(t))‖b ≤ C1(2b)−1/2‖u♦‖b. (12.4)

The components of F, i.e., F1,F2, present no major problems. For instance,
to show that F1 is a contraction, we estimate

e−2btE
[
‖
∫ t

0

TMA
(t− s)

∫ s

0

GA(s− r)u♦(r)drds‖2H
]

≤ Te−2btE
[∫ t

0

‖
∫ s

0

GA(s− r)u♦(r)dr‖2Hds
]

≤ T 2 e−2btE

[
sup
s∈[0,t]

‖
∫ s

0

GA(s− r)u♦(r)dr‖2H

]

≤ T 3e−2btE

[
sup
s∈[0,t]

∫ s

0

‖GA(s− r)u♦(r)‖2H dr

]

≤ T 3e−2btE
[∫ t

0

‖GA(t− r)u♦(r)‖2H dr

]
≤ C3 T

3

(∫ t

0

e−2b(t−s)ds

)
sup
r∈[0,t]

e−2brE
[
‖u♦(r)‖2H

]
,

where C3 is a bound for GA, whereby

‖F1(u♦(t))‖b ≤ T 3/2C3 (2b)
−1/2 ‖u♦‖b. (12.5)
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Assuming for simplicity that JA is independent of u, and using the estimates
(12.4), (12.5), we obtain

‖F(u♦(t))‖b ≤ (2b)
−1/2

(T 3/2C3 + C1)‖u♦‖b.
Hence, for b > 0 sufficiently large, the map F is a contraction on C([0, T ];H),
and thus has a unique fixed point in C([0, T ];H). Therefore, (12.2) has a
unique mild solution that is b-exponentially bounded. By a straightforward
modification of Theorem 6.5 in [120], this mild solution is also a weak so-
lution. By the form of the solution we can check that (12.2) is weakly well
posed. 2

Under more restrictive conditions on the data of the problem we may
prove the existence of strong solutions.

Theorem 12.4.8 Assume that

(i) u0 ∈ D(MA), JA is adapted in F with JA(t) ∈ D(MA) and QA(y)Q1/2h ∈
D(MA) P-a.s. for all t ∈ [0, T ], y ∈ H, h ∈ U .

(ii) ‖MAJA‖H ≤ g1(t), g1 ∈ L1([0, T ];R).

(iii) ‖MAQA(y)‖L0
2
≤ g2(t)‖y‖H, g2 ∈ L2([0, T ];R), y ∈ H.

(iv) ∃ C > 0: ||GA(t)y||HM
< C ||y||HM

∀ y ∈ H a.e. in [0, T ].

Then (12.2) is strongly well posed in H.

Proof. For b > 0, consider the Banach space L1([0, T ]; L2(Ω,F, P ;HM)),

endowed with the norm ‖u‖b =
∫ T

0
e−bt

(
E
[
‖u(t)‖2HM

])1/2
dt, which, for T <

∞, is clearly equivalent to the usual norm of L1([0, T ]; L2(Ω;HM)). Define
the map F : L1([0, T ]; L2(Ω,F, P ;HM)) → L1([0, T ]; L2(Ω,F, P ;HM)) as in
(12.3). By a combination of Theorem 2 and Proposition 2.3 of [199] (or
Theorem 2.1 in [168]), one can show that F has a unique fixed point in the
space (L1([0, T ]; L2(Ω,F, P ;HM)), ‖ ·‖b) that satisfies properties (i) and (ii)
of Definition 12.4.5. Following [199], p. 26, by the Fubini theorem, and the
fact that in D(MA) = HM, it holds3 that MATMA

(r)u = (TMA
(r)u)′, we can

see that, upon defining uG(t) :=
∫ r

0
GA(t− `)u(`)d`,∫ t

0

∫ s

0

MATMA
(s− r)uG(r)drds =

∫ t

0

∫ t

r

MATMA
(s− r)uG(r)dsdr =∫ t

0

TMA
(t− r)uG(r)dr −

∫ t

0

uG(r)dr =: I1

and that∫ t

0

∫ s

0

MATMA
(s− r)JA(r)drds =

∫ t

0

TMA
(t− r)JA(r)dr −

∫ t

0

JA(r)dr =: I2.

3See Theorem A.8.12 in Appendix A. Recall also that TMA
(t)MAu = MATMA

(t) for all
u ∈ D(MA).
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Let QA(r) := QA(u(r)). By the stochastic Fubini theorem, we also have∫ t

0

∫ s

0

MATMA
(s− r)QA(r)dW (r)ds=

∫ t

0

∫ t

r

MATMA
(s− r)QA(r)dsdW (r)

=

∫ t

0

TMA
(t− r)QA(r) dW (r)−

∫ t

0

QA(r) dW (r) =: I3.

Hence, applying MA to the fixed point equation u = Fu and using the closed-
ness of MA and the above results, we have∫ t

0

MAu(s) ds =

∫ t

0

MATMA
(s)u0 ds+

∫ t

0

∫ s

0

MATMA
(s− r)uG(r)drds

+

∫ t

0

∫ s

0

MATMA
(s− r)JA(r) dr ds+

∫ t

0

∫ s

0

MATMA
(s− r)QA(r) dW (r) ds

= TMA
(t)u0 − u0 + I1 + I2 + I3

= u(t)− u0 −
∫ t

0

uG(r) dr −
∫ t

0

JA(r) dr −
∫ t

0

QA(r) dW (r).

Therefore, the unique fixed point satisfies property (iii) of Definition 12.4.5.
Thus, we conclude that (12.2) is strongly well posed. 2

Remark 12.4.9 (Finite energy solutions) As in the deterministic case,
depending on the choice of the Hilbert space H, one may obtain a variety
of different solutions for the abstract system (12.2). The choice (H,HM) =
(X,XM) corresponds to finite energy solutions, without any special reference
to the divergence-free property. Working in similar manner as in the deter-
ministic case, one sees that the abstract setting covers this case, providing
mild, weak and strong well posedness of the model, depending on the regu-
larity of the data of the problem.

Remark 12.4.10 (Divergence-free solutions) The choice (H,HM) =
(X,XM) corresponds to finite-energy, divergence-free solutions. Working in
similar manner as in the deterministic case, one sees that the abstract setting
covers this case, providing mild, weak and strong well posedness of the model,
depending on the regularity of the data of the problem. Other choices can
be found (e.g., in [286]).

12.5 OTHER POSSIBLE APPROACHES TO SOLVABILITY

12.5.1 Evolution families approach

A possible alternative approach to the solvability of the stochastic problem
in the case where GA is nonrandom is to use the theory of evolution families
instead of the theory of semigroups (see Section 7.5.1). The solution of
system (12.2) can be expressed as

u(t) = R(t)u0 +

∫ t

0

R(t− s)JA(s) ds+

∫ t

0

R(t− s) dW (s) , (12.6)
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where we now use the stochastic convolution with respect to the evolution
family {R(t)}, generated by the system

v′ = MA v + GA ? v,

instead of the convolution with respect to the group {TMA
(t)}, generated by

the Maxwell operator. By using fixed point arguments, similar to the one
employed in the previous section, one may show the existence of mild and
strong solutions of (12.2) satisfying the representation formula (12.6). Of
course, the usual drawbacks of using the evolution family {R(t)} instead of
the well-studied Maxwell group {TMA

(t)} apply here as well. Furthermore,
in the case where GA is a random kernel, this representation is rather com-
plicated, since then {R(t)} is a random evolution family. This makes the
representation formula (12.6) more difficult to handle, and some care should
be taken when applied in conjunction with a fixed point scheme to show
well-posedness results.

12.5.2 The Faedo-Galerkin approach

A different approach is to use finite-dimensional approximations of the so-
lution of the stochastic integrodifferential equation (12.2) similar to the
Faedo-Galerkin approach used for the deterministic problem. The idea of
the method is similar to that followed in Section 7.5.2. Using a basis {en} of
H in HM, where as before, (H,HM) is used as a proxy for (X,XM) or (X,XM)
(in the notation of Section 7.3), we project the stochastic integrodifferential
equation (12.2) onto Vm := span(e1, · · · , em). The projection is now a sys-
tem of stochastic integrodiferential equations on the finite-dimensional space
Rm. Using standard theorems for finite-dimensional stochastic integrodiffer-
ential equations, one can show that the finite-dimensional approximation is
well posed for any finite m. We must now pass to the limit as m→∞. This
requires the existence of a priori estimates on the sequence um of finite-
dimensional appoximations to (12.2) that are independent of m. To obtain
such a priori bounds, one must use properly Itō’s lemma and Gronwall’s
inequality. The existence proof then follows from weak convergence argu-
ments, properly modified so that they are applicable to the function spaces
needed for the study of the stochastic case. We briefly sketch the main dif-
ferences as compared with the deterministic case, keeping the notation of
Section 7.5.2.

The finite-dimensional approximation is performed with the aid of the
sequence of functions um =

∑m
i=1 u

(i) ei, where u(i) are scalar functions.
The projection of (12.2) onto Vm results in a system of stochastic integral
equations in Rm of the general form

Aum +K ? um −
∫ t

0

M um(s) ds =

∫ t

0

jm(s) ds+

∫ t

0

B(s, um(s)) dw(s) ,

where now w(s) is a finite-dimensional approximation of the infinite-dimen-
sional Wiener process W (s) (of dimension m) and A, K, M , B are the finite-
dimensional projections of Aor, Gd, M, QA, respectively. The solvability of the
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above equation may be obtained through the use of a Picard-type iteration
scheme (see, e.g., [301]).

We now proceed to the necessary a priori bounds. To this end, we
first apply the finite-dimensional version of Itō’s lemma to the quantity∑m
i=1(u(i))2, which, if {ei} are chosen to be orthonormal - this is always

feasible using the Gram-Schmidt procedure - coincides with the quantity
||um||X. After straightforward algebra, we arive at an equality like (7.7),
with an extra term expressing the Itō drift4. The Itō drift term results
in a quadratic term in Um; therefore, the equality is exactly of the form
(7.7) with a modified Θ, which now contains terms related to the charac-
teristics of the noise. Application of the Gronwall inequality yields that
um(x, t;ω) is bounded in L∞([0, T ];X) a.s. The bound is independent of
m, and assuming that j ∈ L1([0, T ]; L2(Ω,F, P ;H)), we readily obtain that
supt∈[0,T ] E[ ||um||2X] < C, where C depends only on T but not on m. We
further need a similar bound for the sequence MAum. The corresponding re-
sult in the deterministic case was obtained through bounds on the sequence
(um)′. However, here the stochastic term introduces problems related to the
temporal differentiability of the solution; therefore, an alternative approach
must be taken. To get around this difficulty we have to assume higher spatial
regularity of JA and the initial data.

12.5.3 The Wiener chaos approach

An interesting alternative approach is the Wiener chaos approach. This
important approach has been proposed recently in a number of interesting
publications by Rozovskii, Lototsky and co-workers ([292], [293], [294]) for
the study of parabolic stochastic PDEs and has allowed an increased under-
standing of the structure and the properties of solutions of SPDEs. This
approach has been extended to hyperbolic equations in [220] as well as to
backward stochastic evolution equations in [439]. The numerical treatment
of SPDEs using the Wiener chaos approach is an active area of research.

In this section, we sketch briefly how the Wiener chaos expansion can be
used as a theoretical tool to construct the solutions of evolution problems,
in terms of stochastic integrodifferential systems of the form (12.2).

The theoretical basis of the Wiener chaos expansion is the following funda-
mental result concerning square integrable real-valued stochastic processes,
adapted with respect to the filtration generated by the Wiener process.

Let V be a separable Hilbert space with inner product
(
·, ·
)
V

and or-

thonormal basis {en}n ∈ N , and W̌ a cylindrical Brownian motion defined
on a complete, filtered probability space (Ω,F , P, {Ft}0≤t≤T ) (see Section
B.4 in Appendix B). Recall that W̌ can be considered as a collection of
real-valued and independent Brownian motions, in the sense that it can be
represented in terms of standard, real-valued and independent Wiener pro-
cesses {wn(t)}, n ∈ N, t ∈ [0, T ], as W̌ (t, ω)(v) =

∑
n∈N

(
v, en

)
V
wn(t) ,

4See Theorem B.6.1 in Appendix B.
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(t, v) ∈ [0, T ]× V .
For each t ∈ [0, T ] , we shall denote by L2(Ω,Ft, P ) the Hilbert space

consisting of all Ft−measurable and P−square integrable real-valued ran-
dom variables. Further, let H`(x), ` ∈ N, x ∈ R be the Hermite polynomial5

of order `, and M = {mi(·)}i∈N be an orthonormal basis of L2([0, T ]) such
that mi(·) ∈ L∞([0, T ]), i ∈ N. A possible choice for M is the Fourier
basis. Let α be a multi-index, and α! : =

∏
i,n α

n
i ! . The Hilbert space

L2(W) := L2(Ω,FT , P ) , called the Wiener chaos space, can be constructed
using the (orthonormal) Cameron-Martin basis [85]:

ξα :=
1√
α!

∏
(i,n)∈N2

Hαni
(ξin) , where ξin :=

∫ T

0

mi(t)dwn(t) ,

and the multi-index α is an element of

J :=
{(
αni
)
(i,n)∈N2 : αni ∈ N0 , |α| :=

∑
i,n

αni <∞
}
,

which is countable and - for each α ∈ J - only finitely many αni are nonzero.
Therefore, every element v of L2(W) can be expressed as

v =
∑
α∈J

vαξα , where vα := E[vξα] , (12.7)

which is called the Wiener chaos expansion of v. Using the Wiener chaos
expansion of (12.7), we may construct measurable functions taking values
in some other Hilbert space H, using formal Fourier series expansions of the
form u =

∑
α∈J uα ξα. Here the elements uα ∈ H can be thought of as

“generalised Fourier coefficients” for the measurable function u : Ω → H .
Such functions are generalisations of the concept of random variable and will
be called “random elements” in H. The space of random elements in H will
be denoted by L2(W;H).

To use the Wiener chaos expansion to solve equation (12.2) we assume
that for almost all (a.e.) t ∈ [0, T ], the solution u(t) has an expansion of the
form

u(t) =
∑
α∈J

uα(t) ξα, (12.8)

where uα(·) are H-valued deterministic functions. This is guaranteed by
the extension of the Cameron Martin theorem for square integrable ran-
dom elements. The above idea allows us to construct stochastic processes
taking values in H; the space of stochastic processes, adapted to the fil-
tration F = {Ft}t∈[0,T ], for which the expansion (12.8) converges in the
L2(Ω × [0, T ]) sense will be denoted by L2([0, T ],W;H) and is a Hilbert

space6 when equipped with the norm (E[
∫ T

0
||u(s)||2Hds])1/2. Our aim is to

5Recall that H`(x) := (−1)` e x
2/2 d`

dx`
e−x

2/2.
6This space coincides with L2([0, T ]; L2(Ω,F, P ;H)) under certain circumstances (see

[439]).
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show that the deterministic functions uα(·) satisfy a hierarchy of determin-
istic integrodifferential equations very similar to those we have studied in
Chapter 7.

In what follows we assume that QA,2 is deterministic.

Theorem 12.5.1 Let u ∈ L2([0, T ],W;H) be a square integrable solution
of (12.2). Then, u has a Wiener chaos expansion of the form (12.8) and
{uα}, α ∈ J , satisfy the infinite hierarchy of deterministic integrodifferential
equations

u′α(t) = MAuα + GA ? uα + (JA)α +
∑
i,n

√
αni (QA(u))αmi(t), (12.9)

where (JA)α are the Wiener chaos expansion coefficients of the random field
JA, (QA(u))α = (QA,1)α−(i, n) + QA,2 uα−(i, n), and

(α−(i, n))`j =

{
max(ani − 1) if i = n, j = `

ani otherwise.

Proof. The existence of the representation (12.8) for each t ∈ [0, T ] is guar-
anteed by the generalisation of the Cameron Martin theorem for square
integrable random elements (see [293]).

To specify the deterministic evolution equations (12.9) that the expan-
sion coefficients uα have to satisfy, we need to use the equalities uα(t) =
E[u(t) ξα], which are valid a.e. in t, along with the stochastic evolution
equation (12.2). To reach this result formally, for a fixed α ∈ J , multiply
(12.2) by ξα and take expectations. By the closedness of the operator MA we
see that E[(MAu) ξα] = MAuα. We also have that E[(GA ? u) ξα] = GA ? uα.
Finally, by the properties of the Wiener basis (see, e.g., [293]) we have that

E[(
∫ t

0
QA dW (s)) ξα] =

∑
i,n

√
ani (QA)αmi(t). This formal approach can be

converted to a fully rigorous treatment by repeating the steps in [292]. 2

Based on Theorem 12.5.1, we may construct solutions of (12.2) using the
Wiener chaos expansion and the infinite hierarchy of deterministic integro-
differential equations (12.9). Observe that this is a hierarchy of uncou-
pled deterministic integrodifferential equations of the general form studied
in Chapter 7, and therefore the general results obtained there may be used
for the well posedness of (12.9), for each α ∈ J . Then the solution to the
stochastic problem may be reconstructed using the expansion (12.8).

We may thus use Theorem 12.5.1 in conjunction with the existence results
of Chapter 7 to provide an alternative existence proof for the solutions of
(12.2) via the Wiener chaos expansion.

Theorem 12.5.2 Suppose that JA ∈ L2([0, T ],W;H) and that GA satisfies
appropriate boundedness conditions. Then (12.2) has a unique solution u ∈
L2([0, T ],W;H) admitting a Wiener chaos expansion of the form (12.8),
where uα solve the deterministic hierarchy (12.9) for each α ∈ J .

Proof. Assume first that QA,2 = 0, so that (12.9) is an infinite system of
decoupled integrodifferential equations. Applying one of the theorems in
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Chapter 7, e.g., Theorem 7.4.8, we have for each α ∈ J there exists a
unique uα solving (12.9), such that ||uα||2H ≤ C ||(JA)α||2, where || · || is a
relevant norm for the Wiener chaos coefficient (JA)α, e.g., the L2([0, T ],H)
norm. Adding over all α ∈ J , we get that∑

α∈J

||uα||2H ≤ C
∑
α∈J

||(JA)α||2.

If JA ∈ L2([0, T ],W;H), we recognise the right-hand side of the above in-
equality as the norm of JA in the space L2([0, T ],W;H); therefore, the right-
hand side is bounded. Therefore the numerical series

∑
α∈J ||uα||2H con-

verges and this implies that the random element
∑
α∈J uαξα converges in

L2([0, T ],W;H). This can be easily seen with the use of the Parseval identity,
which holds for the orthonormal basis {ξα}. Therefore, a straightforward ap-
plication of Theorem 12.5.1 yields the stated result. In the case of QA,2 6= 0,
we have that (12.9) is an infinite system of coupled deterministic integro-
differential equations, of lower triangular form. Therefore, using an iterative
scheme along with an induction argument (see [292], [220]), we obtain the
required result. 2

Remark 12.5.3 The Wiener chaos approach to (12.2) is particularly inter-
esting since:

(i) It reduces the original stochastic problem to an infinite hierarchy of
deterministic problems. This hierarchy is decoupled in the case of ad-
ditive noise and has a lower triangular structure in the case where the
system is subject to a multiplicative noise introduced into the model
through the term QA(u) = QA,1 + QA,2u. In both cases the hierar-
chy is easy to solve using any of the approaches we have presented in
Chapter 7. The first case is a straightforward application of the results
of Chapter 7, whereas the second case calls for an additional simple
induction argument.

(ii) It can be seen as a Galerkin-type approach, which separates the ef-
fects of randomness from the effects of the spatiotemporal dynamics,
through the proposed expansion. It is important to note that the
stochastic basis {ξα} is a “universal basis” that is independent of the
problem under consideration. Therefore, this approach is well suited
for numerical analysis and simulation purposes, especially when sta-
tistical moments of the solutions are needed.

(iii) The spatial regularity of the solutions can be treated very easily simply
by considering more regular solutions of (12.9).

Remark 12.5.4 The Wiener chaos approach may be generalised to allow
the construction of a wide variety of solutions ranging from very regular to
very irregular as far as their behaviour as random variables is concerned.
This can be achieved through the generalisation of the Wiener chaos expan-
sion in terms of weighted Wiener chaos spaces (see, e.g., [292], [293], [294] for
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definitions and applications to parabolic SPDEs and [220] for applications to
hyperbolic SPDEs). Finally, we should mention that the Wiener chaos ap-
proach in principle works for the case in which the coefficients of the problem
(12.2) are random as well. However, in such cases the hierarchy of deter-
ministic evolution equations for uα does not have such a simple structure as
the one depicted in (12.9), thus making the analysis more complicated.

12.6 MISCELLANEA

12.6.1 Alternative forms of randomness

In this chapter we have introduced the Wiener process as a possible source of
the randomness in the medium or the external sources. However, the analysis
presented here can be extended to alternative forms of randomness that may
be more general. Such a generalisation, which falls within the framework of
Itō’s theory of stochastic integration, is the use of Lévy processes for the
modelling of the noise terms. In modelling the noise by Lévy processes, we
keep the basic assumption of independent increments of the random effects,
relaxing, however, the assumption that it is possible to obtain a scaling of
space and time so that these effects can be modelled as continuous. There-
fore, we allow random jumps and discontinuities in the noise terms, which of
course introduce similar effects to the electromagnetic field. There is still rel-
atively little work on the solutions of stochastic PDEs driven by Lévy noise
(see, e.g., [347] or [353]) and the extension of the aforementioned general
results to models for complex media seems like a promising plan for future
research, from both the mathematical and the modelling point of view.

Another interesting generalisation is to relax the assumption of indepen-
dence between the random increments of the noise term. This is reasonable,
especially in physical models, where temporal (as well as spatial) correlations
are often present. In such cases the general framework of Lévy processes can
no longer be used and has to be abandoned, and with it, the convenient
framework of the generalisation of Itō’s theory of stochastic integration, as
presented in Appendix B, for integrators that can be decomposed into a
martingale part and a bounded variation part. One possibility is to use
coloured 7 noise to model such correlations, another, even more challenging
from the stochastic analysis point of view, is to use generalisations of the
fractional Brownian motion in infinite-dimensional spaces. This is certainly
a very interesting direction for further research.

7Coloured noise is a Gaussian process that does not have independent increments. The
“colour” of the noise characterises this dependence and is related to the spectral properties
of the noise signal. White noise is considered to be the limit where independence of
increments is recovered.
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12.6.2 Nonlinear stochastic problems

In this chapter we have treated the stochastic Maxwell equations for linear
complex media. Our analysis can be extended for the study of nonlinear
problems. In fact, under the assumption that the nonlinearities are glob-
ally Lipschitz, most of the results in this chapter may be extended almost
with minor changes, employing the fixed point schemes that are used for the
proofs of the well-posedness results in the linear case8. In the case where
the nonlinearities are not globally Lipschitz, we need to apply more sophis-
ticated techniques to complete the fixed point arguments, such as approx-
imation techniques, etc. Another class of techniques may be an approach
based on monotonicity arguments, which is close to the one employed for the
deterministic case in Chapter 11. Monotonicity techniques have been used
successfully for nonlinear stochastic problems (see, e.g., [352]).

8This was one of the reasons we chose to employ fixed point arguments for the study
of linear media.
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Chapter Thirteen

Controllability

13.1 INTRODUCTION

This chapter addresses the problem of controllability for stochastic com-
plex electromagnetic media. Our starting point is the stochastic integro-
differential equations that model the evolution of the fields, with a control
procedure to be selected so that the system is driven to a desired final state.
The controllability problem for stochastic media is more complicated than
that for deterministic media and includes subtleties that must be addressed
to reach a satisfactory answer.

The stucture of this chapter is as follows: In Section 13.2 we set the
model, while in Section 13.3 we discuss the subtle issues introduced by the
stochasticity in the controllability problem. We then propose two different
approaches towards controllability: in Section 13.4 an approach using PDEs
with random coefficients and in Section 13.5 an approach using backward
stochastic evolution equations (BSEEs). In Section 13.6 we list several com-
ments concerning boundary controllability and optimal control.

13.2 FORMULATION

We consider the problem of controllability of the stochastic complex medium
with an additive noise. The problem can be modelled through the use of the
stochastic integrodifferential equation

du = (MAu+ GA ? u+ JA + Bv) dt+

N∑
j=1

gj dwj(t), (13.1)

where for the sake of simplicity we assume the noise to be finite dimensional.
In particular, by wj we denote the jth component of the N -dimensional1

Wiener process defined on a filtered probability space (Ω,F , {Ft}[0,T ], P ).

We will use the notation F = {Ft}. Further, gj = (g
(1)
j , g

(2)
j )tr ∈ R6 is a

vector function of the spatial variables multiplying the noise terms such that

divg
(k)
j = 0 for k = 1, 2, j = 1 . . . N.

We use the same notation as for the deterministic case in Chapter 8; in
particular, by v we denote the internal control. Consider first the stochastic

1The case where N =∞ may be considered with minor technical modifications.
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achiral case. Assume that the corresponding linear system

du = (MAu+ JA + Bv) dt+
N∑
j=1

gj dwj(t)

is controllable. Our approach to treating the chiral case is based on a fixed
point scheme: assume that the state space of the system is a Hilbert space
H; at this point, we do not specify this space. Fix a function z(·) ∈ H, and
consider the linear system

du = (MAu+ J2

A + Bv) dt+
N∑
j=1

gj dwj(t) , (13.2)

where J2

A = JA +GA ?z (recall that the chirality effects are introduced via the
part GA ? · of J2

A). We denote by vz(·) the control procedure that drives the
system (13.2) from u(0) = U0 to u(T ) = UT . It is important to note here
that UT can in principle be a random variable as long as it is measurable
with respect to the σ-algebra FT . Let uz(·) be the solution of

du = (MAu+ J2

A + B vz) dt+

N∑
j=1

gj dwj(t) ,

with initial condition u(0) = U0. By the definition of vz we know that
u(T ) = UT . Let Xst denote either C([0, T ];H) or L2([0, T ]; L2(Ω,F, P ;H)).
Define the map F : Xst → Xst by

F(z(·)) = u(·) .

If this map has a fixed point, i.e., if there exists a function u ∈ Xst, such
that F(u) = u, then this u is the solution of (13.2) that connects the states
U0 and UT in time T , and furthermore vu is the required control.

13.3 SUBTLETIES OF STOCHASTIC CONTROLLABILITY

We now introduce the problem of approximate controllability:

Given an initial condition ξ0 ∈ L2(P,F0,H), where H is an ap-
propriately chosen Hilbert space, and a given final state ξT ∈
L2(P,FT ,H), is it possible to find an adapted control procedure
v ∈ L2([0, T ]; L2(Ω,F, P ;V)), where V is the control space, such
that the system (13.1) is driven ε-close to the final condition ξT
in the chosen time period?

The choice of functional setting for this problem is the same as the one
used for the deterministic problem (see Chapter 8 for details and notation).

The question of mild well posedness of the problem (13.1) was settled in
Chapter 12. Using generalisations of these results, we may show the well
posedness of the problem for a wide range of possible control functions v(·).
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Further regularity conditions on the solution may be obtained by straight-
forward modifications of the Faedo-Galerkin method proposed for the wave
equation in [240] (see also Remark 2.4 in [240]). In analogy with the de-
terministic controllability problem, we choose H = V = XM (see Chapter
8).

Lemma 13.3.1 The stochastic control system (13.1) is mildly well posed in
X for every v ∈ L2([0, T ]; L2(Ω,F, P ;XM)).

We are now ready to propose a procedure for approximate controllability.
The procedure is based on the fixed point procedure used for the determinis-
tic control problem in combination with the approximation result in Lemma
13.4.1.

So far there has been no reference to approximate controllability. There-
fore, some comments are due concerning the need to consider the problem
of approximate controllability at this point. This need arises from the con-
trollability of problem (13.2). Recall the way that we treated the problem
of construction of the control procedure vz. The first auxiliary problem we
need to consider is the uncontrolled system

dV = (MAV + J2

A) dt+

N∑
j=1

gj dwj(t) ,

V (0) = U0 .

(13.3)

The solution of this problem will give us the final state of the system V (T ),
which is an FT -measurable random variable.

We then consider the backward adjoint problem

Φ′ = MAΦ ,

Φ(T ) = ΦT ,
(13.4)

for a final condition that is now in principle a random variable, and the
forward problem

Ψ′ = MAΨ + BΦ ,

Ψ(0) = 0 ,
(13.5)

where Ψ is the solution of problem (13.4). Note that even though there
is no stochasticity in the equation, the source term is a random function,
and as a result, Ψ is a random function as well. In complete analogy with
the deterministic problem in Chapter 8, we define the map Λ that connects
the random variable ΨT with the final value of the solution of the forward
problem (13.5) (which is itself a random variable).

Assume that the random operator equation

Λ(Φ[T ) = UT − V (T ) (13.6)

is satisfied for some random variable Φ[T ∈ XM. Now, using the same pro-
cedure as we did for the deterministic problem in Chapter 8, we see that
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setting u(t) = V (t) + Ψ(t), where Ψ(t) is now the solution of (13.5), with
Φ(t) as obtained by the solution of (13.4) and the final condition Φ[T as pro-
vided by the solution of the operator equation (13.6), we have obtained a
solution of the original control system such that u(0) = U0 and u(T ) = UT
in time T . Therefore, the desired control procedure is the random process
Φ(t) as defined above.

Even though the stochastic case gives the impression of formally proceed-
ing in the same manner as the deterministic case, there is an important
qualitative difference that does not allow us such an approach. The reason
is very simple and goes as follows: Since V (T ) is an FT -measurable ran-
dom variable, then UT − V (T ) is also an FT -measurable random variable.
Therefore, in principle, the solution of the operator equation (13.6) Φ[T is
an FT -measurable random variable. Consider now the backward equation
(13.4). This is a differential equation, with no stochasticity but with a final
condition that is a random variable. Therefore, the solution is a random
process that inherits the measurability properties of the final condition, i.e.,
Φ(t) will be an FT -measurable random variable for all t ∈ [0, T ]. Now con-
sider the forward equation (13.5). This is a random differential equation,
the randomness being inserted by the random process Φ(t), which acts as
a source term in the right-hand side of (13.5). By the same arguments,
the solution of this equation Ψ(t) inherits the measurability properties of
the source term; therefore the solution Ψ(t) is measurable with respect to
the σ-algebra FT for all t ∈ [0, T ]. Since the control procedure obtained is
v = Ψ(t), we see that neither the control procedure nor the state of the sys-
tem u(t) has the desired property of being adapted to the filtration generated
by the noise process, since that would require that v(t) and u(t) be measur-
able with respect to Ft for all t ∈ [0, T ] and not with respect to FT , as it
actually happens. Put differently, the control procedure we have proposed
above gives us a control scheme that requires knowledge of future states of
the system, and not simply the history of the system. This property renders
the control proposed above nonphysical and not practical to implement.

In this chapter we propose two possible ways to bypass this difficulty in-
troduced by the noise. One is through an approach to the problem using
PDEs with properly selected random initial or final conditions. The other
is through the use of backward stochastic differential equations. Both ap-
proaches are interesting, for reasons that will be analysed in the relevant
sections.

13.4 APPROXIMATE CONTROLLABILITY I: RANDOM PDES

Assume that we wish to solve the system (13.4) - (13.5) in the interval
[T − τ, T ] for some τ ∈ [0, T ]. The system is modified to the two problems

Φ′ = MAΦ ,

Φ(T ) = ΦT ,
(13.7)
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Ψ′ = MAΨ + BΦ ,

Ψ(T − τ) = 0 .
(13.8)

As we commented in the section above, as long as ΦT is measurable with
respect to FT , the solution to system (13.7) is measurable with respect
to FT , and this renders the solution to (13.8) measurable with respect to
FT as well for all times t ∈ [T − τ, T ]. This is unphysical, as both the
control (related to Φ(·)) and the state of the system (related to Ψ(·)) are
forward looking (looking into the future) in the sense that they can only
be fully determined as long as the final state of the uncertainty is known.
One way to remedy this is to assume that ΦT is measurable with respect
to FT−τ instead of being measurable with respect to FT . Then, both Φ(·)
and Ψ(·) are measurable with respect to FT−τ for all t ∈ [T − τ, T ], and
this immediately makes both processes dependent only on the past states of
the uncertainty. This makes the solution acceptable from a physical point
of view and thus useful for the construction of the control procedure.

However, an important issue remains unsettled. One does not in principle
have the freedom to pick the measurability of ΦT ; this is fixed and deter-
mined. One may rather modify the final condition ΦT by choosing another
final condition, Φ[T , as close as possible to the original final condition ΦT
but satisfying the condition that it is measurable with respect to FT−τ .

The major technical result, essential in our work, is a generalisation of
the martingale representation theorem in finite-dimensional spaces (see, e.g.,
[224] and Theorem B.9.1 in Appendix B), which is summarised in the fol-
lowing result, [240]:

Lemma 13.4.1 Let H be a Hilbert space and ε > 0. Given an FT -measurable
H-valued random variable ξ, there exist τ > 0 and an FT−τ -measurable ran-
dom variable ξε such that for some ε = ε(τ) > 0, E[|| ξ − ξε ||2H] < ε and
E[|| ξε ||2H] ≤ E[|| ξ ||2H].

Remark 13.4.2 The choice of τ can be made explicit using the Clark-Ocone
form for the martingale representation theorem (see, e.g., [88]) in the case
where ξ is Malliavin differentiable; estimates for τ can be established in
terms of the Malliavin derivative of ξ.

After this preliminary discussion, we may present a first approach towards
approximate controllability. To make the argument more transparent, we
first omit the chiral terms (integral terms), which will be treated by the
fixed point argument shortly.

. Choose a τ .

. Start the uncontrolled system at U0 at time t = 0 and run until time
t = T−τ . The state of the uncontrolled system at t = T−τ is a random
variable u0(T − τ), which is measurable with respect to FT−τ .
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. We now wish to find a control v, that acting from t = T − τ to t = T ,
is able to drive the controlled system from u0(T − τ) to the desired
final state UT .

. However, UT is in principle an FT -measurable random variable. In ref-
erence to the discussion above, using the auxiliary systems (13.7)-(13.8)
we cannot construct an adapted control procedure that will achieve this
task. Therefore, we may approximate UT as closely as possible by a
random variable ŮT , measurable with respect to FT−τ (a step that is
guaranteed by Lemma 13.4.1).

. Then find the control procedure that drives the controlled system from
u0(T − τ) to ŮT in the time interval [T − τ, T ]. This control procedure
can be constructed consistently with the use of the auxiliary systems
(13.7) - (13.8) following a procedure close to that adopted for the
deterministic problem in Chapter 8.

The remaining crucial step in this procedure is to show that the map Λ, de-
fined by (13.6), is invertible. This operator is defined from a suitable space of
square integrable FT−τ -measurable random variables to itself. It is straight-
forward to repeat the arguments of Section 8.4.2 replacing the initial and
final conditions by FT−τ -measurable random variables, working pointwise
and then passing to the L2(Ω,F , P ;XM) setting using Lebesgue dominated
convergence type arguments, based on a priori estimates. We leave the de-
tails to the reader, and here we simply state the following generalisation of
Lemma 8.4.5.

Lemma 13.4.3 There exists an α[ such that Λ(α[) = ξ, for every ξ ∈
L2(Ω,FT−τ , P ;XM).

Finally, we have to address the chirality terms. These terms have to be
treated using a fixed point scheme similar to the one proposed in Section 8.2
for the deterministic problem. The existence of a fixed point for the map
F is equivalent to the proof of approximate controllability. The existence
of a fixed point may be shown through the use of a fixed point theorem.
Contrary to the deterministic case, where we resorted to Schauder’s fixed
point theorem in order to establish the existence of a fixed point of F , now
we shall employ Banach’s contraction mapping theorem; the reasons are
that (a) the chirality terms are typically assumed to be small and (b) it
allows us to bypass issues related to the characterisation of compact sets in
L2(Ω,F , P ;H), where H is a Hilbert space.

This leads to the following controllability result.

Theorem 13.4.4 For small enough chirality, the stochastic control system
(13.1) is approximately controllable.
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13.5 APPROXIMATE CONTROLLABILITY II: BSPDES

An alternative to the above approach that does not require the approxima-
tion of the final condition for the stochastic auxiliary equation (13.4) by one
that is measurable with respect to a diferent σ-algebra in order to achieve
the adaptivity of the solution with respect to the filtration generated by the
Wiener process is to use the theory of backward stochastic partial differential
equations (BSPDEs).

As we commented above, the solution of (13.4) is not in general adapted
to the filtration Ft as required, a fact that is rather annoying from the
modelling point of view. Is there any way of guaranteeing that (13.4) achieves
a solution that satisfies the adaptivity property? This can be done as long
as we decide to modify the equation slightly, to

dΦ = MAΦ dt+ Z dW (t) ,

Φ(T ) = ΦT ,
(13.9)

where Z is an (operator-valued) unknown stochastic process that will be
selected so as to render the solution of (13.9) adapted and be sure that
it satisfies the right final condition. For example if Φ takes values in a
Hilbert space H and W takes values in a Hilbert space V then Z should
take values in L2(V,H) the space of Hilbert-Schmidt operators from V to H.
It is worth noting that equation (13.9) is a stochastic differential equation
in two unknowns (Φ, Z) that is solved with a final condition. This type
of equation is called a backward stochastic evolution equation (BSEE) or
a backward stochastic partial differential equation (BSPDE). Even though
we have a single equation in two unknowns, under certain conditions the
solution is unique, as the processes Φ and Z are related to each other.

Assume for the time being that (13.9) has a unique solution (Φ, Z) for any
final condition Φ(T ) = Ξ measurable with respect to FT , and let us show
how this pair of processes may be used to construct the desired control.

To this end, let (Φ, Z) be the solution of the BSEE (13.9) with final
condition Ξ, and consider the solution of the forward random equation (13.5)
with initial condition Ψ(0) = 0. Since by construction Φ is an adapted
stochastic process, then Ψ is also an adapted process. Define the map Λ that
connects the final condition Ξ of the BSEE (13.9) with the final condition
Ψ(T ) of the forward equation (13.5). Furthermore, solve the uncontrolled
stochastic system (13.3) with initial condition V (0) = U0, and obtain the
FT -measurable random variable V (T ). We now add equations (13.5) and
(13.3) and by linearity observe that the process U = V + Ψ solves equation

dU = (MAI + J2

A + BΨ) dt+
N∑
j=1

gj dwj(t) , (13.10)

with initial condition U(0) = U0 and final condition U(T ) = Ψ(T ) + V (T ).
If we can choose Ξ so that Ψ(T ) = U(T ) − V (T ), then the desired control
procedure is v = Ψ. Therefore, the control procedure may be constructed
through the use of the BSEE.
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There are two missing steps in this analysis. The first is to show that the
BSEE (13.9) indeed has an adapted solution for every square integrable final
condition Ξ. This result is provided by the general theory of BSEEs, which is
by now a well-established subject of stochastic analysis. Characteristic ref-
erences on the subject are, e.g., [198], [340], [409]; see also references therein.
The conditions for solvability of this problem are particularly simple, and in
fact the square integrability of the final condition Ξ and the property that
MA is the generator of a C0 group are enough to guarantee the well posedness
of (13.9). The following proposition summarises these comments.

Proposition 13.5.1 For every Ξ ∈ L2(Ω,FT , P ;H), there exists a unique
pair2 (Φ, Z) ∈ L∞([0, T ];L2(Ω,F,H)×L2([0, T ];L2(Ω,F;L2(V,H)) such that

Ξ− Φ(t) =

∫ T

t

MA Φ(s) ds+

∫ T

t

Z(s) dW (s) (13.11)

for all t ∈ [0, T ].

Proof. The proof is simple and hinges on the martingale representation theo-
rem for Hilbert space-valued random variables. It is essentially an adaptation
of similar proofs in, e.g., [409], etc.

Since MA is the infinitesimal generator of a C0 group of linear operators,
{TMA

(t)}t∈R, TMA
(t) = etMA , one may easily see that Φ[(t) = TMA

(t)Φ(t)
satisfies the BSEE

dΦ[(t) = TMA
(t)Z(t) dW (t) ,

Φ(T ) = TMA
(T ) Ξ .

(13.12)

Consider now the stochastic process M(t) := E[TMA
(T ) Ξ | Ft], which is

a square integrable martingale. To this martingale we apply the martingale
representation theorem (Theorem B.9.1 in Appendix B), to guarantee the
existence of an operator-valued stochastic process Z̊ such that

M(t) = M(0) +

∫ t

0

Z̊(s) dW (s) (13.13)

for every t ∈ [0, T ]. Set t = T in this expression to obtain

Φ[(T ) = M(0) +

∫ T

0

Z̊(s) dW (s) , (13.14)

where we have used the fact that

M(T ) := E[TMA
(T ) Ξ | Ft] = TMA

(T ) Ξ = Φ[(T ).

We now subtract (13.13) and (13.14) to obtain that

Φ[(T )− Φ[(t) =

∫ T

t

Z̊(s) dW (s) . (13.15)

A direct comparison of (13.11) with (13.12) shows that M(t) as defined
above is a candidate for the unknown process Φ[(t), whereas a candidate for

2These processes are adapted to the filtration F = {Ft}t∈[0,T ].
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the process Z is the process Z̊ provided by the martingale representation
theorem. By the group property of {TMA

(t)}t∈R, we return to the original
processes Φ(t) and Z. The uniqueness follows by an application of Itō’s
lemma. 2

The second remaining step is to show that we can always find a final con-
dition Ξ for (13.9) so that the solution of (13.5) satisfies Ψ(T ) = UT −V (T ).
This relies on the invertibility of the map Λ. For approximate controllability
we would like to show that for every ξ in L2(Ω,FT , P ;XM) we may find a Ξ
such that the solution of the system (13.9) and (13.5) satisfies the property
that for every ε > 0, ||Ψ(T )− ξ|| < ε. An alternative way of looking at this
is to treat the approximate solvability of the forward-backward stochastic
differential problem

dΨ = (MAΨ + BΦ) dt ,

dΦ = MAΦ dt+ Z dW (t) ,

Ψ(0) = ξ ,

Φ(T ) = Ξ .

This is in some sense a stochastic two-point boundary value problem. The
solvability of this problem is equivalent to the approximate controllability of
the original problem at hand.

Consider now the linear manifold

z = {Ψ(T ) : there exists a Ξ so that (Ψ,Φ) solves (13.9) and(13.5)} .

We will show that z is dense in L2(Ω,FT , P ;XM).

Proposition 13.5.2 The linear manifold z is dense in L2(Ω,FT , P ;XM)
if B is invertible.

Proof. Take X ∈ L2(Ω,FT , P ;XM) and assume that (X,Ψ(T )) = 0 for any
Ψ(T ) ∈ z. We will show that this implies that X = 0.

For the given X, consider the BSEE

X − p(t) =

∫ T

t

MAp(s) ds+

∫ T

t

q(s) dW (s) . (13.16)

According to Proposition 13.5.1, this problem is well posed, so there exists a
unique pair of stochastic processes (p, q) satisfying (13.16). Now, let us apply
Itō’s lemma on the inner product (p(t),Ψ(t)). After taking into account the
fact that the operator MA is skew adjoint, we see that

(X,Ψ(T )) =

∫ T

0

(p(t),BΦ(t)) dt .

This is equal to 0 if
∫ T

0
(p(t),BΦ(t)) dt = 0, or if

∫ T
0

(B∗ p(t),Φ(t)) dt = 0.
Since we want (X,Ψ(T )) = 0 to hold true for all Ψ(T ) ∈ z, the above implies
that B∗ p(t) = 0 for all t. If the operator B∗ is such that B∗p(t) = 0 implies
that p(t) = 0 for all t, then X = p(T ) = 0, and that concludes the proof of
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density of z in L2(Ω,FT , P ;XM). If B∗ is an invertible operator, then one
can immediately see that the above condition holds, so the system satisfies
the approximate controllability property. 2

If B∗ is not an invertible operator, then Carleman-type3 estimates for
the backward problem are needed to show this property. Carleman-type
inequalities for backward PDEs constitute an interesting research field that
is relatively unexplored. Because of the technical nature of the subject we
do not address it here; let us just mention that a Carleman inequality for the
stochastic wave equation has been proved recently by Zhang in [447]. Similar
results for forward and backward stochastic parabolic equations have been
reported in [54] and [401]. See also the interesting unified approach by the
same author in [448].

13.6 MISCELLANEA

There are several possible extensions of the approach presented in this chap-
ter on the problem of controllability of stochastic integrodifferential equa-
tions modelling complex media.

13.6.1 Boundary controllability

The problem of boundary controllability is still open. In principle either
approach employed in this chapter to study approximate controllability can
be used, along with a fixed point procedure to prove approximate controlla-
bility. Extra care must be taken here to define properly the map B.

13.6.2 Multiplicative noise

Some of the controllability results and techniques in this chapter can be
generalised to the case where the model is subject to multiplicative noise.
This will result in a model of the general form

du = (MAu+ GA ? u+ Bv) dt+ (QA,1 + QA,2u)dW , (13.17)

where W can either be a finite- or infinite-dimensional Wiener process.
If one decides to use the backward stochastic differential approach, then

it may be shown that the approximate controllability of the control system

3In 1939, Torsten Carleman introduced some energy estimates with exponential weights
to prove a uniqueness result for a class of PDEs with smooth coefficients in dimension
two. This type of estimates, now referred to as “Carleman estimates”, or “Carleman
inequalities”, were generalised and systematised by Lars Hörmander in 1963 (and others
later) for a large class of differential operators in arbitrary dimensions. More recently,
the field of applications of Carleman estimates has exceeded by far the original domain
they had been introduced for, i.e., a quantitative result for unique continuation. They are
also extensively used in the study of inverse problems and control theory for PDEs, and
more recently in stochastic differential equations. The existing bibliography on Carleman
estimates is very extended; the main ideas can be found, e.g., in [280].



rsy-book-final December 7, 2011

CONTROLLABILITY 273

(13.17) is related to the properties of the solution of the backward stochastic
evolution equation

dp = (−M∗Ap+ Q∗
A,1Z) dt+ Z dW (t) ,

u(T ) = ξ .
(13.18)

This is similar to the BSEE obtained for the additive noise case, with the
main difference that now the auxiliary process Z is contained in the drift of
the equation. The well posedness of this equation can be shown by extending
the simple argument we have used in Lemma 13.5.1 along with a fixed point
scheme of the form4

du(n+1) = (MAu
(n+1) + Q∗

A,1Z
(n)) dt+ Z(n) dW (t) .

A criterion for approximate controllability of (13.17), similar to that pro-
posed in the case of additive noise, is the following:

The system (13.17) is approximately controllable if and only if for any
finite horizon T , the solution of (13.18) that satisfies B∗p(t) = 0 for all
t ∈ [0, T ] necessarily satisfies p(t) = 0 for all t ∈ [0, T ]. This result has
recently been proved for the multiplicative case in [166].

Of course, proving that this property holds brings us back to the issue
of deriving Carleman inequalities for stochastic evolution equations; see the
relevant discussion in Section 13.5.

Furthermore, the methods presented in this chapter can be extended for
the case of nonlinear problems using fixed point techniques.

13.6.3 Stochastic optimal control problems

The optimal control problems sketched briefly in Section 8.6.3 can be gen-
eralised for the case of stochastic problems. The relevant cost functional
now involves expectations, e.g., stochastic linear quadratic control problems
involve functionals of the form

J (u, v) = E[

∫ T

0

(||C1u(t)||2H + ||C2v(r)||2V)dt] + E[||C3(u(T )− UT )||2H] ,

where H and V are proxies for the state space and the control space of the
system, respectively, and the expectation is with respect to the probability
measure. The operators C1,C2,C3 are operators that quantify the relative
importance of the intertemporal deviation from a desired state, the cost of
the control procedure and the deviation from the desired final state, respec-
tively, in the overall cost functional.

Problems of this form can be solved in terms of feedback laws of the form
v = Fu, where F is the feedback operator that connects the state of the
system with the control required. The feedback operator can be determined
using the infinite-dimensional Riccati equation. An alternative is to use
generalisations of the Pontryagin maximum principle using adjoint variables.
The optimal control law can be determined through the adjoint variable. Of

4We have taken into account that M∗A = −MA.
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importance, the adjoint variable solves a BSEE of the form introduced and
studied in Section 13.5.

This theory can be extended in a perturbative fashion, via fixed point
arguments, to include the effects of the convolution terms; however, this is
beyond the scope of the present work.
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Chapter Fourteen

Homogenisation

14.1 INTRODUCTION

In certain classes of materials the spatial structure is not sufficiently regular
as to be modelled by periodic functions. Such materials can be modelled
as random media having some sort of statistical periodicity. This statistical
periodicity is expressed mathematically through the concept of ergodicity.
This concept is powerful enough to generalise periodicity and allows us to
build a homogenisation theory that bypasses the need for periodic structure.
From the applications point of view, this generalisation leads to more realistic
models. In nature there is actually no such thing as a deterministic periodic
structure; materials are subject to random imperfections that may depart
from standard periodicity but still leave a random structure reminiscent of
periodicity. Note that, according to some authors (see, e.g., [8]), the very
nature of chirality is due to such effects, i.e., to randomly positioned helices
in the medium.

There exists a rich theory concerning random homogenisation problems.
For linear elliptic and parabolic problems see, e.g., [59], [67], [216] and ref-
erences therein. It is the aim of this chapter to present a theory of ho-
mogenisation for random bianisotropic media exibiting an ergodic structure.
We show that for such a medium there exists a homogenised system of the
Maxwell type (see [52], [395]). The homogenisation problem can be reduced
to a random elliptic system, and the homogenised coefficients for the com-
plex medium may be computed using proper averaging procedures over the
solutions of this elliptic system. This leads us to a generalisation of the
homogenisation theory for deterministic complex media (see Chapter 9).

The structure of the chapter is as follows. In Section 14.2 we present an
introduction to the necessary notions from the theory of ergodicity that will
be used in our treatment of homogenisation. In Section 14.3 we present a
model for a random complex medium, on which we will base our analysis.
In Section 14.4 we present a formal two-scale approach that allows us to
set ideas and understand the basic mechanisms that will lead us to a ho-
mogenised system, as well as to identify the coefficients of the homogenised
system. In Section 14.5 we present some rigorous results on the homogeni-
sation of random complex electromagnetic media.
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14.2 ERGODIC MEDIA

We will consider a special class of random media, namely, ergodic media, for
which there has been a resurgence of interest in the context of homogeni-
sation of first- and second-order PDEs1. The ergodic assumption allows for
the generation of a “self-repeating” structure, in the statistical sense, for
the medium which is a generalisation in the stochastic framework of the
periodicity condition for deterministic media (see Section 9.6.2).

We will consider the following framework. Let (Ω,F , P ) be a probability
space, and let G be a group of transformations on Ω. Such a group is often
called a dynamical system on Ω. We say that the probability measure P is
preserved under the action τ of the group G, if P (τA) = P (A) for every
A ∈ F .

As mentioned already in Section 2.4.13, a typical example of this setup
is the case where Ω = R3, i.e., each ω is identified with a point x ∈ R3.
Then the group G is the translation group on R3 with the action τ denoted
by τy = x + y, when the point x = ω ∈ Ω is translated by y ∈ R3. The
invariance property of the measure P under the action of the group in this
case takes the form,

P (τyA) = P (A), ∀A ∈ F , ∀y ∈ R3 .

The Lebesgue measure is an example of such an invariant measure.
The probability space (Ω,F , P ) is to be interpreted as follows: each re-

alisation ω is to be understood as a particular configuration of the medium.
In other words, each experiment we perform on a particular medium cor-
responds to a particular choice of ω ∈ Ω. However, it is neither known
beforehand nor known with certainty which medium is to be realised at
the time the experiment is performed. The probability that a particular
medium is realised is given by the probability measure P . A random vari-
able F : Ω → X, where X is an appropriate metric space, will serve as
a mathematical model for a medium. For instance, when X ∈ R6×6, we
may consider F as a particular outcome of the electromagnetic parameters
of a random complex medium (e.g., a particular outcome of Aor,ω or Gω ).
More precisely, if F is a measurable function on Ω, we will call for each fixed
ω ∈ Ω, F (τxω) (often denoted by F̌ (τxω)) a realisation of F . A measurable
function F is called invariant under the group action (dynamical system) if
F (τxω) = F (ω) for every x and ω.

We shall assume the ergodicity and stationarity of the random coefficients.

Definition 14.2.1 (ergodicity and stationarity)

(i) The action τ is called ergodic if for all A ∈ F ,

τxA = A ∀x ∈ R3 =⇒ P (A) = 0, or P (A) = 1.

1This is a very general setting that allows us to bypass (by resorting to the ergodic
theorem and stationarity properties) certain technical difficulties arising in the study of
spaces of random fields such as the lack of the standard compact Sobolev embedding
theorems for L2(Ω, P, µ), where (Ω, P, µ) is a general probability space. Such embeddings
are important, among others, for the well posedness of the cell equations (see, e.g., [279]).
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(ii) A random variable F is called stationary if

∀y ∈ R3, F (x+ y, ω) = F (x, τyω), a.e. in x, a.s.

Remark 14.2.2 An alternative definition of ergodicity is to say that an
action is ergodic if every invariant function2 under this action is the constant
function almost surely in Ω (P -a.s.).

These properties guarantee that, in a statistical sense, parts of the material
located at different positions will present the same properties, i.e., that the
statistical properties of the medium are invariant under translations that are
to be understood as the transformation τy. This fact allows us to look at
average properties of the material at long scales and obtain nice expressions
for these quantities. In fact, by the ergodic theorem (see, e.g., [66], [67] and
Theorem C.4.2 in Appendix C) we may obtain that

F
(x
ε
, ω
)
∗
⇀ E[F ], as ε→ 0 a.s. in L∞(R3),

where E is the expectation over the measure P . The ergodic hypothesis
implies that instead of looking at an ensemble average of media and averaging
the properties of the medium on the ensemble average, we may consider a
single realisation of the medium whose spatial dimensions are large and
sample its properties by traversing this single realisation for large enough
distances.

Below we provide some examples where this approach is relevant.

Example 14.2.3 An example of a stationary random variable is a random
field u : R3×Ω→ X, where X is a metric space3 that may be represented as
u(x, ω) = F (τxω) for a fixed random variable F . Indeed, by the group prop-
erty, u(x+ y, ω) = F (τx+yω) = F (τxτyω) = u(x, τyω). By the invariance of
P under τ , the above equality means that for any x, y ∈ R3, the distribution
of u(x+ y, ω) does not depend on y.

Example 14.2.4 [344] Periodic media naturally fall within this framework.
It is easily seen that periodicity is a special case of the stationarity condition.
Take Ω to be the unit torus T in Rd and each realisation ω to be a point in the
unit torus. While in this case the medium is deterministic, the meaning of ω
is that we may consider any point in the unit torus (unit cell of the medium)
as the origin of the coordinate system, chosen randomly according to the
Lebesgue measure on the unit torus. Let ā(ω) be any periodic function and
define a(x, ω) = ā(ω−x). Clearly, a(x, ω) satisfies the stationarity condition
according to which for every x1, . . . , xn ∈ T, it holds that

(a(x1, ω), · · · , a(xn, ω))
d
= (a(x1 + h, ω), · · · , a(xn + h, ω))

2As this would imply that the random variable F is measurable with respect to the
null σ-algebra F0 = O = {∅,Ω}, which implies that F is a constant function.

3That is, for each x ∈ R3, ω ∈ Ω we get a random realisation u(x, ω) ∈ X, e.g.,
X ∈ R6 is we think of the electromagnetic field, or X ∈ R6×6 if we think of the medium
parameters.
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for every vector h ∈ Rd, where
d
= denotes equality in distribution of the

relevant random variables. In this context, the transformation τx acts on ω
by τxω = ω + x mod(1) = ω + x− [x], i.e., as a shift. The transformation is
invertible and (τx)−1 = τ−x. It obviously holds that a(x+ y, ω) = a(x, τyω).

Example 14.2.5 [344] Consider a medium that may exhibit imperfections,
with centres that are randomly distributed. To simplify matters, assume that
the imperfections may be modelled as points. In a particular realisation of
the medium ω, there will be n imperfections centred at the points (r1, . . . , rn)
where both the positions of points as well as their number n are random
variables. So ω = (r1, . . . , rn), and Ω is the space of sequences in Rd. We
assume that if A is a Borel set in B(Rd), then the number of imperfections
in A, ν(A) is distributed according to the Poisson distribution, i.e., by

P (ν(A) = n) = exp(−λ | A |) (λ | A |)n

n!
,

where | A | is the Lebesgue measure of A and λ is a parameter. The exact
medium configuration can be described by the random measure

µ =
n∑
j=1

δrj ,

where δx is the Dirac point measure centred at x. Assuming that the posi-
tions of the imperfections are uniformly distributed, one may calculate the
Laplace functional of the random measures as

Φ := E[exp(−(φ, µ))] = E[exp(−
n∑
j=1

φ(rj))] = exp

(
λ

∫
(e−φ(r) − 1) dr

)
,

where φ is any smooth function of compact support. The Laplace functional
has the stationarity property which is inherited by the stationarity property
of the Poisson point process. Indeed, let h be any vector in Rd and define
µh(dx) = µ(dx+ h). Then,

E[exp(−(φ, µh))] = E[exp(−(φ, µ))] ,

which shows the stationarity property for the Laplace functional. Any func-
tion a(x, ω) can be considered as a special case of a Laplace functional for
the proper choice of φ. Hence, such a medium may be modelled by the
framework described in this section. In this context the transformation τx
acts on ω by

τxω = τx(r1, . . . , rn) = ω + x = (r1 + x, . . . , rn + x) ,

i.e., as a shift. The transformation is invertible and (τx)−1 = τ−x. The
ergodicity of this medium relies on the ergodic properties of the Poisson
process (see, e.g., [408] or [344]).

For more examples of media that fall within this description, we refer to
[408].
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14.3 FORMULATION

LetO be a domain in R3, filled with a random complex linear electromagnetic
medium. For the time being, we consider the case where the randomness
is assumed to be spatial only, so that the structure of the medium does
not change in time. The constitutive relations for the medium are given
as in Section 2.3.4, equation (2.23). The effect of the random structure of
the medium is that now the electromagnetic fields are random fields whose
evolution is given by the random Maxwell equations

∂t(Aor,ωu+ Gω ? u) = Mu+ j, in (0, T ]×O, (14.1)

subject to the perfect conductor boundary condition

n× u1 = 0, in [0, T ]× ∂O ,
and for homogeneous initial conditions u(x, 0) = 0, x ∈ O. The coefficients
of the medium are now random variables, with a spatial dependence4; the
same can also hold for the source term j. The fields u = u(t, x;ω) are random
fields (vector space-valued random variables). All these random variables are
assumed to be defined on a suitable probability space (Ω,F , P ) (which we
do not need to specify at this point) related to the nature of the random
structure of the medium. The differential equation (14.1) is now an equation
between random variables and is assumed to hold almost surely in P .

Remark 14.3.1 Equation (14.1) is a random differential equation. In this
model we assume that the source term j, even though it may be a random
process, is of bounded variation (with respect to time), so that equation
(14.1) may be considered a differential equation pointwise in ω. This is in
contrast to the situation in, e.g., Chapter 12, where the randomness in the
term j was considered as arising from the summation of a large number of
independent error terms, thus leading - through central limit theorem type
of arguments - to a model for j as a process of infinite variation, so that
equation (14.1) would require a special treatment in terms of the theory of
the Itō integral and stochastic differential equations. To mark the qualitative
and technical differences between these two types of differential equations,
we will retain the terminology random for the first and stochastic for the
second. See also Remark 2.4.6.

The medium coefficients must be of such form as to allow us to model
small-scale (fast-varying) random microstructure. From now on we assume
medium coefficients of a specific form:

Assumption 14.3.2

(i) Consider a probability space (Ω,F , P ) and let Φ(·, ω) : R3 → R3 be
a random diffeomorphism P -a.s. with the property5 that gradΦ is

4We use the subscript ω to emphasise the randomness.
5We also make the technical assumptions ess infω∈Ω, x∈R3 [det(gradΦ(x, ω)] > 0,

ess supω∈Ω, x∈R3 grad|Φ(x, ω)| <∞.
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stationary under an ergodic group action, i.e.,

∀y ∈ R3, gradΦ(x+ y, ω) = gradΦ(x, τy, ω).

(ii) The random medium can be modelled with coefficients of the form

Aor,ω = Aε
or

(x, ω) = Aor

(
Φ−1

(x
ε
, ω
))

,

Gω = Gε
d
(t, x, ω) = Gd

(
t,Φ−1

(x
ε
, ω
))

,
(14.2)

where Aor(y) and Gd(y, t) are deterministic matrix-valued functions
periodic in y ∈ R3 with common period Y , where Φ is P -a.s random
diffeomorphism with stationary gradients under an ergodic action.

Remark 14.3.3 This assumption on the coefficients of the medium is in-
spired by recent very interesting work by X. Blanc, C. Le Bris and P.-L. Lions
[67] on stochastic elliptic homogenisation, and models some kind of statisti-
cal periodicity of the medium and guarantees ergodicity.

To be able to model the small-scale periodic microstructure, we must let
ε vary over a range of arbitrarily small values. We are therefore led to a
sequence of random boundary value problems,

(Aεoru
ε + Gεd ? u

ε)′ = Muε + j, (14.3)

with initial condition uε = 0, and the perfect conductor boundary condition

n× uε1 = 0, on O. (14.4)

The explicit t, x and ω dependence is omitted for simplicity.
If the solution of the above sequence of random boundary value problems

exists for all ε > 0 (a hypothesis that will be verified by Theorem 14.3.4),
then this will generate a sequence of random fields {uε} = {uε(t, x, ω)}. To
understand the effects of small-scale random microstructure, we must go to
the limit as ε→ 0. Then questions similar to those we addressed in Chapter
9 arise, i.e., whether the sequence of random fields {uε} converges in some
weak sense to a limit random field u∗, and whether this random field is the
solution of a differential equation similar in type to the original Maxwell
system

(Ahoru
∗ + Ghd ? u

∗)′ = Mu∗ + j ,

but now with constant coefficients Ahor
, Gh

d
. Can these coefficients be speci-

fied by the coefficients of the original medium, in a manner similar to what
we have seen in Chapter 9 for deterministic media? Furthermore, can it
be that under certain circumstances, the limiting field as well as the limit-
ing differential equation are not random? The answer to these questions is
complicated in the case of random media by the fact that now the quanti-
ties involved are random fields defined on a probability space and not only
deterministic functions. This fact requires some special care as far as con-
vergence properties of the sequences of random fields are involved. However,
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the powerful tools of ergodic theory will be of assistance, leading in the end
to positive answers to most of our questions, as well as elegant formulae for
the calculation of the homogenised coefficients.

We end this section by providing a theorem showing the well posedness of
the random Maxwell system.

Theorem 14.3.4 The Maxwell system (14.1) is uniquely solvable for all
ε > 0 and ω ∈ Ω and the solution satisfies

‖uε(t)‖X ≤ C, for all ε, t > 0, P − a.s.

and

‖uε(t)‖L2(Ω,F, P ; X) ≤ C, for all ε, t > 0.

Proof. The existence of a solution P -a.s. may be proved for any fixed ε > 0
by the Faedo-Galerkin method, with minor modifications of Theorem 7.5.2
in Section 7.5.2, (see also Proposition 1 in [70]), and thus the details are
omitted. We show only that the solution obtained pointwise in ω is square
integrable with respect to the probability measure. To this end, fix any
ε > 0 and consider the finite-dimensional approximation of the solution
{uεm}, uεm = Pmu

ε, where Pm is the projection operator on the subspace
spanned by the first m vectors of the chosen basis. The sequence {umε}m∈N
is now a sequence of random fields. This sequence for all m satisfies a finite-
dimensional equation of the form

(Aεoru
ε
m + Gεd ? u

ε
m)′ = Muεm + jm, (14.5)

where Aεor,G
ε
d,M, jm are appropriate finite-dimensional projections of the rel-

evant quantities (see the proof of Theorem 7.5.2 for their definitions; here
for simplicity they are denoted the same as their infinite-dimensional coun-
terparts).

As an intermediate step using the Faedo-Galerkin method, we find the
following a priori estimates for the finite-dimensional approximations,

|| uεm ||L∞([0, T ]; X)≤ c (|| j ||L1([0, T ]; X) + || uε(0) ||XM) (14.6)

and

|| (uεm)′(t) ||X≤ c (|| j ||W1,1([0, T ]; X) + || uε(0) ||XM) , (14.7)

which hold P -a.s. We start from the a priori estimate (14.6), which holds
P -a.s. for any m; we square this inequality and take the expectation with
respect to the probability measure P . As long as

E[|| j ||2
W1,1([0, T ]; X)

] <∞, E[|| uε(0) ||2XM
] <∞,

we obtain that the sequences uεm and (uεm)′ are uniformly bounded in m,
for all t ∈ [0, T ] in the norms of L2(Ω,F , P ;XM) and L2(Ω,F , P ;X), re-
spectively. Therefore, uεm, (uεm)′ converge to uε, (uε)′, respectively, weakly
in L2(Ω,F , P,XM) and L2(Ω,F , P ;X), respectively. However, one may show
that these sequences converge strongly in L2(Ω,F , P ;XM) and L2(Ω,F , P,X),
respectively. Consider (14.5) for n and m and subtract. The difference
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uε,♦(t) := uεn(t)− uεm(t) solves an equation of the same form as (14.5) with
Pnj − Pmj on the right-hand side and with uε,♦(0) = un(0)− um(0) as the
initial condition. By working in exactly the same manner as above we obtain
the a.s. estimates

|| uεn − uεm ||L∞([0, T ]; X)≤
c (|| Pnj − Pmj ||L1([0, T ]; X) + || uεn(0)− uεm(0) ||XM) , (14.8)

and similar estimates for the temporal derivatives. Taking expectations with
respect to the measure P ,

E[ || uεn − uεm ||L∞([0, T ]; X) ] ≤
c (E[ || Pnj − Pmj ||L1([0, T ]; X) ] + E[ || uεn(0)− uεm(0) ||XM ]) . (14.9)

If we assume that j ∈ L2(Ω,F , P, L1([0, T ];X)) and u(0) ∈ L2(Ω,F , P ;XM),
then the right-hand side of the inequalities tends to 0 as n,m→∞. There-
fore, we obtain that uεm, (uεm)′ are Cauchy sequences in L2(Ω,F , P ;XM) and
L2(Ω,F , P ;X), respectively; therefore they converge strongly, to uε and
(uε)′, respectively. We may now take the limit as m → ∞ in (14.6) and
reach the stated result.

Finally, working similarly as for the a.s. solution, we obtain that the limit
is the solution of

E[〈Aoru
ε + Gdu

ε, v〉′] = E[〈Muε, v〉] + E[〈j, v〉] ,
for all v ∈ L2(Ω,F , P ;XM). This concludes the proof. 2

14.4 A FORMAL TWO-SCALE EXPANSION

To provide some insight concerning the structure of the homogenised system
for equation (14.3) that will facilitate the mathematically rigorous treatment
that follows, we provide some formal arguments using a two-scale expansion.
As most of this formal expansion proceeds in parallel with the periodic case
presented in Section 9.3, we shall be very brief, simply focusing on the dif-
ferences arising in the random case. To save space, we will use six-vector
notation.

In view of the comments in Remark 14.3.1, we may take the Laplace
tranform of (14.3) with respect to time and use its properties to reduce this
equation to a random partial differential equation in terms of the spatial
variable only of the form

p(Aorû
ε + Ĝdû

ε) = Mûε + ĵ (14.10)

where Aor = Aor

(
Φ−1

(
x
ε , ω

))
and Ĝd = Ĝd

(
Φ−1

(
x
ε , ω; p

))
. In order to sim-

plify the exposition we will use the notation s + ŝd =: ŝ, where s is a proxy
for ε, ξ, ζ, µ. As in the periodic case, we assume that the fields may be
expanded in power series, in terms of ε� 1, as ûε(x, ω) =

∑∞
j=0 ε

j û(j)(x, ω)

where û(j)(x, ω) = (Ê(j)(x, ω), Ĥ(j)(x, ω))tr and we have dropped the ex-
plicit p dependence for simplicity of notation. In view of the special choice
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for the structure of the random coefficients (14.2), these functions assume
the special form û(j)(x, ω) = û(j)

(
x,Φ−1(y, ω)

)
, where y = x

ε
is considered

an independent variable from x (in the spirit of the two-scale expansion).
Owing to the stationarity of the gradients of the random diffeomorphism Φ,
the functions gradyû

(j) will be stationary in y.
Proceeding with the two-scale expansion in parallel with the periodic case

(see Section 9.3), we observe that to order O(ε−1), we have that û(0)(x, y) =
u1(x) + gradyΨ(x,Φ−1(y, ω)), where Ψ = (Ψ1,Ψ2)tr for Ψi, i = 1, 2, scalar
functions, and gradyΨ = (gradyΨ1, gradyΨ2)tr. The function Ψ(x, z) is de-
terministic and periodic with respect to the second variable with periodicity
Y . The introduction of randomness requires a generalisation of the concept
of averaging. This comes from the fact that Ψ(x, z) is deterministic and
Y -periodic in the variable z, but it is calculated at Φ−1(y, ω), which is a
random variable. Then

E

[∫
Φ(Y,ω)

gradyΨ(x,Φ−1(y, ω)) dy

]
= 0 ,

and this shows that the averaging operation should be modified to

〈f〉 :=
1

E[|Φ(Y, ω)|]
E

[∫
Φ(Y,ω)

f(x,Φ−1(y, ω)) dy

]
, (14.11)

where |Φ(Y, ω)| is the Lebesgue measure of the image of the cell Y under
the (random) mapping Φ(·, ω). It is clear that |Φ(Y, ω)| is a real-valued
random variable, so that the averaging operator requires normalisation over
the average volume of the image of the periodicity cell Y . The effect of
applying this averaging operator on û(0) is 〈û(0)〉 = u1(x).

We now proceed to the next order O(ε0), substitute the expression ob-
tained above for û(0) and take the divergence with respect to y to obtain (in
complete analogy with the periodic case) that Ψ must satisfy the random
elliptic system

divy(AorgradyΨ) = divy(Aoru
1) ,

where all the terms are to be understood exactly as in (9.12) (see p. 186) with
the difference that now Ψ is a random field. The analogue of periodicity is
now to be understood in a random sense as above. By the same arguments as
in Section 9.3, this elliptic system has a solution in the form Ψi = R(i) ·u1

1 +
V (i)u1

2 , i = 1, 2 where R(i), V (i) are three-vectors (R(1) = Λ(1), R(2) = Λ(3),
V (1) = Λ(2), V (2) = Λ(4) in the notation of (9.13) p. 186). Substitution
of this ansatz into the elliptic system yields that the three-vectors R(i) =

(R
(i)
1 , R

(i)
2 , R

(i)
3 ), V (i) = (R

(i)
1 , R

(i)
2 , R

(i)
3 ) should solve the elliptic systems

0 = divy(Aor gradyRk) + divy(Aorek), k = 1, 2, 3 ,

0 = divy(Aor gradyVk−3) + divy(Aorek), k = 4, 5, 6 ,
(14.12)

where Rk = (R
(1)
k , R

(2)
k )tr and Vk = (V

(1)
k , V

(2)
k )tr, k = 1, 2, 3 and ek is the

canonical basis of R6. These equations are of the exact form as (9.14) and
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(9.15) (see Section 9.3 p. 186) but with random coefficients, and expressed
now in more compact notation to save space.

We next apply the averaging operator on the equation obtained by the
O(ε0) expansion, and we see that the average fields u1 satisfy an equation
of the form

pÂor

h
u1 = Mu1 ,

with Âor

h
given by averaging Âor over the solutions of the cell equations

(14.12) in terms of the averaging operator (14.11). The expressions are
the same as in (9.16) in Section 9.3 (p. 187) but of course with the new
interpretation of the solutions of the cell equations and the operator 〈 · 〉.

14.5 HOMOGENISATION OF THE MAXWELL SYSTEM

We now turn to the mathematically rigorous study of the Maxwell equations
for random complex media exhibiting ergodic properties. The treatment of
the problem proceeds similarly as for the periodic problem treated in Sections
9.4 and 9.5, so that we will focus only on the main differences that arise in
the random case.

14.5.1 An auxiliary random elliptic problem

As motivated by the formal two-scale expansion of Section 14.4 (see also
Section 9.4.1 for the periodic case), the following random elliptic system is
closely related to the Laplace transformed random Maxwell problem. Con-
sider a 6× 6 random matrix Ae` expressed in block form as

Ae` =

(
a b
c d

)
, (14.13)

where a, b, c, d are random matrices of the form assumed in Assumption
14.3.2, and in particular in (14.2).

Definition 14.5.1 For a random matrix Ae` (x, ω) as in equation (14.13),
consider the random elliptic operator Lε : H1

0 (O) × H1
0 (O) → H−1(O) ×

H−1(O), defined as

Lε = divx(Ae` (x, ω) gradx ·) .

Remark 14.5.2 The operators defined above are random matrix elliptic
operators acting on two-vectors w = (w1, w2)tr, as follows:

Lε
(
w1

w2

)
=

(
−divx(a gradxw1)− divx(b gradxw2)
−divx(c gradxw1)− divy(d gradyw2)

)
and s = s

(
Φ−1

(
x
ε , ω

))
, where s is a proxy for a, b, c and d.



rsy-book-final December 7, 2011

HOMOGENISATION 285

Remark 14.5.3 Note that by Assumption 14.3.2, it is s
(
Φ−1

(
x
ε , ω

))
that

is random, i.e., the randomness is inserted into the model by taking the
composition of s with the random diffeomorphism Φ−1(y, ω). The matrix s
itself is not random; if calculated on a deterministic argument y, then s(y)
is a deterministic matrix-valued function of period Y .

Assumption 14.5.4 The matrix Ae` ∈ L∞(O,R6×6) satisfies the following
conditions:

(i) There exists a positive constant c1 such that |Ae` (z) y · y| ≥ c1 |y| for
almost all z ∈ O and all (deterministic) y ∈ R6.

(ii) There exists a positive constant c2 such that |A−1
e`

(z) y · y| ≥ c2 |y| for
almost all z ∈ O and all y ∈ R6.

Remark 14.5.5 When choosing z = Φ−1
(
x
ε , ω

)
, the above assumption

holds P -a.s. for the family of random matrices {Aεe` }.

We now define the random averaging operator.

Definition 14.5.6 (Random averaging operator) Let s be a random
field of the form s(x, y, ω) = s

(
x,Φ−1(y, ω)

)
. The random averaging opera-

tor is defined as

〈s〉 =

(
E[

∫
Y

det(gradΦ(y, ω)) dy]

)−1

E[

∫
Φ(Y )

s(x,Φ−1(y, ω))dy] .

Remark 14.5.7 This is clearly the random generalisation of the periodic
averaging operator used in Chapter 9. In fact if the medium is determin-
istic and periodic then 〈s〉 = 1

|Y |
∫
Y
s(x, y)dy. Furthermore, in the random

case, this operator is essentially an averaging operator since by the ergodic

theorem 〈s〉 = limL→∞
∫ L
−L s(x, y)dy. This justifies the term self-averaging

environment often used in homogenisation theory.

Remark 14.5.8 By standard calculus arguments it follows that,

E[

∫
Y

det(gradΦ(y, ω)) dy] = E[|Φ(Y, ω)|],

so that the random averaging operator coincides with the averaging operator
employed in the formal approach in Section 14.4. Furthermore, using the
ergodic theorem in this context, it can be shown (see Remark 1.9 in [67])
that

E[

∫
Y

det(gradΦ(y, ω)) dy] = det

(
E[

∫
Y

(gradΦ(y, ω)) dy]

)
.

Consider now the following random cell elliptic problems and their solu-
tions:
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Definition 14.5.9 (Random cell systems) For j = 1, 2, 3, ` = 1, 2, the
random cell systems are the random elliptic systems

Lc

(
r

(j)
1

r
(j)
2

)
=

(
divya],j
divyc],j

)
, Lc

(
v

(j)
1

v
(j)
2

)
=

(
divyb],j
divyd],j

)
, (14.14)

where Lc is the random matrix operator Lc = −divyAe`

(
Φ−1(y, ω

)
grady· )

and s(y) = s(Φ−1(y, ω)), where s is a proxy for the matrices a, b, c, d. These
equations are supplemented with the conditions

gradys = grady š(Φ
−1(y, ω)), grady š is stationary, 〈gradys〉 = 0, (14.15)

where s is a proxy for the random fields r(j), v(j), j = 1, 2, 3.

Remark 14.5.10 The conditions (14.15) constitute a generalisation of the
periodic boundary conditions used in Chapter 9.

This system of equations (14.14) is called the cell system and, comple-
mented with the boundary conditions (14.15), has a unique solution (mod-
ulo random constants). Note that in (14.14), y ∈ R3 rather than in Y ; it is
Φ−1(y, ω) that belongs in Y . The solvability follows by a proper application
of the Lax-Milgram lemma, generalising the approach of [66] (see also [67])
for elliptic systems6. The solution is in L2(Ω,F , P ;H1

loc(R3)×H1
loc(R3)).

Consider now the 3× 3 matrices ah, bh, ch, dh, defined as

(ah)ij = 〈aij +

3∑
k=1

aik∂ykr
(j)
1 +

3∑
k=1

bik∂ykr
(j)
2 〉,

(bh)ij = 〈bij +

3∑
k=1

aik∂ykv
(j)
1 +

3∑
k=1

bik∂ykv
(j)
2 〉,

(ch)ij = 〈cij +

3∑
k=1

cik∂ykr
(j)
1 +

3∑
k=1

dik∂ykr
(j)
2 〉,

(dh)ij = 〈dij +

3∑
k=1

cik∂ykv
(j)
1 +

3∑
k=1

dik∂ykv
(j)
2 〉,

(14.16)

where r
(j)
` , v

(j)
` , j = 1, 2, 3, ` = 1, 2, are the solutions of the cell systems

(14.14) and the averaging operation is to be understood in the sense of
Definition 14.5.6.

Definition 14.5.11 (Homogenised diffusion matrix) The constant co-
efficient matrix

Ahe` =

(
ah bh

ch dh

)
, (14.17)

where ah, bh, ch, dh are defined as in (14.16), is called the homogenised
diffusion matrix.

6Making explicit use of the stationarity hypothesis.
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The following random homogenisation theorem holds for the elliptic prob-
lem.

Theorem 14.5.12 Consider the solution uε of the random elliptic problem
Lεuε = f . As ε→ 0, we have that uε ⇀ uh, in H1

0 (O)×H1
0 (O), P -a.s., where

uh is the solution of the elliptic problem Lhuh = f , where the homogenised
matrix Ahe` is given as in (14.17). Furthermore, Aεe` u

ε ⇀ Ahe` u
h, in L2(O).

Proof. The proof follows closely the treatment of [67], [66] for the case of
scalar elliptic equations and is sketched only briefly here. The key result is a
convergence result for stationary essentially bounded (in R3) and integrable
(with respect to the probability measure) functions s, according to which

s
(

Φ−1
(x
ε
, ω
)
, ω
)
∗
⇀

E[

∫
Y

det(gradΦ(y, ω)) dy]

−1

E[

∫
Φ(Y )

s(Φ−1(y, ω))dy],

in L∞(R3). P -a.s. in the limit as ε → 0, where the right-hand side is
nothing else but 〈s〉 (see Definition 14.5.6). This result follows from the
ergodic theorem (see [67]). We work with the weak form of the random
elliptic system and follow closely the same steps as for the periodic case (see
Theorem 9.4.8), along with the random version of the div-curl lemma to
obtain the desired result. 2

14.5.2 Homogenisation of the random Maxwell system

We now turn to the homogenisation of the random Maxwell system. We
work with the Laplace transform of the system and make the following as-
sumptions and definitions:

Assumption 14.5.13 The block matrix

Aor,ω(y, p) := Aor,ω(y) + Ĝω (y, p) =

(
ε+ ε̂d ξ + ξ̂d
ξtr + ξ̂trd µ+ µ̂d

)
=:

(
εL ξL
ζL µL

)
satisfies the conditions of Assumption 14.5.4.

The following random elliptic operators will be needed.

Definition 14.5.14 The auxiliary “microstructure” random elliptic opera-
tor associated with the Maxwell system is

LεM = −divx(Aε,tr
or

gradx·), (14.18)

and the auxiliary “cell” random elliptic operator associated with the Maxwell
system is

Lc,M = −divy((Aper

or )trgrady· ). (14.19)

Definition 14.5.15 Let Ahor,ω be the homogenised matrix for the random
elliptic system of Definition 14.5.14, obtained as in Section 14.5.1. The
Laplace transform of the homogenised constitutive relation is given by

d̂h = Ah
or,ω
û.
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Remark 14.5.16 Because of the symmetry condition on Aor it follows that
Atror

= Aor.

We now perform random elliptic homogenisation for the auxiliary elliptic
systems in 14.5.14 as in Section 14.5.1 and obtain the constant coefficient
matrix Ah

or
using the expressions in equations (14.17) and (14.16) with Ae` =

Aor. Note that by the ergodicity of the medium, the homogenised coefficients
are deterministic.

Theorem 14.5.17 The solution uε = (Eε, Hε)tr of the random Maxwell
system (14.3) satisfies

uε
∗
⇀ u∗, in L2(Ω,F , P ;L∞([0, T ],X)),

where u∗ = (E∗, H∗)tr is the unique solution of the Maxwell system

(Ah
or
u+ Gh

d
? u)′ = Mu+ j (14.20)

with homogeneous initial conditions and perfect conductor boundary condi-
tions, where the homogenised coefficients Ahor and Gh

d
are given as in Defini-

tion 14.5.15.

Proof. The proof proceeds in parallel with the one for the periodic case, so
we stress only the differences needed for the random case. The existence of
the limit u∗ follows from the results of Theorem 14.3.4 and weak compactness
arguments. These guarantee the existence of a subsequence {uεk} converging
to u∗ weak star in L2(Ω,F , P ;L∞([0, T ],X)) and, by standard properties of
Lebesgue spaces, of a further subsequence {uεk` } converging to u∗ P -a.s.
Similar arguments, along with the properties of Aor, hold for the sequence
{dε}. We will work with these subsequences, which will be denoted by {uε},
{dε} for simplicity, to identify the relation between the limits d∗ and u∗ that
will lead us to the homogenised constitutive relation.

For these subsequences, we repeat the proof of Theorem 9.4.14 but replace
the auxiliary periodic elliptic systems with their random counterparts. Using
the results of the random elliptic homogenisation theory stated in Section
14.5.1 we obtain exactly the same results as in Theorem 9.4.14, with the
difference that the relevant quantities are now random fields and the conver-
gence holds P -a.s. Minor modification of the arguments provides the form
of the homogenised system. 2

14.6 MISCELLANEA

The form of random coefficients used in this chapter is only a special form,
one that models random deviations from a periodic material. This form
facilitates the calculation of the homogenised coefficients, especially in the
case where the deviation from periodicity is small. This can be modelled
in the present framework by assuming that Φ = I + θΦ1, where I is the
identity transformation, θ � 1 is a small parameter and all the randomness
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is included in the random diffeomorphism Φ1. Such an assumption allows
a perturbative study of the homogenisation formulae and can lead to con-
venient numerical methods for their calculation; it has been introduced and
provided very interesting results for random elliptic equations in [66], [67].

Furthermore, techniques like the two-scale convergence or the periodic
unfolding method may be extended for the study of random homogenisation
(see, e.g., [419]). The techniques for random homogenisation introduced here
may be also be extended to nonlinear media. Finally, the theory of correctors
can be generalised for random homogenisation, see, e.g., [217].
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Appendix A

Some Facts from Functional Analysis

For a thorough introduction to functional analysis the reader may consult,
e.g., [47], [60], [79], [276], [361], [364], [451].

A.1 DUALITY

Let X be a normed space. Its dual, denoted by X ′, is the space L(X,C)
of bounded linear functionals f : X → C. The value f(v) of the functional
f ∈ X ′ at the point v ∈ X is denoted by 〈f, v〉. By the definition of the
norm in L(X ,C) we have

|〈f, v〉| ≤ ||f ||X′ ||v||X and ||f ||X′ = sup
06=v∈X

|〈f, v〉|
||v||X

.

Let us note that even if X is not complete, X ′ is a Banach space. This
section closely follows [309], where a detailed exposition appears. See also
[79].

An important result for the study of duality is the celebrated Hahn-Banach
theorem; we consider the following version.

Theorem A.1.1 If W is a subspace of a normed space X, then every func-
tional in W ′ can be extended to a functional in X ′ having the same norm.

A simple corollary is that if 0 6= v ∈ X, there exists a f ∈ X ′ such that
〈f, v〉 = ||v||X and ||f ||X′ = 1.

Let X ′′ = (X ′)′ be the second (or double) dual of X. Let I : X → X ′′

be defined by 〈Iv, f〉 = 〈f, v〉, v ∈ X, f ∈ X ′. It easily follows that I is
an isometric isomorphism from X onto a subspace I(X) of X ′′. So the
identification of X with I(X) is permitted; we write X ⊆ X ′′. X is closed
in the complete space X ′′ if and only if X is complete. If X = X ′′ the space
X is called reflexive. Clearly, every reflexive space is complete.

Let X1, X2 be normed vector spaces and A : X1 → X2 be a linear map.
Its transpose Atr : X ′2 → X ′1 is the linear map defined by 〈Atrv, w〉 =
〈v,Aw〉, ∀v ∈ X ′2, w ∈ X1. It is well known that Atr is bounded if and
only if A is bounded; further, ||Atr||L(X′2,X

′
1) = ||A||L(X1,X2). In the case

that A : H ⊃ D(A) → H is a densely defined linear operator, where H
is a Hilbert space, the term adjoint and the notation A∗ is used instead of
transpose.

In many applications, it is convenient to employ a space Y that is iso-
morphic to X ′ as follows: suppose there exists a bounded bilinear form
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〈〈·, ·〉〉 : Y ×X → C. We then can define a bounded linear operator I : Y → X ′

by 〈If, v〉 = 〈〈f, v〉〉. If I is an isomorphism of Banach spaces (by assum-
ing that it has a bounded inverse), then Y is called a realisation of X ′.
The pair 〈〈·, ·〉〉 is called the duality pairing for Y × X and is denoted by
〈〈·, ·〉〉Y,X . In this case ||If ||X′ is equivalent1 to ||f ||Y , which is equivalent

to sup06=v∈X
|〈〈f,v〉〉|
||v||X . Y is usually identified with X′, and the distinction be-

tween f and If , as well that between 〈·, ·〉 and 〈〈·, ·〉〉, and between 〈·, ·〉Y,X
and 〈〈·, ·〉〉Y,X , is suppressed.

Now let H be a Hilbert space with inner product (·, ·)H . Given v ∈ H,
the inner product defines a bounded linear functional I1v ∈ H ′ by 〈I1v, w〉 =
(v, w)H . We have the celebrated Riesz representation theorem.

Theorem A.1.2 Let H be a Hilbert space. For each f ∈ H ′ there exists a
unique v ∈ H such that 〈f, w〉 = (v, w)H , ∀w ∈ H. Additionally, ||f ||H′ =
||v||H .

Let us note that H ′ is a Hilbert space, a fact established in view of the
above representation by defining (f, g)H′ = (I−1

1
g, I−1

1
f)H and then obtain-

ing a conjugate-linear isometry I2 : H ′ → H ′′ given by 〈I2f, g〉 = (f, g)H′ . It
can then be seen that I2 ◦ I1 : H → H ′′ coincides with the natural embed-
ding of H into H ′′, so that every Hilbert space is reflexive. A linear isometry
I : H → H ′ can be defined by 〈Iv, w〉 = (v, w)H . In view of I, the spaces H
and H ′ can be identified.

Consider two Hilbert spaces, V and H, where V is a dense subspace of H,
with ||v||H ≤ ||v||V for all v ∈ V . Assume that H is equipped with a con-
jugation, which induces - by restriction - a conjugation on V . In particular,
||v||V is equivalent to ||v||V and ||v||H is equivalent to ||v||H . We identify
H with H ′, but not V with V ′. Hence, the inclusion map i : V → H is
bounded and one-to-one, with dense range. Therefore, the transposed map
itr : H = H ′ → V ′ enjoys the same properties. Identifying H with a dense
subspace of V ′ via the transposed map, we say that H acts as a pivot space
for V ′ and use the notation V ⊆ H ⊆ V ′. This inclusion relation is called
the Gelfand triple of V,H, V ′.

Typical examples are2

1. V = H1
0 (O) ⊆ H = L2(O) ⊆ V ′ = H−1(O)

2. V = Hs(Rn) ⊆ H = L2(Rn) ⊆ V ′ = H−s(Rn), s ≥ 0.

Let us note that although the above setting is by far the most common, in
certain cases it does not make sense to identify a space with its topological

1Recall that two norms || · || and ||| · ||| on a vector space X are equivalent if c||v|| ≤
|||v||| ≤ C||v|| , ∀x ∈ X, where c, C are constants.

2Recall that for s ≥ 0, Hs(Rn) := {u ∈ L2(Rn) : (1 + |z|2)s/2ũ(z) ∈ L2(Rn)}, with
(u, v)Hs(Rn) =

∫
Rn (1 + |z|2)s ũ(z)ṽ(z) dz, where ũ denotes the Fourier transform of u.

By S′(Rn) we denote the tempered distributions in Rn, i.e., the dual space of S(Rn), the

rapidly decreasing functions in Rn. Then H−s(Rn) = {f ∈ S′(Rn) : (1 + |z|2)−s/2f̃(z) ∈
L2(Rn)}.
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dual: let H = L2(R) and consider the weighted (dense) subspace V =
L2(R; (1 + |x|)) of H. The space V is endowed with the (standard) inner
product (v, w)V =

∫
R(1 + |x|)v(x)w(x)dx. Any element φ ∈ H ′ is also an

element of V ′. If we identify φ with an element f ∈ H, this function does not
define a linear form on V and the expression φ(v) = 〈f, v〉V is meaningless
on V . In such a situation it is necessary to work in a nonpivot Hilbert space.
For example, weighted variational inequalities in nonpivot Hilbert spaces
constitute an interesting topic that also finds a variety of applications (see
[50]).

A.2 STRONG, WEAK AND WEAK-∗ CONVERGENCE

The notions of weak and weak-∗ convergence are extremely important and
useful in analysis. We introduce them briefly, paying attention to particular
examples in Lebesgue spaces that are of interest in this work.

Definition A.2.1 Consider a Banach space X, its dual X ′, 〈·, ·〉 the duality
pairing between these spaces and a sequence {xn} in X.

(i) The sequence {xn} converges strongly to x ∈ X if and only if
||xn − x|| → 0.

(ii) The sequence {xn} converges weakly to x ∈ X if and only if for every
x′ ∈ X we have that 〈xn, x′〉 → 〈x, x′〉. We denote this by xn ⇀ x.

(iii) Suppose that there exists a Banach space Y such that X = Y ′. Then
we say that the sequence {xn} converges weak-∗ to x ∈ X if and only

if 〈xn, y〉Y ′,Y → 〈x, y〉Y ′,Y for all y ∈ Y . We denote this by xn
∗
⇀ x.

One could say that the strong convergence corresponds to convergence in
the norm topology. On the other hand, the weak convergence corresponds to
convergence in the topology of the dual space, whereas the weak-∗ conver-
gence corresponds to convergence in the topology of the double dual space.

The following scheme may easily be shown:

strong
convergence

→ weak
convergence

→ weak-∗
convergence

but of course it does not work the other way around! It may also be seen
directly from the definition that if X is a reflexive space, i.e., if (X ′)′ =
X, then weak-∗ convergence coincides with weak convergence. Therefore,
weak−∗ convergence is important when we deal with nonreflexive spaces.
Note that all Hilbert spaces are reflexive, since by the Riesz identity H ′ ' H.
However, this is not true for Lebesgue spaces in general. If O ⊂ RN , then
Lp(O), 1 < p < ∞ is a reflexive and separable space whose dual is Lp

′
(O),

( 1
p + 1

p′ = 1); L1(O) is separable but nonreflexive, and its dual is L∞(O);

while L∞(O) is neither reflexive nor separable, and its dual is the space of
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Radon measures (i.e., signed measures on O of bounded total variation),
which is strictly bigger than L1(O).

The above definitions assume the following specific forms in the context
of Lebesgue spaces:

Definition A.2.2 (Weak and weak-∗ convergence in Lp spaces)

(i) un ⇀ u in Lp(O), 1 < p <∞, if∫
O
un φdx→

∫
O
uφ dx, ∀φ ∈ Lp

′
(O),

1

p
+

1

p′
= 1.

(ii) un ⇀ u in L1(O), if∫
O
un φdx→

∫
O
uφ dx, ∀φ ∈ L∞(O).

(iii) un
∗
⇀ u in L∞(O), if∫

O
un φdx→

∫
O
uφ dx, ∀φ ∈ L1(O).

The following proposition is often useful (see, e.g., [97]).

Proposition A.2.3 Suppose that either un ⇀ u in Lp(O) or un
∗
⇀ u in

L∞(O). Then the sequence {un} is uniformly bounded (in n) in Lp(O) or
L∞(O), respectively, and∫

O0

un φdx→
∫
O0

uφ dx, for every open O0 ⊂ O .

The following result (Eberlein-Šmulian theorem) provides weak compact-
ness results.

Theorem A.2.4 Let X be a reflexive space. Then any bounded sequence
{xn} in X has at least a weakly convergent subsequence {xnk}. Furthermore,
if each weakly convergent subsequence converges to the same limit x, then the
whole sequence weakly converges to x.

The following theorem provides weak-∗ compactness results.

Theorem A.2.5 Let Y be a separable space, such that X = Y ′. Then any
bounded sequence {xn} in X has at least a weakly-∗ convergent subsequence
{xnk}. Furthermore, if each weakly-∗ convergent subsequence converges to
the same limit x, then the whole sequence weakly-∗ converges to x.

This theorem works in particular for the case, where X = L∞(O) (in

which case Y = L1(O)). Furthermore, if un
∗
⇀ u in L∞(O), then un ⇀ u in

Lp(O), 1 ≤ p <∞. This can be easily seen since, if {un} weakly-∗ converges
in L∞(O), it is bounded in this space, but then the standard embeddings
for Lebesgue spaces imply that {un} is bounded in every Lp, 1 ≤ p <∞. In
turn, the weak compactness result in Theorem A.2.4 guarantees the existence
of a weakly convergent subsequence in Lp(O).
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Remark A.2.6 The product of weakly convergent sequences need not nec-
essarily converge weakly. This problem of weak convergence, which often
arises in a number of applications, e.g., in homogenisation theory, is recti-
fied with the use of compensated compactness (see Section C.2 in Appendix
C), which assumes further properties of the sequences (e.g., properties of
their derivatives) to guarantee convergence of the product.

A.3 CALCULUS IN BANACH SPACES

A.3.1 Derivatives of vector-valued functions

Let F : X → Y be a map between two Banach spaces X, Y .

Definition A.3.1 A linear map T : X → Y is the Fréchet derivative of F
at x0 ∈ X if

lim
||u||X→0

1

||u||X
||F (x0 + u)− F (x0)− Tu||Y = 0.

We denote T by F ′(x0).

The standard theorems of differential calculus can now be transferred in
the Banach space setting using the Fréchet derivative. For instance, the
chain rule has a Banach space version, as follows.

Theorem A.3.2 Let X,Y, Z be Banach spaces and F : X → Y , G : Y → Z
be continuous mappings such that the composition G◦F is defined. If F and
G are Fréchet differentiable, then G ◦ F is also Fréchet differentiable, and

(G ◦ F )′(x) = G′(F (x)) ◦ F ′(x).

Furthermore:

Theorem A.3.3 Let F : X → Y be an invertible mapping, and denote
the inverse by G = F−1. If F is Fréchet differentiable at a point x0 and
F ′(x0) : X → Y is a linear homeomorphism, then the inverse mapping G is
also Fréchet differentiable at y0 = F (x0), and

G′(y0) = (F−1)′(y0) = (F ′(x0))−1.

With the use of the Fréchet derivative we may generalise Newton’s method
for the solution of nonlinear equations of the form F (x) = 0 in a Banach
space setting. The Newton scheme for this case would be the iterative scheme

xn+1 = xn − (F ′(xn))−1F (xn), (A.1)

where now (F ′(xn))−1 is the inverse of the Fréchet derivative of F , calculated
at xn. The following theorem provides conditions under which this Newton
scheme converges to the solution of the problem (in the sense that xn → x∗,
in the strong topology of X, where x∗ satisfies F (x∗) = 0). Let B(x0, r)
denote the open ball of centre x0 and radius r.
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Theorem A.3.4 Let F : B(x0, r) → Y be continuously differentiable and
such that

(i) F ′(x0)−1 ∈ L(Y,X), ||F ′(x0)−1F (x0)||X = α, ||F ′(x0)−1||X = β,

(ii) ||F ′(u)− F ′(v)||Y ≤ k||u− v||X , u, v ∈ B(x0, r),

(iii) 2kαβ < 1, 2α < r

hold. Then F has a unique zero x∗ ∈ B(x0, 2α) and the Newton iterates
(A.1) converge to x∗.

For the Fréchet derivative and its properties, see, e.g., [3], [60], and the
appendix in [98].

A.3.2 The Bochner integral

The Bochner integral extends the theory of Lebesgue integration for func-
tions that take values in a Banach space. Let (X,F , µ) be a measure space
and consider a function F : X → Y , where X,Y are Banach spaces. A
particular case of interest is when (X,F , µ) = (R,B(R), µL), where B is
the Borel σ-algebra on R and µL is the Lebesgue measure. In the general
case, however, where X is a Banach space, we need to be careful about the
definition of the measure space since in general, one may define various mea-
surability concepts. We will always consider the case where X is separable,
where according to the Pettis theorem all these notions coincide.

Definition A.3.5 Consider the measurable spaces (X,F ) and (Y,G ). A
function f : X → Y is called F -simple if it can be expressed as

f(x) =
n∑
k=1

fk χAk(x), x ∈ X, fk ∈ Y, Ak ∈ F .

The Bochner integral for an F -simple function is defined as∫
X

f dµ =
n∑
k=1

fkµ(Ak).

The Bochner integral takes values in Y .
It can be proved that any measurable function can be approximated by a

sequence of simple functions. This motivates the following definition for the
Bochner integral of any measurable function.

Definition A.3.6 Let f : X → Y be a measurable function and fn be a
sequence of F -simple functions converging µ-a.e. to f in the strong (norm)
topology of Y . If the sequence of Bochner integrals

∫
X
fn dµ converges in the

strong topology of Y , then the function f is called Bochner integrable and
the limit is the Bochner integral of f .
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The space of Bochner integrable functions f : X → Y is denoted by
L1(X,F , µ;Y ). The following theorem characterises the Bochner integrable
functions.

Theorem A.3.7 A function f : X → Y is Bochner integrable if and only if
it is F -measurable and

∫
X
||f ||X dµ <∞. For a Bochner integrable function,

we have ∣∣∣∣∣∣∣∣∫
X

f dµ

∣∣∣∣∣∣∣∣
Y

≤
∫
X

||f ||Y dµ.

The theory of the Bochner integral allows the generalisation of many of
the powerful results of the Lebesgue integral to vector-valued functions. For
instance, the following vector-valued version of the Lebesgue dominated con-
vergence theorem is often useful:

Theorem A.3.8 Consider a sequence fn ∈ L1(X,F , µ) converging µ-a.e.
to f , so that ||fn||Y ≤ g, µ-a.e. for every n ∈ N and a real-valued function
g : X → R, g ∈ L1(X,F , µ;R). Then f ∈ L1(X,F , µ;Y ), and

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

As an application of the above, we have the following.

Proposition A.3.9 If a series
∑∞
n=1 fn with fn ∈ L1(X,F , µ;Y ) for every

n ∈ N is majorised by a convergent series of real numbers, then

∞∑
n=1

∫
X

fn dµ =

∫
X

( ∞∑
n=1

fn

)
dµ.

An important question, is how does the Bochner integral behave with
respect to the action of bounded operators? The following theorem provides
the answer to this question.

Theorem A.3.10 Let f : X → Y , f ∈ L1(X,F , µ;Y ) and A be a bounded
operator from Y to Z. Then Af : X → Z is Bochner integrable (Af ∈
L1(X,F , µ;Z)) and

A

∫
X

f dµ =

∫
X

Af dµ.

Remark A.3.11 If (X,F , µ) = (Ω,F , P ) is a probability space, then a
measurable function f : Ω → Y is called a Y -valued random variable and
the Bochner integral

∫
Ω
f dP is called the expectation of the random variable

f , and is denoted by EP [f ].

A standard reference for the Bochner integral and its properties is [361].
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A.4 BASIC ELEMENTS OF SPECTRAL THEORY

This section closely follows [368]. Some of the proofs of the results in the
sequel can be found in [368]. For a comprehensive account of spectral theory
one can consult, e.g., [189], [229], [364]; see also [367].

A.4.1 Resolvent, Spectrum

Let X be a complex normed linear space and let A : X ⊇ D(A)→ X.

Definition A.4.1 (Resolvent operator, resolvent set, spectrum)

(i) For λ ∈ C, the resolvent operator of A is defined as Rλ(A) :=
(A− λI)−1, where I is the identity operator on X.

(ii) A regular value of A is a λ ∈ C such that Rλ(A) exists, is bounded
and is defined on a dense subset of X.

(iii) The set of all regular values of A, denoted by ρ(A), is called the re-
solvent set of A.

(iv) The spectrum of A, σ(A) := C \ ρ(A). The spectrum of A is the
union of the following three disjoint sets:

(a) The point spectrum, σp(A) := {λ ∈ C : Rλ(A) does not exist }.
(b) The continuous spectrum, σc(A) := {λ ∈ C : Rλ(A), exists as

an unbounded operator and is defined on a dense subset of X}.
(c) The residual spectrum, σr(A) := {λ ∈ C : Rλ(A), exists as

either a bounded or an unbounded operator, but in either case it is
not defined on a dense subset of X}.

Remark A.4.2 Let A be a linear operator on a Banach space X. If X is
finite dimensional, then σc(A) = σr(A) = ∅.

Remark A.4.3 Let A be a bounded linear operator on a Banach space X.
We have the following results:

(i) ρ(A) is open.

(ii) For all ν ∈ ρ(A) we have Rλ(A) =
∑∞
k=0(λ−ν)kRk+1

ν (A) . This series is
absolutely convergent for every λ in the open disc |λ−ν| < ||Rν(A)||−1,
which is a subset of ρ(A) in C.

(iii) σ(A) is compact and lies in the disc |λ| ≤ ||A|| .

Remark A.4.4 Let H be a complex separable Hilbert space and A a linear
operator on H. Let λ be an eigenvalue of A. The set Mλ consisting of
the zero element in H and all eigenvectors of A corresponding to λ is the
eigenspace of A corresponding to λ. Mλ is a subspace of A. The eigenvalues
are countable.



rsy-book-final December 7, 2011

SOME FACTS FROM FUNCTIONAL ANALYSIS 301

Remark A.4.5 Let H be a complex separable Hilbert space and A a linear
self-adjoint operator on H. Then σr(A) = ∅.

A.4.2 Spectral Decompositions of Infinite-Dimensional Spaces

Let H be a complex separable Hilbert space. Assume that there exists a
nondecreasing family (i.e., Mλ ⊆ Mµ for µ < λ) of subspaces {Mλ}, λ ∈ R,
such that ∩λ∈RMλ = 0 and ∪λ∈RMλ is a dense subset of H.

Definition A.4.6 A family of projection operators {Eλ} is called a spectral
family if

(i) EλEµ = EµEλ = Emin{λ,µ} = Eµ .

(ii) If ε > 0, then for any ϑ ∈ H and λ ∈ R: Eλ+εϑ→ Eλϑ, as ε→ 0.

(iii) For any ϑ ∈ H, Eλϑ→ 0 as λ→ −∞ and Eλϑ→ ϑ as λ→∞.

Theorem A.4.7 (Spectral Theorem) Let H be a complex separable Hilbert
space.

(i) For each bounded self-adjoint operator A on H, there exists a unique
spectral family {Eλ} such that

(Aψ, φ) =

∫ ∞
−∞

λ d(Eλψ, φ) ,∀φ, ψ ∈ H .

Equivalently, we write

A =

∫ ∞
−∞

λdEλ ,

and call it the spectral decomposition of A.

(ii) For each unitary operator U on H, there exists a unique spectral family
{Fλ} with Fλ = O for λ ≤ 0 (where O is the zero operator on H) and
Fλ = I for λ ≥ 2π, such that

(Uψ, φ) =

∫ 2π

0

eiλ d(Fλψ, φ) ,∀φ, ψ ∈ D(U) ⊂ H .

Equivalently, we write

U =

∫ 2π

0

eiλdFλ ,

and call it the spectral decomposition of U .

So we see that a spectral family {Eλ} determines a self-adjoint operator A.
In many applications it is essential to obtain the spectral family associated
with a given self-adjoint operator. This can be achieved in view of the
celebrated following theorem.
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Theorem A.4.8 (Stone’s formula) Let H be a complex separable Hilbert
space and A : H → H be a self-adjoint operator. For all f, g ∈ H and
a, b ∈ R, we have((
Eb−Ea

)
f, g

)
= lim
δ→0

lim
ε→0

1

2πi

∫ b+δ

a+δ

(((
A−(t+iε)I

)−1

−
(
A−(t−iε)I

)−1
)
f, g

)
dt .

In the following result we list some properties of spectral families.

Theorem A.4.9 Let H be a complex separable Hilbert space and A : H → H
be a bounded, linear self-adjoint operator with an associated spectral family
{Eλ} and spectral decomposition A =

∫∞
−∞ λdEλ.

(i) Then Eλ has a discontinuity at λ = µ if and only if µ is an eigenvalue
of A.

(ii) Let µ be an eigenvalue of A and Mµ be the subspace spanned by the
eigenvectors of A associated with µ. Further, let Pµ : H → Mµ de-
note the projection operator onto Mµ and h denote the Heaviside step
function. Then

(a) EλPµ = Pµ h(λ− µ).

(b) For ε > 0, we have Eµψ − Eµ−εψ → Pµψ, ∀ψ ∈ H, as ε→ 0.

(iii) (R 3)µ ∈ ρ(A) if and only if there exists a constant c > 0 such that
{Eλ} is constant on the interval [µ− c, µ+ c].

(iv) (R 3)µ ∈ σc(A) if and only {Eλ} is continuous at µ and is not constant
in any neighbourhood of µ.

In view of the analogies between the two parts of the spectral theorem,
property (ii)above, has an obvious version for linear unitary operators.

A.4.3 On functions of an operator

The spectral theorem allows us to form a large class of functions of a self-
adjoint operator. Let H be a complex separable Hilbert space and A : H →
H be a bounded, linear self-adjoint operator with an associated spectral
family {Eλ} and spectral decomposition A =

∫∞
−∞ λdEλ. Let ϕ : R→ C be

a continuous function. We can define an operator ϕ(A) by

D(ϕ(A)) = {f ∈ H :

∫ ∞
−∞
|ϕ(λ)|2d(Eλf, f) <∞} ,

(
ϕ(A)f, g

)
=

∫ ∞
−∞

ϕ(λ)d(Eλf, g) , f ∈ D(ϕ(A)) , g ∈ H .

Therefore, at least formally, we have

ϕ(A) =

∫ ∞
−∞

ϕ(λ) dEλ .
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Let H be a complex separable Hilbert space and A : H → H be a bounded,
linear self-adjoint operator with an associated spectral family {Eλ} and spec-
tral decomposition A =

∫∞
−∞ λdEλ. Let ϕ,ϕ1, ϕ2 : R → C be continuous

functions defined on the support of {Eλ}. Below we list some basic proper-
ties of the operator ϕ(A).

1. ϕ(λ) = 1⇒ ϕ(A) = I and ϕ(λ) = λ⇒ ϕ(A) = A.

2. ϕ(A)∗ = ϕ(A), where ϕ(λ) = ϕ(λ) .

3. ϕ(λ) = ϕ1(λ)ϕ2(λ)⇒ ϕ(A) = ϕ1(A)ϕ2(A) .

4. ϕ(λ) = c1ϕ1(λ) + c2ϕ2(λ)⇒ ϕ(A) = c1ϕ1(A) + c2ϕ2(A) .

5. (ϕ1ϕ2)(λ) = ϕ1(λ)ϕ2(λ)⇒ (ϕ1ϕ2)(A) = ϕ1(A)ϕ2(A) .

6. ϕ(A)∗ϕ(A) = ϕ(A)ϕ(A)∗ .

7. ϕ(A) commutes with all bounded operators that commute with A.

8. Let ϕz(λ) = (λ − z)−1, where z ∈ C with Im z 6= 0. Then ϕz(A) =∫∞
−∞(λ−z)−1dEλ = Rz(A) = (A−zI)−1. Further, ||ϕz(A)|| ≤ 1/Im z.

A.5 COMPACTNESS CRITERIA

This standard result can be found in any of the references cited at the be-
ginning of this appendix.

Theorem A.5.1 (Arzelà-Ascoli theorem) Let X be a Banach space.
A subset F of C([0, T ];X) is relatively compact if and only if

(i) F (t) := {f(t) : f ∈ F} is relatively compact in X for all t ≥ 0.

(ii) F is uniformly equicontinuous, i.e., for all ε > 0, there exists δ > 0
such that

||f(t1)− f(t2)||X ≤ ε ∀t1, t2 ∈ [0, T ], such that |t1 − t2| ≤ δ.

For our purposes the following version of the above theorem is useful.

Theorem A.5.2 Let Y ⊂ C([0, T ]; (L2(O))3) have the following properties:

(i) Y (t) is relatively compact in (L2(O))3, ∀t ∈ [0, T ] .

(ii) ∀ε > 0 ∃δ = δ(ε) > 0 : ‖y(t1) − y(t2)‖Y ≤ ε , ∀t1, t2 ∈ [0, T ] such that
|t1 − t2| ≤ δ (equicontinuity of Y ).

(iii) supy∈Y,t∈[0,T ] ‖y(t)‖Y <∞ (uniform boundedness of Y ).

Then ∃{yk} ∈ Y and y0 ∈ C([0, T ]; (L2(O))3) such that

lim
k→∞

‖yk(·)− y0(·)‖C([0,T ];L2(O)) = 0 .

Remark A.5.3 A characterisation of compact subsets of Lp([0, T ];X) has
been established by J. Simon [385].
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A.6 COMPACT OPERATORS

This subsection is based mainly on [103] and [361]. The main impetus for
the study of compact operators arose from the use of integral equations in
attempting to solve the classical BVPs of mathematical physics.

Definition A.6.1 Let X and Y be Banach spaces, and L(X,Y ) be the space
of bounded linear operators X → Y , endowed with the operator norm. An
operator A ∈ L(X,Y ) is called compact if A maps bounded sets in X into
precompact sets (i.e., having compact closure X) in Y . Equivalently, A is
compact if and only if for every bounded sequence {xn} ⊂ X, {Axn} has a
convergent subsequence in Y .

Important properties of compact operators are given in the following:

Theorem A.6.2 (i) A compact operator maps weakly convergent sequences
into norm-convergent sequences.

(ii) If X is reflexive, then the converse of the above is true.

Theorem A.6.3 Let X,Y, Z be Banach spaces, An ∈ L(X,Y ), A ∈ L(X,Y )
and S ∈ L(Y,Z). Then

(i) If A is compact then it is bounded (the converse is false 3).

(ii) If An are compact and cn ∈ C n = 1, . . . , N , then the linear combina-

tion
∑N
n=1 cnAn is compact.

(iii) If one of A or S is compact, then SA is compact.

(iv) A is compact if and only if its adjoint A∗ is compact.

(v) If {An} are compact and An → A in the norm topology, then A is
compact.

(vi) If the range A(X) is finite dimensional, then A is compact.

Proposition A.6.4 (The Riesz lemma) Let U be a proper closed sub-
space of a normed space X, and α ∈ (0, 1). Then there exists an element
ψ ∈ X with ||ψ|| = 1 such that ||ψ − φ|| ≥ α for all φ ∈ U .

A consequence of this result is the following theorem.

Theorem A.6.5 The identity operator I : X → X is compact if and only if
X is finite dimensional.

We are primarily interested in the case where A : H → H is a compact
operator, where H is a separable Hilbert space. We use the symbol L(H)
for L(H,H).

3This follows from Theorem A.6.5.
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Theorem A.6.6 Every compact operator on H is the norm limit of a se-
quence of operators of finite rank.

Remark A.6.7 The compact operators on a separable Hilbert space H form
a Banach space. The dual and double dual spaces of this Banach space are
illustrative of the difference between the weak Banach space topology on
L(H) and the weak operator topology.

The basic principle that makes compact operators important is the Fred-
holm alternative: if A is compact, then either Aψ = ψ has a solution, or
(I −A)−1 exists. This property is not true for all bounded linear operators:
e.g., if A is the operator (Aφ)(x) = xφ(x) on L2[0, 2], then Aφ = φ has
no solutions, but (I − A)−1 does not exist (as a bounded operator). As far
as “solving equations” is concerned, the Fredholm alternative is a powerful
tool: compactness and uniqueness imply existence!

Since the Fredholm alternative holds for finite-dimensional matrices, it is
plausible to expect that it will be true for compact operators (in the Hilbert
space case) in view of the fact that any compact operator A can be written
in the form A = F + S, where F has finite rank and S has small norm.

Compactness combines very nicely with analyticity, as shown in the next
theorem.

Theorem A.6.8 (Analytic Fredholm theorem) Let D be an open con-
nected subset of C. Let f : D→ L(H) be an analytic operator-valued function
such that f(z) is compact for each z ∈ D. Then
either

(i) (I − f(z))−1 does not exist for any z ∈ D ,

or

(ii) (I − f(z))−1 exists for all z ∈ D \Σ, where Σ is a discrete subset of D
(i.e., a set that has no limit points in D). In this case, (I − f(z))−1 is
meromorphic in D, analytic in D\Σ, the residues at the poles are finite
rank operators, and if z ∈ Σ then f(z)ψ = ψ has a nonzero solution
in H.

This theorem has four important consequences:

Theorem A.6.9 (The Fredholm alternative) If A is a compact oper-
ator on H, then either (I −A)−1 exists or Aψ = ψ has a solution.

Theorem A.6.10 (The Riesz-Schauder theorem) Let A be a compact
operator on H. Then its spectrum σ(A) is a discrete set having no limit
points, with the possible exception of λ = 0. In addition, any λ ∈ σ(A) \ {0}
is an eigenvalue of finite multiplicity.

Theorem A.6.11 (The Hilbert-Schmidt theorem) Let A be a self-
adjoint compact operator on H. Then there is a complete orthonormal basis
{φn} of H such that Aφn = λnφn and limn→∞ λn = 0.
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Theorem A.6.12 (Canonical form for compact operators)
Consider a compact operator A on H. Then there exist (not necessarily
complete) orthonormal sets {ψn}Nn=1 and {φn}Nn=1, and positive real numbers
{λn}Nn=1 with limn→∞ λn = 0 such that

A =
N∑
n=1

λn(ψn, ·)φn .

The sum, which may be finite or infinite, converges in norm. The numbers
{λn} are called the singular values of A. In addition, the singular values of
A are precisely the eigenvalues of |A|.

The “standard” (as far as solving equations is concerned) statement of the
above theory assumes usually the following form.

Proposition A.6.13 Let A : H → H be a compact linear operator.

(i) If the homogeneous equation

φ−Aφ = 0

has only the trivial solution φ = 0, then for all f ∈ H the inhomogeneous
equation

φ−Aφ = f

has a unique solution φ ∈ H that depends continuously on f .

(ii) If the homogeneous equation

φ−Aφ = 0

has the nontrivial linearly independent solutions φ1, φ2, . . . , φm, then
the inhomogeneous equation

φ−Aφ = f

is either unsolvable or its general solution is of the form

φ = φ̃+
m∑
k=1

αkφk ,

where φ̃ is a particular solution of the inhomogeneous equation, and
α1, α2, . . . , αm are arbitrary complex numbers.

(iii) (First Fredholm theorem) The null spaces of I−A and I−A∗ have the
same finite dimension.

(iv) (Second Fredholm theorem) A necessary and sufficient condition for
the inhomogeneous equation φ−Aφ = f to be solvable is

(f, ψk) = 0 , k = 1, . . . ,m ,

for all solutions ψk of the homogeneous adjoint equation

ψ −A∗ψ = 0 .

This statement also holds with the rôles of A and A∗ interchanged.

Remark A.6.14 The above results remain valid when the operator I − A
is replaced by an operator of the form L − A, where L is a bounded linear
operator having a bounded inverse L−1.



rsy-book-final December 7, 2011

SOME FACTS FROM FUNCTIONAL ANALYSIS 307

A.6.1 Nuclear, trace class, and Hilbert-Schmidt operators

Consider two separable Hilbert spaces U and V and denote by L(U, V ) the
space of bounded linear operators A : U → V . The adjoint operator A∗ is
an element of L(V,U) such that

(Ax, y) = (x,A∗y), ∀x ∈ U, y ∈ V.

Two important classes of compact operators are given in the following.

Definition A.6.15 (Nuclear and trace class operators)

(i) An operator Q ∈ L(U, V ) is called a nuclear operator if there exists a
sequence {vn} ∈ V and a sequence {un} ∈ U such that

Qx =
∞∑
n=1

vn (un, x)U ∀x ∈ U, and
∞∑
n=1

||vn||V ||un||U <∞.

(ii) Let U = V . A nuclear operator Q that is non-negative (i.e., (Lu, u) ≥ 0
for all u ∈ U) and symmetric (i.e., (Lu, v) = (u, Lv) for all u, v ∈ U)
is called a trace class operator.

The following is a very useful property of nuclear operators.

Proposition A.6.16 Let Q : U → U be a nuclear operator and let {en}
be an orthonormal basis of U . Define the trace of the operator Q as the
infinite series Tr(Q) :=

∑∞
n=1(Qen, en). Then Tr(Q) is a well-defined finite

quantity and independent of the choice of the orthonormal basis {en}.

Trace class operators are interesting from the point of view of infinite-
dimensional stochastic analysis since they can be considered the generalisa-
tion of the covariance matrix in infinite dimensions.

The solution of the eigenvalue problem for trace class operators provides
us with an orthonormal basis for the Hilbert space U .

An interesting subclass of nuclear operators consists of the Hilbert-Schmidt
operators.

Definition A.6.17 A bounded linear operator Q : U → V is called a
Hilbert-Schmidt operator if

∑∞
n=1 ||Qen||2 <∞, where {en} is an orthonor-

mal basis of U . We will denote the space of all Hilbert-Schmidt operators
from U to V by L2(U, V ).

The space of Hilbert-Schmidt operators can be turned into a separable
Hilbert space by defining the inner product

(Q1, Q2)L2(U,V ) =

∞∑
n=1

(Q1en, Q2en).

The following proposition helps us to define the “square root” of a trace
class operator.
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Proposition A.6.18 If : U → U is a trace class operator, then there exists
a unique Hilbert-Schmidt operator R such that R ◦ R = Q. We will use the
notation R = Q1/2. Furthermore, ||Q||2L2(U) = Tr(Q).

The operator Q1/2 has the useful property that L ◦ Q1/2 ∈ L2(U, V ) for
any L ∈ L(U, V ).

Definition A.6.19 Let U0 := Q1/2(U). When equipped with the inner
product

(u0, v0)0 := (Q−1/2u0, Q
−1/2v0)U ,

where Q−1/2 is the inverse of Q1/2 (or the pseudo-inverse, in case Q is not
one-to-one), this space is a subspace of U and a separable Hilbert space.

A.7 THE BANACH-STEINHAUS THEOREM

Theorem A.7.1 Let X,Y be two Banach spaces and Xd ⊂ X be a dense
subspace of X. Assume further that {An} is a sequence of linear operators
in L(X,Y ) such that

(i) ‖Anx‖Y < C for all n ∈ N (C independent of n),

(ii) the limit limn→∞Anx exists for all x ∈ Xd.

Then there exists a continuous linear operator A : X → Y such that Anx→
Ax in Y , for every x ∈ X.

The principle of uniform boundedness is often useful in the following.

Theorem A.7.2 Assume that {An} ⊂ L(X,Y ) and that {Anx} is uni-
formly bounded in n for every x ∈ X. Then the set {‖An‖L(X ,Y)} is also
uniformly bounded.

A.8 SEMIGROUPS AND THE CAUCHY PROBLEM

This section is based on [56], [141], [346] and [363].

A.8.1 Semigroups of linear operators

Definition A.8.1 Consider a one-parameter family {T (t)}, t ∈ R+ of lin-
ear and bounded operators from a Banach space X onto itself. The family
is called a strongly continuous, or4 C0, semigroup if the following properties
hold:

(i) T (0) = I, where I is the identity operator in X.

4C0 is the abbreviation for “Cesàro summable of order 0”.
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(ii) T (t) ◦ T (s) = T (t + s) for every t, s ∈ R+, where by ◦ we denote the
composition of the operators.

(iii) The map t 7→ T (t) is strongly continuous, i.e., for every x ∈ X,

lim
t→0+

T (t)x→ x,

where the limit is taken in the strong topology of X.

Strongly continuous semigroups have important properties. One impor-
tant such property is that they are bounded.

Proposition A.8.2 If {T (t)} is a C0 semigroup on X, then there exist
M ∈ R+, θ ∈ R, such that

||T (t)||L(X) ≤M eθ t, 0 ≤ t <∞. (A.2)

Definition A.8.3 If M = 1 and θ = 0 in (A.2), i.e., if

||T (t)||L(X) ≤ 1 ,

then {T (t)} is called a contraction semigroup.

The characterisation of a C0 semigroup can be obtained through an oper-
ator A that is the infinitesimal generator of the semigroup.

Definition A.8.4 Let {T (t)} be a C0 semigroup on X. Define the operator
A : D(A)→ X by

Ax = lim
t→0

T (t)x− x
t

, x ∈ D(A),

where

D(A) =

{
x ∈ X : lim

t→0+

T (t)x− x
t

exists

}
.

The limit is taken in the strong topology of X. The operator A is a linear
and possibly unbounded operator.

What types of operators generate C0 semigroups? An answer to this ques-
tion is provided by the following generalisation of the Hille-Yosida theorem.

Theorem A.8.5 Let A : D(A)→ X, where D(A) ⊆ X, be a linear operator
on a Banach space. Then the following are equivalent:

(i) A is the generator of a C0-semigroup {T (t)} on X, satisfying the bound
||T (t)|| ≤Meθ t, t ≥ 0, for some θ ∈ R, M ≥ 1.

(ii) A is a closed operator, densely defined, and for every λ ∈ C with
Re λ > θ we have that λ ∈ ρ(A) and that

||Rλ(A)n|| ≤ M

(Re λ− θ)n
, for all n ∈ N .

Remark A.8.6 If M = 1 it is enough to prove the above resolvent estimate
for n = 1.
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A.8.2 Groups of operators

For the study of the Maxwell equations, the concept of groups of operators
is very useful. We summarise here the basic properties and a generation
theorem. This section is based on [141].

Definition A.8.7 Consider a one-parameter family {T (t)}, t ∈ R, of linear
and bounded operators from a Banach space X onto itself. The family is
called a strongly continuous (C0) group if the following properties hold:

(i)) T (0) = I, where I is the identity operator in X.

(ii) T (t) ◦ T (s) = T (t + s) for every t, s ∈ R, where by ◦ we denote the
composition of the operators.

(iii) The map t 7→ T (t) is strongly continuous, i.e., for every x ∈ X,

lim
t→0

T (t)x = x,

where the limit is taken in the strong topology of X.

Obviously, if {T (t)} is a group of operators, it is also a semigroup of opera-
tors; therefore, all the properties of semigroups hold for groups of operators
as well.

Definition A.8.8 Let {T (t)} be a C0 group on X. Define the operator
A : D(A)→ X by

Ax = lim
t→0

T (t)x− x
t

, x ∈ D(A) ,

where

D(A) =

{
x ∈ X : lim

t→0+

T (t)x− x
t

exists

}
.

The limit is taken in the strong topology of X. The operator A is a linear
and possibly unbounded operator.

The following theorem is very useful in the characterisation of groups of
operators.

Theorem A.8.9 Let A : D(A)→ X, where D(A) ⊆ X, be a linear operator
on a Banach space. Then the following are equivalent:

(i) A is the generator of a C0 group {T (t)} on X, satisfying the bound
||T (t)|| ≤M eθ |t|, for some θ ∈ R and M ≥ 1.

(ii) A is a closed operator, densely defined, and for every λ ∈ C with
|Re λ| > θ we have that λ ∈ ρ(A) and

||Rλ(A)n|| ≤ M(
|Re λ| − θ

)n .
The following theorem is often useful.

Theorem A.8.10 (Stone theorem) Let H be a Hilbert space and A be a
skew adjoint (A∗ = −A) linear operator that is densely defined in H. Then
A is the generator of a strongly continuous group of unitary operators et A.
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A.8.3 Semigroups and the Cauchy problem

The theory of semigroups is intimately linked with the existence and regu-
larity properties for the abstract Cauchy problem. This connection renders
semigroup theory an indispensable tool in the theory of differential equa-
tions. This section is based in [141] (see also [128]).

Let X be a Banach space and A : D(A) → X, D(A) ⊂ X be a closed
operator. The problem

u′ = Au , u(0) = u0 , (A.3)

is called the abstract (i.e., Banach space-valued) Cauchy problem associated
with A,D(A) and u0.

Definition A.8.11 (classical and mild solutions of (A.3))

(i) A function u : R+ → X is called a classical solution of the abstract
Cauchy problem (A.3) if u is continuously differentiable, u ∈ D(A)
and (A.3) holds for t ≥ 0.

(ii) A function u : R+ → X is called a mild solution of the abstract Cauchy

problem (A.3), if
∫ t

0
u(s) ds ∈ D(A) for all t ∈ R+ and

u(t) = u0 +A

∫ t

0

u(s) ds .

Theorem A.8.12 Assume that A is the generator of a C0 semigroup, {T (t)},
on X. Then

(i) For every u0 ∈ X there exists a unique mild solution of (A.3), which
can be represented as

u(t) = T (t)u0.

(ii) If, furthermore, u0 ∈ D(A), then there exists a unique classical solution
of (A.3), which can be represented as

u(t) = T (t)u0.

The problem

u′ = Au+ F , u(0) = u0 , (A.4)

is called the abstract nonhomogeneous Cauchy problem.

Definition A.8.13 (Classical and mild solutions of (A.4))

(i) A function u : R+ → X is called a classical solution of the abstract
Cauchy problem (A.4) if u is continuously differentiable, u ∈ D(A),
and (A.4) holds for t ≥ 0.
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(ii) A function u : R+ → X is called a mild solution of the abstract Cauchy

problem (A.4) if
∫ t

0
u(s) ds ∈ D(A) for all t ∈ R+ and

u(t) = u0 +A

∫ t

0

u(s) ds +

∫ t

0

F (s) ds .

The following regularity results are often needed (see, e.g., [363], Theorem
12.16).

Theorem A.8.14 Assume that A is the generator of a C0 semigroup {T (t)}
on a Banach space X. Here we think of D(A) as a Banach space equipped
with the graph norm. Then.

(i) For every u0 ∈ X and F ∈ L1([0, T ], X), there exists a unique mild
solution of (A.3), that can be represented as

u(t) = T (t)u0 +

∫ t

0

T (t− s)F (s) ds.

(ii) If u0 ∈ D(A) and either F ∈ C([0, T ];X) ∩ L1([0, T ];D(A)), or F ∈
C([0, T ];H) ∩W 1,1([0, T ];X), then there exists a unique classical so-
lution of (A.3) that can be represented as

u(t) = T (t)u0 +

∫ t

0

T (t− s)F (s) ds.

A.9 SOME FIXED POINT THEOREMS

Theorem A.9.1 (Banach contraction theorem) Let X be a Banach
space. Consider a map f : X → X which is a contraction map, i.e., it
satisfies the property

||f(x)− f(y)||X ≤ α ||x− y||X ,

for all x, y ∈ X, with α ∈ (0, 1). Then f has a unique fixed point, x∗ ∈ X.

Remark A.9.2 This result guarantees the unique solvability of the operator
equation f(x) = x.

The following theorem is an important generalisation of the Banach con-
traction theorem.

Theorem A.9.3 (Schauder fixed point theorem) Consider a map f :
X → X with the following properties:

(i) f is continuous,

(ii) f(X) has compact closure in X.

Then f has a (possibly nonunique) fixed point.
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The above theorem finds many uses in the theory of both deterministic
and stochastic integral and differential equations.

Finally, the following nonlinear alternative theorem is often very useful5.

Theorem A.9.4 (Leray-Schauder alternative)
Let H be a Hilbert space, D ⊆ H a convex set, and U an open subset of D,
such that 0 ∈ U . Then each continuous compact mapping f : U → D has at
least one of the following properties:

(i) f has a fixed point.

(ii) There is (x∗, λ∗) ∈ ∂U × (0, 1) such that x∗ = λ∗f(x∗).

A.10 THE LAX-MILGRAM LEMMA

The Lax-Milgram lemma is a very useful result for the treatment of varia-
tional problems (see, e.g., [125]).

Lemma A.10.1 (Lax-Milgram lemma) Let H be a Hilbert space and a :
H × H → C be a bounded and coercive sesquilinear form. Then the varia-
tional problem a(u, v) = (f, v) has a solution in H for all f ∈ H ′.

The following generalisation of the Lax-Milgram lemma is often useful.

Theorem A.10.2 Let H1 and H2 be two Hilbert spaces and a : H1×H2 → C
be a bounded sesquilinear form such that

(i) There is a constant C > 0 such that

inf
u∈A1

sup
v∈A2

|a(u, v)| ≥ C ,

where A1 := {u ∈ H1 : ||u||H1
= 1} and A2 := {v ∈ H2 : ||v||H2

≤ 1}.

(ii) For every v ∈ H2, v 6= 0,

sup
u∈H1

|a(u, v)| > 0 .

Then for every f ∈ H ′2 there exists a unique u ∈ H1 such that

a(u, φ) = (f, φ), ∀φ ∈ H2.

The solution to this problem satisfies the bound

||u||H1
≤ C0

C
||f ||H′2 .

5It is interesting to view this classical (1934) result in the recent framework of comple-
mentarity problems. Complementarity theory has deep relations with several chapters of
fundamental mathematics, e.g., with fixed-point theory, theory of variational inequalities,
topological degree, functional analysis, and theory of topological ordered vector spaces.
Each complementarity problem is a mathematical model for several kinds of practical
problems from economics, optimisation, game theory, engineering and mechanics. See,
e.g., [207].
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Remark A.10.3 The first condition on a is called an inf-sup, or Babuška-
Brezzi condition (see, e.g., [324]).

Consider two Hilbert spaces H1, H2 and two bounded sesquilinear forms

a : H1 ×H1 → C, b : H2 ×H2 → C.

Define the subset H of H1 by

H = {u ∈ H1 : b(u,w) = 0, ∀w ∈ H2}.

We define a weaker coercivity condition as follows.

Definition A.10.4 We say that a is H-coercive if there exists a constant
C1 such that

|a(u, u)| ≥ C1 ||u||H1
∀u ∈ H.

We now consider the mixed variational problem:
Given f ∈ H ′1 and g ∈ H ′2, find u ∈ H1 and p ∈ H2 such that

a(u, φ) + b(φ, p) = 〈f, φ〉, ∀φ ∈ H1, (A.5)

b(u, ψ) = 〈g, ψ〉, ∀ψ ∈ H2.

Theorem A.10.5 Suppose that the sesquilinear form b satisfies the Babuška-
Brezzi condition and that there exists C2 > 0 such that

sup
w∈H1

|b(w, p)|
||w||H1

≥ C2 ||p||H2
, ∀ p ∈ H2 .

Then there exists a unique solution (u, p) to problem (A.5) satisfying the
bound

||u||H1
+ ||p||H2

≤ C (||f ||H′1 + ||g||H′2).

A.11 GRONWALL’S INEQUALITY

For the proofs of the following results we refer the reader to [115], where
more integral inequalities of this type can also be found.

Theorem A.11.1 Let k, h, y ∈ C([t0, T )), T ≤ ∞ and k(t) ≥ 0 , t ∈ [t0, T ).
If

y(t) ≤ h(t) +

∫ t

t0

k(s) y(s)ds , t ∈ [t0, T ) ,

then

y(t) ≤ h(t) +

∫ t

t0

k(s)h(s) exp

(∫ t

s

k(τ)dτ

)
ds , t ∈ [t0, T ).

There is a very useful special case.
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Corollary A.11.2 Let k and y be as above, and

y(t) ≤ m+

∫ t

t0

k(s) y(s)ds , t ∈ [t0, T ) ,

where m is a constant. Then

y(t) ≤ m exp

(∫ t

t0

k(s)ds

)
, t ∈ [t0, T ).

Let us also mention the so-called “generalised Gronwall’s inequality”, be-
low.

Theorem A.11.3 Let y ∈ C([t0, T ]) and y(t) ≥ 0 , t ∈ [t0, T ]. Let σ(t) be a
nondecreasing function on [t0, T ] such that σ(t) = σ(t+ 0). Let, also, m be
a positive constant such that

y(t) ≤ m+

∫ t

t0

y(s)dσ(s) .

Then

y(t) ≤ m exp(σ(t)− σ(t0)) .

A.12 NONLINEAR OPERATORS

In this section we collect some necessary concepts regarding nonlinear oper-
ators.

Let X be a real reflexive Banach space.

Definition A.12.1 A (possibly nonlinear) operator N : X → X ′ is called

(i) monotone, if 〈N(u)− N(v), u− v〉 ≥ 0 , ∀u, v ∈ X,

(ii) strictly monotone, if 〈N(u)−N(v), u− v〉 > 0 , ∀u, v ∈ X : u 6= v,

(iii) coercive, if lim||u||→∞
〈N(u),u〉
||u|| = +∞,

(iv) weakly coercive, if lim||u||→∞ ||N(u)|| = +∞,

(v) hemicontinuous, if the map τ 7→ 〈N(u + τ v), w〉 is continuous on
[0, 1] ,∀u, v, w ∈ X,

(vi) of M-type, if un ⇀ u, N(un) ⇀ f and lim supn〈N(un), un〉 ≤ 〈f, u〉
implies that N(u) = f .

Theorem A.12.2 ([451]) Let N : X → X ′ be monotone, hemicontinuous
and weakly coercive. Then for each f ∈ X ′, the equation N(u) = f has a
solution. In addition, if N is strictly monotone the solution is unique.

Theorem A.12.3 ([380]) An operator N that is monotone and hemicontin-
uous is of M -type.
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Some Facts from Stochastic Analysis

For a thorough introduction to stochastic analysis and stochastic differential
equations in finite dimensions we refer to the excellent book of Karatzas
and Shreve [224]. The infinite-dimensional theory, needed for the study
of stochastic partial differential equations and stochastic integrodifferential
equations, can be found in the monograph of Da Prato and Zabczyk [120]; see
also [159] and [352] for more recent developments. For a general introduction
to probability theory see, [300].

This appendix focuses on the results from stochastic analysis that are
necessary for the study of stochastic PDEs and is based on [120] and [352].

B.1 PROBABILITY IN HILBERT SPACES

Let (Ω,F , P ) be a probability space and H be a separable Hilbert space.

Definition B.1.1 An H-valued random variable is a map X : Ω→ H that
is measurable with respect to F .

Remark B.1.2 We assume separability of H to simplify the subtle issues
concerning different types of measurability in infinite-dimensional spaces (ac-
cording to the Pettis theorem).

Definition B.1.3 The expectation of X is defined as

EP [X] =

∫
Ω

X dP ,

where the integral is interpreted in the Bochner sense.

For any h1, h2 ∈ H, define the operator (h1⊗h2) by (h1⊗h2)h := h1(h2, h),
h ∈ H. With the aid of this operator we may define the correlation operator
between two Hilbert space random variables as follows.

Definition B.1.4 Let X1, X2 : Ω→ H be two H-valued random variables.
The covariance operator of X1 and X2 is defined as

cov(X1, X2) = E[(X1 − E[X1])⊗ (X2 − E[X2])] .

If X1 = X2 = X, the above definition gives the variance operator cov(X)
for the random variable X. The covariance operator is a positive and sym-
metric operator, i.e., cov(X1, X2)∗ = cov(X2, X1) and cov(X) ≥ 0. Further-
more, Tr(cov(X1, X2)) = E[(X1, X2)] − (E[X1],E[X2]) and if Φ ∈ L(H,U)
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where U is another Hilbert space, Tr(cov(ΦX)) = Tr((cov(X)Φ∗Φ) =
Tr(Φ∗Φ(cov(X)). All the above hold for random variables in L2(Ω, P,H).

For sequences of random variables we will encounter the following concepts
of convergence:

1. Xn → X, P -a.s. if P ({ω : Xn(ω) 6→ X(ω)}) = 0.

2. Xn → X in L2(Ω,F , P ;H) if E[||Xn −X||2H ]→ 0.

The generalisation of these concepts for weak convergence in H is obvious.
We now define the concept of conditional expectation.

Definition B.1.5 Let X ∈ L1(Ω,F , P ;H) and let G be a σ-subalgebra of
F . The conditional expectation of X with respect to the σ-algebra F is the
unique G -measurable random variable E[X | G ] such that∫

G

E[X | G ] dP =

∫
G

X dP, ∀ G ∈ G .

In the case where G = {∅,Ω} =: O, the trivial σ-algebra, the conditional
expectation coincides with the expectation. The conditional expectation
has the meaning of the best predictor (in the L2 sense) for the random
variable X, given the information contained in the σ-algebra G . For random
variables X ∈ L2(Ω,F , P ;H), the conditional expectation E[X | G ] can
be interpreted as the projection of X in the subspace of square integrable
G -measurable random variables.

Another fundamental concept is the concept of independence.

Definition B.1.6 Consider the family of events {Fβ}β∈I , Fβ ∈ F where
I is an index set. The events are said to be independent if

P (
n⋂
i=1

Fβi) =

n∏
i=1

P (Fβi)

for any finite collection {Fβi}ni=1 of them.

The concept of independence can be extended from events to σ-algebras
and from that to random variables, through the concept of the σ-algebra
generated by a random variable. For instance, the σ-subalgebras Fβ of F ,
β ∈ I, are said to be independent if the events {Fβ}β∈I are independent
for all Fβ ∈ Fβ . A family of random variables is called independent if the
σ-algebras generated by them1 are independent.

By the definition of independence, we see that

1. If X1, X2 are independent, then E[(X1, X2)] = (E[X1],E[X2]), or
equivalently cov(X1, X2) = 0.

2. If X is independent of the σ-algebra G , then E[X | G ] = E[X].

1That is, the smaller σ-algebras that make these random variables measurable.
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B.2 STOCHASTIC PROCESSES AND RANDOM FIELDS

In what follows we assume that H is a separable Hilbert space. An H-
valued stochastic process is a family of H-valued random variables {X(t)}
parametrised by a parameter t ∈ I where I is a family of indices. A common
choice is I = R+. In many cases the index set is multidimensional. Then the
stochastic process is usually called a random field. A family of σ-algebras
{Ft}t∈I is called a filtration if it has the property Fs ⊆ Ft for s ≤ t. A
filtration is called right-continuous if Ft+ := ∩s≥tFs = Ft. A stochastic
process is said to be cádlág2 if it is right continuous with limits from the
left. A filtration is called complete if for G ∈ F , P (G) = 0 implies G ∈ F0.
A complete and right-continuous filtration is called a normal filtration.

Definition B.2.1 A stochastic process {X(t)} with the property that X(s)
is measurable with respect to Fs, for all s ∈ I, is called adapted.

Definition B.2.2 An H-valued stochastic process X : [0, T ] × Ω → H is
called predictable if it is measurable with respect to the σ-algebra:

PT :=σ
(
(s, t]× Fs : 0 ≤ s < t, Fs ∈ Fs} ∪ {{0} × F0 : F0 ∈ F0}

)
.

This σ-algebra is the one that makes X : [0, T ]×Ω→ H left-continuous and
adapted to Ft, t ∈ [0, T ].

Definition B.2.3 A process X is called progressive if for all t ≥ 0 the re-
striction of the map (t, ω) 7→ X(t, ω) to [0, t]×Ω is B([0, t])⊗Ft-measurable.

The following connection between the above types of stochastic processes
holds.

predictable −→ adapted and cádlág −→ progressive version

Furthermore (see, e.g., [120]),

continuous and adapted −→ predictable version

An important class of stochastic processes, with many uses in stochastic
analysis, is that of martingales.

Definition B.2.4 Let (Ω,F , P ) be a probability space and {Ft}t∈I a fil-
tration on F . A stochastic process {X(t)}t∈I, adapted with respect to this
filtration, is called a martingale if it is integrable with respect to P for all
t ∈ I and E[X(t) | Fs] = X(s), for all s ≤ t.

A martingale is a process for which the best prediction of future values,
given the information available by time s, is the value at s. A martingale is
the model for the winnings of a fair game. The following quantities are of
interest for a Hilbert space-valued martingale.

2Continue á droite limites á gauche.
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Definition B.2.5 Let {M(t)}t ∈ R+ be a square integrable martingale, i.e.,
a martingale such that E[ ||M(t)||2H ] <∞ for all t ∈ R+. Then

(i) The (real-valued) process 〈M〉t is the unique continuous adapted in-
creasing process such that 〈M〉0 = 0 and ||M(t)||H − 〈M〉t is a contin-
uous martingale.

(ii) The quadratic variation process 〈〈M〉〉t is adapted and continuous tak-
ing values in the space of non-negative trace class operators on H such
that 〈〈M〉〉0 = 0 and for all u1, u2 ∈ H,

〈M(t), u1〉H 〈M(t), u2〉H − (〈〈M〉〉t(u1), u2)H

is a martingale.

It is possible to show (see, e.g., [159]) that 〈M〉t = Tr(〈〈M〉〉t). Further-
more, if {tn

i } is a sequence of partitions of the interval [0, t] such that ∆n =
max{|tni + 1−tni | 1 ≤ i ≤ n−1} → 0, then

∑n
i=1 ||M(tni + 1)−M(tni )||2H → 〈M〉t

where the convergence is P -a.s.

B.3 GAUSSIAN MEASURES

Let Q : U → U be a trace class operator (see Section A.6.1, Appendix A).

Definition B.3.1 Let U be a Hilbert space and B(U) be its Borel σ-algebra.
A probability measure µ on (U,B(U)) is called a Gaussian measure if for
all v ∈ U , the mapping v′ : U → R defined by v′(u) = (u, v), u ∈ U , has a
Gaussian law, i.e., there exist µ ∈ R, σ > 0, such that

(µ ◦ (v′)−1)(A) = µ(v′ ∈ A) =
1√

2πσ2

∫
A

e−
(x−m)2

2σ2 dx, ∀A ∈ B(R) .

If X is a U -valued random variable, we say that it follows a Gaussian law if
for every v ∈ U , the real-valued random variable (X, v) follows a Gaussian
law.

A well-known theorem provides the representation of a Gaussian measure
on a Hilbert space in terms of a trace class operator.

Theorem B.3.2 A measure µ on (U,B(U)) is Gaussian if and only if its
Fourier transform (characteristic functional)

µ̃(u) :=

∫
U

ei(u,v) µ(dv) = ei(m,u)− 1
2 (Qu,u), ∀u ∈ U

for some m ∈ U and some trace class operator Q : U → U . In this case the
measure µ will be denoted by N(µ,Q).
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Proposition B.3.3 The U -valued random variable X follows a Gaussian
law N(µ,Q), i.e., X ∼ N(µ,Q), if and only if

X =

∞∑
n=1

√
λn zn en +m,

where the equality holds in L2(Ω,F , P ;U), λn and en are the eigenvalues
and eigenfunctions, respectively, of the operator Q,

Qen = λn en, λn ≥ 0, n ∈ N

and zn real-valued independent and identically distributed (i.i.d.) random
variables zn ∼ N(0, 1).

B.4 THE Q- AND THE CYLINDRICAL WIENER PROCESS

Let U be a Hilbert space, (Ω,F , P ) be a probability space, and Q : U → U
be a linear symmetric non-negative nuclear operator (see Section A.6.1).

Definition B.4.1 A U -valued stochastic process W (t), t ∈ [0, T ] on the
probability space (Ω,F , P ) is called a Q-Wiener process if

(i) W (0) = 0.

(ii) W has P -a.s continuous trajectories.

(iii) The increments of W are independent.

(iv) The increments follow the Gaussian law W (t)−W (s) ∼ N(0, (t−s)Q).

The nuclear operator Q serves as the covariance operator of the Wiener
process.

Example B.4.2 In the particular case where U = R and Q degenerates to
the identity operator Q = I : R → R, the Q-Wiener process becomes the
standard real-valued Wiener process.

Example B.4.3 In the particular case where U = Rd and Q = Id, the
identity d × d matrix, the Q-Wiener process is the standard d-dimensional
Wiener process.

The Q-Wiener process has a useful series representation, as shown in the
next proposition.

Proposition B.4.4 A U -valued stochastic process W (t) is a Q-Wiener pro-
cess if and only if it has the series representation W (t) =

∑
n

√
λn wn(t) en,

where λn, en are the eigenvalues and eigenfunctions of the operator Q, re-
spectively, and wn(t) are independent standard Wiener processes in R.
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The convergence of the above series can be shown to extend to the space
L2(Ω,F , P ;C([0, T ];U)), thus guaranteeing the existence of continuous rep-
resentatives of paths for the Q-Wiener process. Furthermore, the Q-Wiener
process is a continuous square integrable martingale, with 〈W 〉t = t T r(Q)
and 〈〈W 〉〉t = tQ.

In a number of applications, generalisations of the Q-Wiener process are
needed. These generalisations deal with the case where Q has the properties
expected by a covariance operator but is not necessarily a trace class oper-
ator, e.g., we may need to consider cases where

∑
n

√
λn = ∞ (cylindrical

Wiener process) or where U = L2(Rd) and λk = 1 (space-time white noise
process). More precisely:

Definition B.4.5 A cylindrical Wiener process on a Hilbert space V is
a family of mappings W̌ (t, ω) : V → L2(Ω,F , P ;R) such that for every
v ∈ V , the real-valued random variable W̌ (t, ω)(v) := 〈W̌ (t, ω), v〉 follows
the centered normal distribution N(0, t) and E[W̌ (t, ω)(v1)W̌ (t, ω)(v2)] =
t (v1, v2)V.

Let us note (see [339], Remark 1, p. 4) that W̌ is linear. The cylindri-
cal Wiener process has a formal series representation in terms of the basis
of V , 〈W̌ (t, ω), v〉 =

∑∞
n=1(v, en) 〈W̌ (t, ω), en〉, but cannot be realised3 as

a random variable on V , as is the case for the Q-Wiener process. The
Q-Wiener process and the cylindrical Wiener process are related in the
sense that if W̌ (t, ω) is a cylindrical Wiener process, then W̌ (t, ω) ◦Q1/2 =∑∞
n=1 λ

1/2
n 〈W̌ (t, ω), en〉en, where Q1/2 is an operator such that Q1/2 ◦Q1/2 =

Q (see Proposition A.6.18 in Appendix A), is a Q-Wiener process. On
the other hand if W (t, ω)is a Q-Wiener process with a representation as in
Proposition B.4.4, then W̌ (t, ω) =

∑∞
n (v, en)wn(t) is a cylindrical Wiener

process.

B.5 THE ITŌ INTEGRAL

Let U be a separable Hilbert space, Q : U → U be a trace class oper-
ator, and W (t) be a Q-Wiener process on the filtered probability space

(Ω,F , P ). In this section we consider the expression
∫ T

0
Φ(t) dW (t), where

Φ(t) is a stochastic process. Our intention is to understand this quantity
as the limit (in a sense to be properly defined shortly) of sums of the form∑n
j=0 Φ(tj) (W (tj+1)−W (tj)), on a partition {tj} of [0, T ]. These sums will

represent random variables, which will have to be U -valued, so Φ(t) will have
to be an operator-valued stochastic process taking values on an appropriate
subset of L(U,U).

To develop a theory for the Itō integral in Hilbert spaces, we need to
recall (see Proposition A.6.18, Appendix A) that for a trace class oper-

3In the sense that there may not exist a V -valued random variable X such that
〈W̌ (t, ω), v〉 = (X, v).
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ator Q there exists an operator Q1/2 such that the decomposition Q =
Q1/2 ◦ Q1/2, and define U0 = Q1/2(U), which is a separable Hilbert space,
when equipped with the inner product (u0, v0)0 := (Q−1/2u,Q−1/2v)U =∑∞
n=1 λ

−1
n (u, en)U(v, en)U .

We further need the following definition.

Definition B.5.1 Let L0
2 := L2(U0, V ), the (separable) Hilbert space of

Hilbert-Schmidt operators F : U0 → V , equipped with the inner product

(F1,F2)L0
2

= Tr((F1Q
1/2)(F2Q

1/2)∗).

This Hilbert space is the appropriate space for the operator-valued stochas-
tic processes Φ(t) over which the Itō integral is defined. Any bounded op-
erator F ∈ L(U, V ) can be considered a Hilbert-Schmidt operator F ∈ L0

2,
so that L(U, V ) ⊂ L0

2, and therefore we have the alternative representation
(F1,F2)L0

2
= Tr(F1QF2) (see, e.g., [159]). The elements of L0

2 considered as
operators from U to V are unbounded operators.

We are now ready to construct the Hilbert space-valued Itō integral ([159],
[352]). This is done in the following steps:

STEP 1 Approximate the L0
2, valued operator process Φ(t) by the sequence

Φn(t) of elementary processes

Φn =

Mn∑
k=1

Φ(n)

k 1
A

(n)
k

with Φ(n)

k ∈ L0

2, A
(n)

k ∈ PT .

This is always feasible when convergence is taken in the sense of the norm

||Φ||T :=
(
E
[∫ T

0
||Φ(s)||2

L0
2
ds
])1/2

.

STEP 2 We define the stochastic integral for each member of the sequence
Φn(t) as a random sum. For instance, if4 Φn(t) =

∑k−1
m=0 Φ(n)

m 1(tm,tm + 1](t),
then we define

Ψn :=

∫ T

0

Φn(t) dW (t) :=

k−1∑
m=0

Φ(n)

m (W (tm + 1)−W (tm))

This is a sequence of V -valued random variables.
STEP 3 For each step of the approximation procedure we have the Itō isom-
etry E[ ||Ψn||2V ] = ||Φn||2T , which by definition of the norm || · ||T involves the
covariance operator Q of the Wiener process.
STEP 4 We now go to the limit as n → ∞ and define the Itō integral∫ T

0
Φ(t) dW (t) as the limit in L2(Ω,F , P ;V ) of the sequence Ψn. This can

be shown to exist.

By this construction the Itō integral inherits some useful properties, the
most interesting of which is the extension of the Itō isometry. Further-
more, when considered as a stochastic process, M(t) :=

∫ t
0

Φ(s) dW (s) :=

4We omit the n dependence on the intervals (tm, tm + 1] out of which we may construct

A(n)
k ∈ PT from the right-hand side to ease notation.
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0
φ(s)1[0, t](s) dW (s) is a V -valued martingale. The important properties

are summarised in the following.

Theorem B.5.2 The Itō integral satisfies the following properties:

(i) E[
∫ T

0
Φ(s)dW (s)] = 0.

(ii) E[‖
∫ T

0
Φ(s)dW (s)‖2V ds] =

∫ T
0
E[Tr(Φ(s)QΦ∗(s))]ds.

(iii) The process M(t) :=
∫
t

0
Φ(s) dW (s) is a square integrable martingale

and

〈M〉t =

∫ t

0

‖Φ(s)‖2

L0
2
ds, and 〈〈M〉〉t =

∫ t

0

(Φ(s)Q1/2)(Φ(s)Q1/2)∗ds.

Furthermore, the following estimates (Burkholder-Davis-Gundy inequali-
ties) are often useful,

E[ sup
t∈[0,T ]

‖
∫ t

0

Φ(s)dW (s)‖2
V
ds] ≤ 4E[‖

∫ T

0

Φ(s)dW (s)‖2
V
ds],

E[ sup
t∈[0,T ]

‖
∫ t

0

Φ(s)dW (s)‖V ds] ≤ 3

(∫ T

0

E[Tr(Φ(s)QΦ∗(s))ds]

)1/2

.

An alternative representation for the stochastic integral is in terms of the
series expansion∫ T

0

Φ(s) dW (s) =
∞∑
n=1

∫ T

0

Φ(s)en d(W (s), en),

where {en}n ∈ N is an orthonormal basis of U consisting of eigenvectors of Q.

Remark B.5.3 The construction of the stochastic integral performed above
holds for predictable integrands. It may be generalised for simply adapted
and not necessarily predictable processes, and further generalised for pro-
gressively measurable integrands. Furthermore, the condition

E[

∫ T

0

‖Φ(s)‖2

L2
0
ds] <∞

can be extended to

P (

∫
T

0

‖Φ(s)‖2

L2
0
ds <∞) = 1 .

However, in this case the stochastic integral may no longer be a square
integrable martingale but a local martingale instead (see [159]).

The Itō stochastic integral can be generalised for integrals of the form∫ T
0

Φ(sdW̌ (s), where W̌ (t) is the cylindrical Wiener process. This corre-
sponds to the case where Q = I, and therefore the integrands Φ(s) are now
Hilbert-Schmidt operators in L2(U, V ) (rather than in L0

2 := L2(Q
1/2(U), V ).
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The construction follows more or less the same steps as above, using elemen-
tary processes and the Itō isometry

E[ ‖
∫ T

0

Φ(s) W̌ (s) ds‖2

V ] =

∫ T

0

E[ ‖Φ(s)‖2L2(U, V )]ds .

In this case the Itō integral has similar properties as the ones presented in
Theorem B.5.2, replacing the L0

2 norm by the L2(U, V ) norm and setting
Q = I (see, [159]). Alternatively, the stochastic integral with respect to the
cylindrical Wiener process may be defined by a series representation as∫ T

0

Φ(s) dW̌ (s) =
∞∑
n=1

∫
T

0

Φ(s)en d〈W̌ (s, ω), en〉,

where {en}n ∈ N is an orthonormal basis of the Hilbert space U and Φ(s)en
is the action of the operator Φ(s) on en.

B.6 ITŌ FORMULA

Let Φ(·) be an L0
2-valued Itō integrable5 process and µ(·) be a Bochner

integrable V -valued process. The stochastic process

X(t) = X(0) +

∫ t

0

µ(s) ds+

∫ t

0

Φ(s) dW (s)

is called an Itō process.
Consider now a real-valued function F : [0, T ]× V → R. If we define the

stochastic process Y (t) := F (t,X(t)), is that an Itō process, and if so what
does it look like?

This question is answered by the famous Itō’s lemma, which provides the
new calculus rules required for the stochastic integral.

Theorem B.6.1 Assume that F is continuous and further that the Fréchet6

partial derivatives ∂tF, ∂xF, ∂xxF of F are continuous and bounded on bound-
ed subsets of [0, T ] × V . Then the following equality holds P -a.s. for all
t ∈ [0, T ]:

F (t,X(t)) = F (0, X(0)) +

∫ t

0

(∂x(s,X(s)),Φ(s) dW (s)) ds

+

∫ t

0

{∂tF (s,X(s)) + (∂xF (s,X(s)), µ(s))} ds

+

∫ t

0

1

2
{Tr[∂2

xF (s,X(s))) (Φ(s)Q1/2) (Φ(s)Q1/2)∗]} ds,

where the last term is commonly referred to as the Itō drift.

There exists a version of the Itō formula for Itō processes driven by the
cylindrical Wiener process, with the necessary modifications (Q = I; see,
e.g., Theorem 2.10 in [159]).

5That is, either E[
∫ T

0
‖Φ(s)‖2

L0
2
ds] <∞ or P (

∫ T
0
‖Φ(s)‖2

L0
2
ds <∞) = 1.

6See Section A.3.1, Appendix A.
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B.7 STOCHASTIC CONVOLUTION

Let W be a Q-Wiener process, B(t) : U → H be a family of bounded linear
operator, and SA(t) be a C0 semigroup on H, with generator A.

Definition B.7.1 The stochastic process

WA(t) =

∫ t

0

SA(t− s)B(s) dW (s) =

∫ t

0

e(t−s)AB(s) dW (s)

is called a stochastic convolution.

We make the following assumption.

Assumption B.7.2∫ T

0

||SA(r)B(r)||2L0
2
dr =

∫ T

0

Tr[SA(r)B(r)QB∗(r)S∗
A
(r)] dr <∞ .

We now provide an important result for the properties of the stochastic
convolution as a stochastic process.

Theorem B.7.3 If Assumption B.7.2 holds, then

(i) The process WA(·) is Gaussian, continuous in mean square and has a
predictable version.

(ii) The covariance of WA(·) is given by

Cov(WA(t)) =

∫ t

0

SA(r)B(r)QB∗(r)S∗
A
(r) dr, t ∈ [0, T ] .

Furthermore, if B(t) ∈ D(A), then A
∫ T

0
B(t)dW (t) =

∫ T
0
AB(t) dW (t),

P -a.s.

B.8 SDES IN HILBERT SPACES

Consider the linear differential equation

dX(t) = [AX(t) + f(t)] dt+B dW (t) . (B.1)

Definition B.8.1 An H-valued predictable process X(·) is said to be a weak
solution of (B.1) if the trajectories of X(·) are P -a.s. Bochner integrable and
if for all ζ ∈ D(A∗) and all t ∈ [0, T ] we have

(X(t), ζ) = (x, ζ) +

∫ t

0

{(X(s), A∗ζ) + (f(s), ζ)} ds .+ (BW (t), ζ).

The weak solutions of additive SDEs in Hilbert space may be expressed
in terms of the stochastic convolution.
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Theorem B.8.2 Under the assumptions of the previous section, equation
(B.1) has a unique weak solution given by

X(t) = S(t)x+

∫ t

0

S(t− s) f(s) ds+WA(t), t ∈ [0, T ] .

It can be shown that, under certain conditions, this solution has a continuous
version.

The above construction may be generalised for SDEs of the general form

dX(t) = (AX(t) + F (t,X))) dt+B(t,X) dW (t) ,

where F and B are in general nonlinear mappings

F : Ω× [0, T ]× C([0, T ], H)→ H,

B : Ω× [0, T ]× C([0, T ], H)→ L2(Q
1/2(U), H),

satisfying appropriate regularity conditions (mainly Lipschitz continuity-
type conditions). Then a solution can be constructed using the formal rep-
resentation

X(t) = SA(t)x+

∫ t

0

SA(t− s) f(s,X(s)) ds+

∫ t

0

SA(t− s)B(s,X(s))dW (s),

in terms of the stochastic convolution and using appropriate fixed point
schemes. We do not enter into details but rather refer the reader to [120] or
[159].

B.9 MARTINGALE REPRESENTATION THEOREM

As we have seen in Theorem B.5.2, the Itō integral can be considered an “op-
eration” that maps a square integrable martingale (the Wiener process) into
another square integrable martingale. The following theorem, the celebrated
Martingale representation theorem, is in some sense the converse statement.

Theorem B.9.1 ([159]) Let U , V be two real separable Hilbert spaces, Q :
U → V a trace class operator, and W a Q-Wiener process on U . For every
square integrable martingale {M(t)} with values in V there exists a square
integrable predictable process {σ(s)} with values in L0

2 := L2(Q
1/2(U), V ) and

with the property E[
∫ T

0
‖σ(s)‖2

L0
2
ds] <∞ such that

M(t) = M(0) +

∫ t

0

σ(s) dW (s) .

The martingale representation theorem holds in the case where Q = I,
(i.e., when W is replaced by the cylindrical Wiener process W̌ ) with the
necessary modifications (replacing L0

2 by L2(U, V )); see [88]).
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Some Facts from Elliptic Homogenisation Theory

C.1 SPACES OF PERIODIC FUNCTIONS

In this section we collect a few key results on spaces of periodic functions
that will be used for homogenisation problems. Our presentation closely
follows [97].

Let Y denote the interval in RN defined by

Y = (0, `1)× (0, `2)× . . . (0, `N ) , (C.1)

where `1, `2, . . . , `N are given positive numbers. Y is referred to as the
reference period. The following definition introduces the notion of periodicity
for functions that are defined almost everywhere.

Definition C.1.1 Let Y be defined by (C.1) and let f be a function defined
almost everywhere on RN . The function f is called Y -periodic iff

f(x+m`jej) = f(x), a.e. on RN , ∀m ∈ Z , ∀j ∈ {1, 2, . . . , N} ,

where {e1, e2, . . . , eN} is the canonical basis of RN .

The mean value of a periodic function is essential when studying periodic
oscillating functions.

Definition C.1.2 Let O be a bounded open set in RN and let f be a func-
tion in L1(O). The mean value of f over O is the real number 〈f〉 given
by

〈f〉 =
1

|O|

∫
O
f(y)dy.

The mean value of a periodic function can be computed on any translated
set of the reference period, as detailed in the following proposition.

Proposition C.1.3 Let f be a Y -periodic function in L1(Y ). Let y0 be a
fixed point in RN , and let Y0 be the translated set of Y , defined by Y0 = y0+Y.
Define fε(x) := f

(
x
ε

)
a.e. on RN . Then

(i)
∫
Y0
f(y)dy =

∫
Y
f(y)dy,

(ii)
∫
εY0

fε(x)dx =
∫
εY
fε(x)dx = εN

∫
Y
f(y)dy.

The following theorem is a key result.
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Theorem C.1.4 Let 1 ≤ p ≤ +∞ and let f be a Y -periodic function in
Lp(Y ). Then

(i) If p < +∞, fε ⇀ 〈f〉 in Lp(O), as ε → 0, where O is any bounded
open subset of RN .

(ii) If p = +∞, fε
∗
⇀ 〈f〉 in L∞(RN ), as ε→ 0.

The weak convergences given in Theorem C.1.4 cannot be strong unless f is a
constant and |Y | = 1. Indeed, strong convergence implies that 〈fp〉 = 〈f〉p.
Nevertheless, it is easy to check that, for p > 1, one has 〈fp〉 6= 〈f〉p.
An interesting per se by-product of the proof of the above theorem is the
following result: let p and f be as in Theorem C.1.4 and I be any open
interval of RN containing at least a translated set of Y . Then there exists a
constant C depending only on the spatial dimension n such that

‖fε‖pLp(I) ≤ C
|I|
|Y |
‖f‖pLp(Y ),

for ε small enough.
We can now introduce a notion of periodicity for functions in the Sobolev

space H1.

Definition C.1.5 Let C∞per (Y ) be the subset of C∞(RN ) of Y -periodic func-
tions. We denote by H1

per(Y ) the closure of C∞per (Y ) in the H1-norm.

Definition C.1.6 Let g be a function defined a.e. on Y . We denote by g#

its extension by periodicity to the whole of RN , defined by

g#(x+m`jej) = g(x), a.e. on Y , ∀m ∈ Z , ∀j ∈ {1, 2, . . . , N} , (C.2)

where {e1, e2, . . . , eN} is the canonical basis of RN .

We have the following properties.

Proposition C.1.7 Let u ∈ H1
per(Y ).

(i) u has the same trace on opposite faces of Y .

(ii) For any bounded open subset O of RN , u# is in H1(O).

Definition C.1.8 The quotient space Wper(Y ) = H1
per

(Y )/R is defined as
the space of equivalence classes with respect to the relation u ' v ⇐⇒
u − v is a constant,∀u, v ∈ H1

per
(Y ). We denote by u̇ the equivalence class

represented by u.

Proposition C.1.9 The following properties hold:

(i) The quantity

‖u̇‖Wper(Y ) = ‖gradu‖L2(Y ) , ∀u ∈ u̇ , u̇ ∈ Wper(Y ),

defines a norm on Wper(Y ).

(ii) The dual space (Wper(Y ))′ can be identified with the set

{F ∈ (H1
per(Y ))′ : F (c) = 0, ∀c ∈ R},

with

〈F, u̇〉(Wper(Y ))′,Wper(Y ) = 〈F, u〉(H1
per(Y ))′, H1

per(Y ) , ∀u ∈ u̇ , ∀u̇ ∈ Wper(Y ).
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C.2 COMPENSATED COMPACTNESS

The following compensated compactness result allows us to obtain informa-
tion concerning the behaviour of products of weakly convergent sequences.

Theorem C.2.1 Let O ⊂ R3 be bounded and let {un}n∈N and {vn}n∈N
be two sequences of vector fields in H(div,O) and H(curl,O) respectively.
Suppose that un ⇀ u in H(div,O), and vn ⇀ v in H(curl,O). Then vn·vn →
u · v in D′(O).

This is a kind of restatement of the celebrated div-curl lemma that is the
cornerstone of the theory of compensated compactness. It was developed by
François Murat and Luc Tartar in the late 1970s and is still a very active area
of research; see [80]. If v = (v1, . . . , vN )tr is a vector field with values in RN ,

let divv =
∑N
i=1 ∂xiv

i and (curlv)ij = ∂xjv
i − ∂xivi be the generalisation of

the usual curl. In its classical form (see, e.g., [329], [330], [403]), this lemma
reads as follows.

Theorem C.2.2 (The div-curl lemma) If {un}n∈N and {vn}n∈N are se-
quences in L2(O,RN ) that converge weakly in L2(O,RN ) ' (L2(O))N to u
and v, respectively, and if {div un}n∈N is compact in H−1(O) and {curl vn}n∈N
is compact in H−1(O,MN×N ) ' (H−1(O))N

2

, then un ·vn ⇀ u ·v in D′(O).

Remark C.2.3 A natural generalisation concerns sequences that are bound-
ed in Lp(O,RN ) and Lp

′
(O,RN ), respectively (where p, p′ are conjugate

exponents), with {div un} compact in W−1,p(O,MN×N ) and {curl vn} com-
pact in W−1,q(O,MN×N ) (see [330]).

Remark C.2.4 In another interesting recent result (see [111]) it is shown
that un · vn ⇀ u · v, if un ⇀ u in Lp and vn ⇀ v in Lq, under the additional
assumptions that the sequences {div un} and {curlun} are compact in the
dual space of W 1,∞

0 and that {un · vn} is equi-integrable.

C.3 HOMOGENISATION OF ELLIPTIC EQUATIONS

Since they are essential to the following discussion, we present here the very
basic principles of the theory of homogenisation of elliptic equations. The
notation and the involved notions (e.g., Y -periodicity) are considered as in
Section C.1. Let O be an open set in RN .

Definition C.3.1 For 0 < α1 < α2, we denote by MN(α1, α2,O) the set of
N ×N matrices A = (aij)1≤i,j≤N ∈ (L∞(O))N×N such that

(i) (A(x)λ, λ) ≥ α1|λ|2 ,

(ii) |A(x)λ| ≤ α2|λ| ,

for any λ ∈ RN and a.e. on O.
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Consider a Y -periodic matrix A = (aij) ∈ MN(α1, α2, Y ) and define
Aε(x) := A

(
x
ε

)
. Further, assume that f ∈ H−1(O). We wish to describe

the asymptotic behaviour as ε→ 0 of the following problems:

−div(Aεgraduε) = f in O ,
uε = 0 on ∂O .

Let Poper := {η : η is Y -periodic and 〈η〉 = 0}. Now define the functions θ̂λ
and θλ as the solutions in Po

per
, of the following problems

−divy(A(y) grady θ̂λ) = −divy(A(y)λ) in Y ,

and

−divy(Atr(y) grady θλ) = −divy(Atr(y)λ) in Y .

By the Lax-Milgram lemma, both θλ and θ̂λ are unique.
Further, define the functions ŵλ and wλ as the (unique) solutions in Po

per
,

respectively, of the following problems:

−divy(A(y) grady ŵλ) = divy(A(y)λ) in Y ,

and

−divy(Atr(y) grady wλ) = grady(Atr(y)λ) in Y .

Remark C.3.2 It can be shown that θ̂λ, θλ, ŵλ, wλ satisfy the correspond-
ing equations of the above problems not only in Y but (by periodicity) in
D′(RN ) as well.

These functions play an essential rôle in the homogenisation of the above
problem since the homogenised matrix Ah is expressed in terms of θ̂λ, θλ,
ŵλ, wλ.

The main convergence result is as follows.

Theorem C.3.3 Let f ∈ H−1(O), Aε and uε be defined as above. Then

(i) uε ⇀ u∗, in H1
0 (O) ,

(ii) Aεgraduε ⇀ Ahgradu∗, in (L2(O))N ,

where u∗ is the unique solution in H1
0 (O) of the constant coefficients (ho-

mogenised) problem

−div(Ah gradu∗) = f , in O ,
u∗ = 0 , on ∂O .

The constant matrix Ah = (ahij)1≤i,j≤N is coercive and given by

Ah λ = 〈(Aλ+A grad ŵλ)〉 , ∀λ ∈ RN ,
or, equivalently, by

(Ah)tr λ = 〈
(
Atrλ+Atr gradwλ

)
〉 , ∀λ ∈ RN ,

where ŵλ and wλ are the auxiliary functions defined above.
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Remark C.3.4 As can be seen in the proof of the above theorem (see,
e.g., [97]), convergence (ii) is deduced from convergence (i). This fact is a
particularity of the periodic case because of the explicit computation of the
homogenised coefficients. In the general nonperiodic case convergence (ii)
is not a consequence of convergence (i), and has to be proved separately.
We state this convergence in the theorem since it is one of the important
homogenisation results.

Remark C.3.5 The well-known result stated in the above theorem can be
proved by a variety of methods. One of them is the variational method of
oscillating test functions due to Tartar, and another is the two-scale method
(which takes into account the two scales x and x

ε
of the problem) of Nguet-

seng and Allaire. The convergence in this sense implies the weak conver-
gence. There is also the formal method of asymptotic expansions (known as
the multiple-scale method). Tartar’s method is a general one and is based
on the construction of a suitable set of oscillating test functions that allows
us to pass eventually to the limit. This method is related to the notion of
compensated compactness. In particular, for the case of periodic coefficients,
the test functions are periodic and are explicitly constructed in terms of ŵλ.
By passing to the limit one obtains the homogenised matrix Ah. There are
further convergence properties based on this method, e.g., the convergence
of energies and a corrector result.

In terms of the macroscopic scale x and the microscopic scale x
ε (describing

the micro-oscillations), we look for an expansion of uε in the form

uε(x) =

∞∑
j=0

εj uj

(
x,
x

ε

)
,

where uj = uj(x, y) are Y -periodic in the second variable y. One first obtains
that u∗ depends on x only, and then one shows that this u∗ is actually the
solution of the homogenised problem with Ah defined as above. The interest
in this is that in general, it permits us to “guess” formally the homogenised
problem. Some natural questions arise at this point: How “far” is uε from
u0, i.e., what is the error (in a suitable norm) when replacing uε by u∗?

What is the estimate when replacing uε by a finite sum
∑M
j=0 ε

j uj
(
x, xε

)
?

We give here an error estimate for the case M = 2 under some additional
regularity assumptions on the data and on the boundary of ∂O.

Theorem C.3.6 Let f ∈ H−1(O), Aε and uε be defined as above. Then uε

admits the following asymptotic expansion:

uε = u∗ − ε
N∑
k=1

θ̂k

(x
ε

) ∂u∗
∂xk

+ ε2
N∑

k,m=1

%̂km
(x
ε

) ∂2u∗

∂xk∂xm
+RN,ε ,

where u∗ is the solution of the problem of Theorem C.3.3, θ̂λ ∈ Wper(Y ) is
defined as above, and %̂km is the solution in Poper of

−div(A(y) grad %̂km) = −ahkm−
N∑

i,j=1

∂(aijδkiθ̂m)

∂yi
−

N∑
j=1

akj
∂(θ̂m − ym)

∂yj
in Y .
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Moreover, if f ∈ C∞(O), ∂O is of class ∈ C∞, and, additionally,

θ̂k, %̂
km ∈W 1,∞(Y ) , ∀k,m = 1, . . . , N ,

then there exists a constant C independent of ε such that

||RN,ε||2H1(O) ≤ C ε .

Remark C.3.7 To prove the above error estimate, more regularity on the
functions θ̂k and %̂km has to be assumed, namely, that their first derivatives
are bounded functions. It is plausible then to ask under what hypotheses we
can establish this property. Actually, it can be deduced from classical elliptic
regularity (see, e.g., [113], [161]), under strong regularity assumptions on the
matrix A, namely, that it is at least assumed to be continuous. Nevertheless,
this is not true in general for composite materials (see, e.g., Chapter 5 of
[97]).

C.4 RANDOM ELLIPTIC HOMOGENISATION THEORY

The homogenisation theory for elliptic problems may be extended for random
media when the condition for periodicity is replaced by suitable ergodicity
assumptions. The ergodic theorem can then be used to provide results for
the limiting behaviour of the solutions when ε→ 0.

Definition C.4.1 Let F ∈ L1
loc(RN). A number FM is called the mean value

of F if

lim
ε→0

1

|K|

∫
K

F
(x
ε

)
dx = FM

for any Lebesgue-measurable bounded set K ⊂ RN and |K| stands for the
Lebesgue measure of K.

Theorem C.4.2 (Birkhoff ergodic theorem) Let (Ω,F , P ) be a prob-
ability space and let τ = {τx}x ∈ R be a measure-preserving group of transfor-
mations on Ω. If F ∈ Lp(Ω,F , P ), p ≥ 1, then the realisation F̌ (x, ω) :=
F (τxω) for almost all ω ∈ Ω possesses a mean value1 FM(ω) in the sense that

F
(x
ε
, ω
)
⇀ FM(ω), in Lploc(R

N), P − a.s.

The mean value FM(ω) is invariant under τ in the sense that FM(τxω) =
FM(ω) for all x ∈ R, P -a.s. and we also have that EP [F ] = EP [FM]. If,
furthermore, the transformation τx is ergodic, then FM is no longer a random
variable2, and FM = EP [F ].

1The mean value is in general a random variable.
2That is, it is independent of ω ∈ Ω.
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The ergodic theorem in some sense replaces Proposition C.1.4 in the case
of a random coefficients. The above theorem implies that (see, e.g., [67])

F
(x
ε
, ω
)
∗
⇀ EP [F (x, ω)], as ε→ 0, in L∞(RN), P − a.s.

The periodic elliptic homogenisation theory has a counterpart for random
media, with ergodic coefficients. The basic theoretical tools of homogenisa-
tion theory, e.g., the div-curl lemma, have generalisations in the case where
the fields involved are random variables. For these generalisations one may
consult, e.g., [216], which allows the identification of the homogenised coef-
ficients.

Then the elliptic homogenisation theory can be generalised as follows.

Theorem C.4.3 Let A = A(ω) be a matrix defined on a probability space
(Ω,F , P ), A(ω) = {aij(ω)}, aij ∈ L∞(Ω), satisfying the ellipticity condition
a.s. Then, for almost all ω, the matrix A(x) = A(τxω) admits homogenisa-
tion and the homogenised matrix Ah is independent of ω.

The explicit form of the homogenised matrix Ah can be given in terms of
averages of the coefficients with respect to the solutions of the cell problems.
The cell problems are now random problems of similar form as their periodic
counterparts,

−div(A(x) gradwλ) = div(A(x)λ), λ ∈ RN ,

but now the periodicity boundary condition is replaced by the conditions that
gradwλ(τxω) is invariant and 〈wλ〉 = EP [w] = 0, and the average diffusivity
is given formally by the same expression as in Theorem C.3.3, where now
the averaging operator is to be understood in the above sense.
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Some Facts from Dyadic Analysis

(by George Dassios)

The dyadic representation is very useful in the following situations:

1. when we deal with more than one basis,

2. when we use curvilinear coordinates, where differential operators need
to act on the components as well as on the basis elements,

3. in representing solutions of equations in a way that separates the vari-
ables from the parameters of the problem,

4. in performing successive algebraic operations in a systematic way,

5. in presenting complicated expressions in a compact and meaningful
form.

The theory of dyadics was introduced and developed by J. W. Gibbs and
first appeared in the celebrated book on vector calculus, first published in
1901, by E. B. Wilson [434]. Nevertheless, the most complete introduction to
polyadics is contained in the monumental book Vector and Tensor Analysis
by L. Brand [78].

If x̂1, x̂2, x̂3 are the basis vectors1 of a Cartesian system in R3, then
any vector x ∈ R3 is represented, with respect to this basis, as the linear
combination

x =x1x̂1 + x2x̂2 + x3x̂3 , (D.1)

where for i = 1, 2, 3,

xi = x · x̂i (D.2)

are the projections of x on the basis vectors.
Substituting (D.2) into (D.1) and using the commutative property of the

inner product, we obtain

x = x̂1(x̂1 · x) + x̂2(x̂2 · x) + x̂3(x̂3 · x) . (D.3)

We can interpret the right-hand side of (D.3) as the inner product from the
right of an entity consisting of the sum of three pairs of ordered basis vectors.

1In this appendix, contrary to the notation adopted in the rest of the book, the (tra-
ditional) boldface notation is used for vectors.
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That is, if we denote the order relation by the tensor product symbol “⊗”,
then (D.3) is written as

x = (x̂1 ⊗ x̂1 + x̂2 ⊗ x̂2 + x̂3 ⊗ x̂3) · x . (D.4)

More generally, if ai and bi , i = 1, 2, . . . , n , are any vectors in R3, then we
can form the sum of ordered vectors˜̃

A =

n∑
i=1

ai ⊗ bi , (D.5)

which defines2 a dyadic. Every term ai ⊗ bi of the dyadic is called a dyad .
The vectors ai are called antecedents and the vectors bi are called conse-
quents.

The dyadic

˜̃
I =

3∑
i=1

x̂i ⊗ x̂i, (D.6)

where x̂i, i = 1, 2, 3, are orthonormal basis vectors, represents the identity
dyadic in R3, having the property˜̃

I · x = x · ˜̃I = x , x ∈ R3 . (D.7)

In analogy with a vector, which is an ordered set of scalars, a dyadic is an
ordered set of vectors. It is actually a linear map f that acts on vectors
through the inner product from the right, i.e.,

f(x) =
˜̃
A · x =

( n∑
i=1

ai ⊗ bi

)
· x =

n∑
i=1

ai(bi · x) . (D.8)

The dyadic

(
˜̃
A)tr =

∑n
i=1 bi ⊗ ai (D.9)

is called the transpose of
˜̃
A. The dyadic

˜̃
A is called symmetric if it coincides

with its transpose, i.e.,
˜̃
A = (

˜̃
A)tr, and it is called antisymmetric if it

coincides with the opposite of its transpose, i.e.,
˜̃
A = −(

˜̃
A)tr. Every dyadic

can be decomposed into the sum of a symmetric and an antisymmetric dyadic
according to the standard decomposition

˜̃
A = (

˜̃
A)sym + (

˜̃
A)ant =

˜̃
A + (

˜̃
A)tr

2
+
˜̃
A− (

˜̃
A)tr

2
. (D.10)

Obviously, the two vectors that define any dyad do not commute, but the

action of (
˜̃
A)tr on the vector x is equivalent to the action of

˜̃
A on the vector

x from the left, i.e.,

(
˜̃
A)tr · x = x · ˜̃A , x ∈ R3. (D.11)

2The notation
˜̃
A, and not the standard Ã, for a dyadic is adopted in this book, since

the symbol tilde is reserved to denote the Fourier transform.
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Two dyadics
˜̃
A and

˜̃
B are equal if they act the same way on any vector, i.e.,

when ˜̃
A · x =

˜̃
B · x , x ∈ R3 , (D.12)

or equivalently, when

x · ˜̃A = x · ˜̃B , x ∈ R3 . (D.13)

The zero dyadic
˜̃
0 is defined by the relations˜̃

0 · x = x · ˜̃0 = 0 , x ∈ R3 . (D.14)

The vector space operations of addition and scalar multiplication, as well
as their properties, are transfered to the dyadics in a straightforward way.
Indeed, we define the addition of dyadics as

(
˜̃
A +

˜̃
B) · x =

˜̃
A · x +

˜̃
B · x , x ∈ R3 (D.15)

and the scalar multiplication of dyadics as

(λ
˜̃
A) · x =

˜̃
A · (λx), λ ∈ R , x ∈ R3 , (D.16)

and it is easily shown that these two operators satisfy all the “standard”
properties. Therefore, the set of all dyadics in R3, equipped with the oper-
ation (D.15) and (D.16), defines a vector space D called the dyadic space.

Consider the vectors

ai = a1
i x̂1 + a2

i x̂2 + a3
i x̂3 , i = 1, 2, . . . , n ,

bi = b1i x̂1 + b2i x̂2 + b3i x̂3 , i = 1, 2, . . . , n.

Then the dyadic
˜̃
A is written as

˜̃
A =

n∑
i=1

ai ⊗ bi =

( n∑
i=1

aib
1
i

)
⊗ x̂1 +

( n∑
i=1

aib
2
i

)
⊗ x̂2 +

( n∑
i=1

aib
3
i

)
⊗ x̂3

= x̂1 ⊗
( n∑
i=1

a1
ibi

)
+ x̂2 ⊗

( n∑
i=1

a2
ibi

)
+ x̂3 ⊗

( n∑
i=1

a3
ibi

)
, (D.17)

which shows that every dyadic in R3 can be written as a sum of three dyads.
Similarly, using the distributive law, we can write any dyadic in the form

˜̃
A =

3∑
i,j=1

Aijx̂i ⊗ x̂j , (D.18)

which implies immediately that the set

B= {x̂i ⊗ x̂j : i = 1, 2, 3 and j = 1, 2, 3} (D.19)

provides a basis for the dyadic space D.
Note that when there is no ambiguity about the reference system, we

specify a vector as ordered scalars, i.e., x = (x1, x2, x3), where x1, x2, x3

are the components of x with respect to the suppressed basis vectors x̂1, x̂2,
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x̂3. If we try to do the same with the dyadic
˜̃
A given in (D.18), we see that

because of the double index in the components Aij , we need to order these
components in two dimensions, and this ordering yields the matrix

A= [Aij ] , (D.20)

which is called the nonion form of the dyadic
˜̃
A with respect to the basis

x̂1, x̂2, x̂3. Therefore, a dyadic is nothing more than the representation of
a linear map in such a way that not only the components Aij but also the
basis dyads x̂i⊗ x̂j are “visible” in the representation. In the same way, the
representation (D.1) of a vector shows both the components and the basis
vectors, while in the representation x = (x1, x2, x3), the basis vectors are
suppressed. In this respect, a dyadic is formed by ordering vectors.

A dyadic is called complete if its range is three-dimensional, i.e., if the
dyadic maps R3 to R3; otherwise it is called singular. Then, a dyadic is
invertible if and only if it is complete. The inverse of a dyadic is defined by
the property ˜̃

A · ( ˜̃A)−1 = (
˜̃
A)−1 · ˜̃A =

˜̃
I . (D.21)

As a general rule, the properties and the conditions that one needs to know
in order to perform calculations at the dyadic level are identical with the
corresponding ones at the matrix level. For example, a dyadic is invertible if
and only if its nonion form is invertible. Similarly, a dyadic is singular if and
only if there is a nonzero vector that the dyadic maps to zero. Furthermore,
one can show that the dyadic˜̃

A = a1 ⊗ b1 + a2 ⊗ b2 + a3 ⊗ b3 (D.22)

is complete if and only if a1, a2, a3 and b1, b2, b3 form two sets of linearly
independent vectors. It is straightforward to show that if only two of the
three vectors a1, a2, a3 are linearly independent, then the dyadic can be
written as the sum of two dyads. Such a dyadic is called planar because its
range is two-dimensional. If only one of the vectors a1, a2, a3 is linearly
independent, then the dyadic can be represented by a single dyad. In this
case, the dyadic is called linear , since its range is restricted to a line.

The following products, which are defined for dyads, can be extended by
linearity arguments to any general dyadic

(a⊗ b) · (c⊗ d) = (b · c)a⊗ d. (D.23)

(a⊗ b) : (c⊗ d) = (b · c)(a · d). (D.24)

(a⊗ b)× c = a⊗ (b× c). (D.25)

c× (a⊗ b) = (c× a)⊗ b. (D.26)

(a⊗ b) ·×(c⊗ d) = (b · c)⊗ (a× d). (D.27)

(a⊗ b)××(c⊗ d) = (b× c)⊗ (a× d). (D.28)

The most important characteristics of a dyadic are its invariants. These
are particular expressions of the antecedents and the consequents of the
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dyadic that stay invariant under any change of the basis vectors. Therefore,
they carry the structure of the dyadic and are independent of the choice of
basis. Every dyadic has six invariants - three scalar, two vector and one
dyadic. The dyadic ˜̃

A = a⊗ `+ b⊗m + c⊗ n (D.29)

has the first , second and third scalar invariants

ϕ1 = a · `+ b ·m + c · n, (D.30)

ϕ2 = (a× b) · (`×m) + (b× c) · (m× n) + (c× a) · (n× `), (D.31)

ϕ3 = (a× b · c)(`×m · n), (D.32)

the first and second vector invariants

φ1 = a× `+ b×m + c× n, (D.33)

φ2 = (a× b)× (`×m) + (b× c)× (m× n) + (c× a)× (n× `), (D.34)

and the dyadic invariant˜̃
Φ = (a× b)⊗ (`×m) + (b× c)⊗ (m× n) + (c× a)⊗ (n× `) . (D.35)

Note that ϕ2 is the first scalar invariant and φ2 is the first vector invariant

of the dyadic invariant
˜̃
Φ. The scalar invariants ϕ1 and ϕ3 are the trace and

the determinant, respectively, of any nonion form of
˜̃
A.

We can extend the theory of dyadics to include linear combinations of
three ordered vectors a⊗b⊗c, which defines a triadic; four ordered vectors
a⊗b⊗c⊗d, which defines a tetradic; five ordered vectors a⊗b⊗c⊗d⊗e,
which defines a pentadic; and in general to include n-ordered vectors a1 ⊗
a2 ⊗ · · · ⊗ an, which defines a polyadic of order n. The terms of a polyadic
acts on vectors as

a1 ⊗ a2 ⊗ · · · ⊗ an · x = (an · x) a1 ⊗ a2 ⊗ · · · ⊗ an=1 . (D.36)

The nonion form of a polyadic of order n is a tensor of order n. In every case,
the relative inner and cross products are acting between the neighbouring
vectors, as the following examples show;

(a⊗ b⊗ c⊗ d)××(e⊗ f ⊗ g) = a⊗ b⊗ (d× e)⊗ (c⊗ f)⊗ g. (D.37)

(a⊗ b⊗ c)
·
··(e⊗ f ⊗ g) = (c · e)(b · f)(a · g). (D.38)

(a⊗ b⊗ c)×·
×

(e⊗ f ⊗ g ⊗ h) = (b · f)(c⊗ e)⊗ (a× g)⊗ h . (D.39)

The associative and distributive laws can extend these definitions to any
combination of terms.

Observe that the top cross product comes first in the order of the vectors,
then the second one, and so on. It is obvious that the inner product annihi-
lates two orders and the cross product annihilates one order from the total
polyadic formed by the factor polyadics.
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Just as a dyadic is a linear operator that maps vectors to vectors, a tri-
adic is a linear operator that maps vectors to dyadics, a tetradic is a linear
operator that maps vectors to triadics and so on. A polyadic of order n is
an operator that maps vectors to polyadics of order n − 1. By using dou-
ble, triple, or higher-order inner products we can arrange to map polyadics
of any order to polyadics of any other order. For example, relation (D.38)
defines an operator that maps triadics to scalars.

For any symmetric dyadic
˜̃
A there exist an orthonormal set of vectors

ê1,ê2, ê3 and three real numbers λ1, λ2, λ3, in terms of which the dyadic
has the representation˜̃

A =λ1ê1 ⊗ ê1 + λ2ê2 ⊗ ê2 + λ3ê3 ⊗ ê3 . (D.40)

If A represents a nonion form of
˜̃
A, then λ1, λ2, λ3 are the eigenvalues and

ê1,ê2, ê3 are the eigenvectors of the symmetric matrix A.
If the vectors that enter the expression of a polyadic are functions of

some particular variables, then the linear operators of differentiation and
integration act on any polyadic component-wise according to the known
properties of the differentiation and integration.

Polyadics appear naturally in analysis as follows. Suppose we want to
calculate the directional derivative of the function f = f(r) in the direction
ê = (cosα, cosβ, cos γ) at the point r0, where α, β, γ are the angles that the
direction ê makes with the three Cartesian axes. The ray that emanates
from r0 in the direction ê is given by the equation r = r0+sê, and by the
chain rule we obtain

df(r0)

ds
=
∂f(r0)

∂x1

dx1

ds
+
∂f(r0)

∂x2

dx2

ds
+
∂f(r0)

∂x3

dx3

ds

=
∂f(r0)

∂x1
cosα+

∂f(r0)

∂x2
cosβ +

∂f(r0)

∂x3
cos γ

=
∂f(r0)

∂x1
(x̂1 · ê) +

∂f(r0)

∂x2
(x̂2 · ê) +

∂f(r0)

∂x3
(x̂3 · ê)

= ê ·
(

x̂1
∂f(r0)

∂x1
+ x̂2

∂f(r0)

∂x2
+ x̂3

∂f(r0)

∂x3

)
. (D.41)

Consequently, we arrive at the well-known formula3

Dêf(r0) = ê · ∇f(r0) , (D.42)

where Dê denotes the directional derivative in the direction ê. Formula
(D.42) shows that the infinite set of directional derivatives of the scalar func-
tion f is replaced by the vector function ∇f , and every directional derivative
is synthesised via this formula. In a similar way, for the directional derivative
of the vector function f we obtain

Dêf(r0) = ê ·
(
∇⊗ f(r0)

)
, (D.43)

3In this appendix, contrary to the notation adopted in the rest of the book, the notation
∇ is used instead of grad for the gradient operator, and similarly for the other differential
operators of vector and dyadic analysis.
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which shows that the infinite set of directional derivatives of the vector func-
tion f is replaced by the dyadic function ∇ ⊗ f . In the general case, the

infinite set of directional derivatives of the polyadic
˜̃
P of order n is replaced

by the polyadic ∇⊗ ˜̃P of order n+ 1.
The significance of the basic differential operators of divergence ∇ · f and

rotation ∇× f is that these two forms are the first scalar and the first vector
invariants of the dyadic ∇⊗ f , which incorporates all directional derivatives
of the vector field f . If f = ∇φ, then the two basic invariants of the dyadic
field ∇⊗∇φ provide the formulae

∇ · ∇φ=∇2φ = ∆φ =
∂2φ

∂x2
1

+
∂2φ

∂x2
2

+
∂2φ

∂x2
3

(D.44)

and

∇⊗∇φ= 0. (D.45)

Similarly, if f = ∇× g, then

∇ · (∇× g) = 0 (D.46)

and

∇× (∇× g) =∇(∇ · g)−∆g . (D.47)

The general Gauss theorem for the continuously differentiable polyadic
˜̃
P of

any order in a smooth domain V with boundary S and outward unit normal
n̂ assumes the form ∫

V

∇⊗ ˜̃Pdv=

∮
S

n̂⊗ ˜̃Pds . (D.48)

Similarly, the general Stokes theorem for the continuously differentiable

polyadic
˜̃
P of any order on a smooth surface S with unit normal n̂, hav-

ing boundary C with tangential unit vector T̂, assumes the form∫
S

n̂×∇⊗ ˜̃Pds =

∮
C

T̂⊗ ˜̃Pdl , (D.49)

where the integration over the line integral is taken in the positive direction
with respect to the orientation of the surface S that has n̂ as its unit normal.

Obviously, by taking invariants of the general theorems of Gauss and

Stokes, we obtain other forms of integral theorems. For example, if
˜̃
P is

the vector field f , then the first scalar invariants of the dyadic equations
(D.48) and (D.49) recover the classical theorems of Gauss and Stokes∫

V

∇ · fdv=

∮
S

n̂ · fds (D.50)

and ∫
S

n̂×∇ · fds=

∫
S

n̂ · ∇ × fds =

∮
C

T̂ · fdl , (D.51)

respectively.
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Appendix E

Notation and abbreviations

Following is a list of notations and abbreviations used in this book for quick
reference for the convenience of the reader.

. O ⊂ R3 is an open bounded domain.

. Γ = ∂O the boundary of O.

. Oe is the complement of O in R3, an exterior domain.

. Lp(O) is the Lebesgue space of p-integrable functions u : O → R.

. Wm,p(O) is the Sobolev space of functions u : O → R, with generalised
derivatives up to m order in Lp(O).

. X is a Banach space, || · ||X its norm, X ′ its dual, 〈·, ·〉X′, X the duality
pairing between them.

. H is used as a symbol for a “generic” Hilbert space, and (·, ·) is used
for the inner product in this space.

. Lp([0, T ],H) is the space of p-integrable functions u : [0, T ]→ H.

. Ck([0, T ],H), k ∈ N0 is the space of k-times continuously differentiable
functions u : [0, T ]→ H.

. Wm,p([0, T ],H) is the Sobolev-Bochner space of m-times weakly dif-
ferentiable in Lp([0, T ],H) functions u : [0, T ]→ H.

. → denotes strong convergence.

. ⇀ denotes weak convergence.

.
∗
⇀ denotes weak-? convergence.

. ? denotes convolution.

.
c

↪→ is the symbol used for a compact embedding.

. û denotes the Laplace transform of a vector-valued function u.

. ũ denotes the Fourier transform of a vector-valued function u.

. (Ω,F , P ) is used for a probability space, and ω denotes a realisation
of the random variable X : Ω→ H.
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. EP [X] =
∫

Ω
X dP is the expectation of the random variable X.

. EP [X | G ] is the conditional expectation of X with respect to the
σ-subalgebra G of F .

. Lp(Ω,F , P ;H) is the space of H-valued, F -measurable random vari-
ables, X : Ω→ H, such that EP [ ||X||pH ] <∞.

. W (t) is the Q-Wiener process and W̌ (t) is the cylindrical Wiener pro-
cess.

.
∫ t

0
QA dW (s) is the Itō integral of the operator valued process QA.

. H(div,O) = {u ∈ (L2(O))3 : div u ∈ L2(O)}.

. H0(div,O) = {u ∈ H(div,O) : u · n|Γ = 0}.

. H(div0,O) =
{
u ∈ (L2(O))3 : div u = 0

}
.

. H0(div0,O) := {u ∈ H(div0,O) : u · n = 0 on Γ}.

. H(curl,O) = {u ∈ (L2(O))3 : curlu ∈ (L2(O))3}.

. H0(curl,O) = {u ∈ H(curl,O) : n× u|Γ = 0}.

. X := (L2(O))3.

. X := X× X.

. XM := H0(curl,O)×H(curl,O).

. X1 := H0(curl,O) ∩H(div0,O).

. X2 := H(curl,O) ∩H0(div0,O).

. XM := X1 × X2 .

. M is the Maxwell operator, M :=

(
0 curl
−curl 0

)
.

. {TM(t)}t ∈ R+ is the semigroup generated by M.

. Aor(x) =

(
ε(x) ξ(x)
ζ(x) µ(x)

)
is the 6 × 6 optical response matrix, and MA

is the modified Maxwell operator, MA = A−1
or

M.

. {TMA
(t)}t ∈ R+ is the semigroup generated by MA.
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aphanes, et sur quelques autres nouveaux phénomènes d’optique,
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[226] A. Karlsson, G. Kristensson, Constitutive relations, dissipation and
reciprocity for the Maxwell equations in the time domain, J. Elec-
trom. Waves Appl. 6, 1992, 537–551.

[227] A. Karlsson, G. Kristensson, Constitutive relations, dissipation and
reciprocity for the Maxwell equations in the time domain, Technical
Report LUTEDX/(TEAT-7005)/1-36, Lund University, 1999. ([227]
is an expanded version of [226]). http://www.eit.lth.se

[228] G. J. Karonis, D. I. Kaklamani, N. K. Uzunoglu, Scattering of elec-
tromagnetic waves by a chiral object of ellipsoidal shape, J. Electro-
magn. Waves Appl. 13, 1999, 817–845.

[229] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag,
Berlin, 1995.

[230] N. Kavallaris, I. G. Stratis, A. N. Yannacopoulos, On the well posed-
ness of a class of nonlinear complex media in electromagnetics, in
preparation.

[231] D. N. Keck, M. A. McKibben, Functional integro-differential
stochastic evolution equations in Hilbert space, J. Appl. Math.
Stoch. Anal. 16, 2003, 127–147.

[232] D. N. Keck, M. A. McKibben: On a McKean-Vlasov stochastic
integro-differential evolution equation of Sobolev-type, Stoch. Anal.
Appl. 21, 2003, 1115–1139.



rsy-book-final December 7, 2011

360 BIBLIOGRAPHY

[233] D. N. Keck, M. A. McKibben: Abstract stochastic delay integrodif-
ferential equations, J. Appl. Math. Stoch. Anal. 3, 2005, 275–305.

[234] Kelvin, Baltimore Lectures on Molecular Dynamics and the Wave
Theory of Light, C . J. Clay and Sons, London, 1904.

[235] B. N. Khatir, M. Al-Kanhal, A. Sebak, Electromagnetic wave scat-
tering by elliptic chiral cylinder, J. Electromagn. Waves Appl. 20,
2006, 1377–1390.

[236] K. V. Khmelnytskaya, V. V. Kravchenko, Biquaternions for analytic
and numerical solution of equations of electromagnetic theory, in
Some Topics on Value Distribution and Differentiability in Complex
and p-adic Analysis (eds. A. Escassut, W. Tutschke, C. C. Yang),
Science Press, Beijing, 2008, 301–322.

[237] K. V. Khmelnytskaya, V. V. Kravchenko, H. Oviedo, Quaternionic
integral representations for electromagnetic fields in chiral media,
Telecommun. Radio Eng. 56, 2001, 53–61.

[238] K. V. Khmelnytskaya, V. V. Kravchenko, V. S. Rabinovich, Quater-
nionic fundamental solutions for electromagnetic scattering prob-
lems and application, Z. Anal. Anw. 22, 2003, 147–166.

[239] H. Kiili, Transmission Problem for the Electromagnetic Scattering
by a Chiral Obstacle, PhD Thesis, University of Oulu, 2011.

[240] J. U. Kim, Approximate controllability of a stochastic wave equa-
tion, Appl. Math. Optim. 49, 2004, 81–98.

[241] A. Kirsch, Surface gradients and continuity properties for some in-
tegral operators in classical scattering theory, Math. Methods Appl.
Sci. 11, 1989, 789–804.

[242] A. Kirsch, An Introduction to the Mathematical Theory of Inverse
Problems, Springer-Verlag, Berlin, 1996.

[243] Yu. S. Kivshar, B. Luther-Davies, Dark optical solitons: Physics and
applications, Phys. Rep. 298, 1998, 81–197.

[244] V. Komornik, Exact Controllability and Stabilization: The Multi-
plier Method, Masson, Paris, 1994.

[245] J. A. Kong, Theory of Electromagnetic Waves, Wiley, New York,
1975.

[246] V. V. Kravchenko, On the relation between holomorphic biquater-
nionic functions and time-harmonic electromagnetic fields, De-
posited in UkrINTEI, 29.12.1992, #2073-Uk-92 (in Russian).



rsy-book-final December 7, 2011

BIBLIOGRAPHY 361

[247] V. V. Kravchenko, Quaternion-valued integral representations for
time-harmonic electromagnetic and spinor fields, Dokl. Akad. Nauk
341, 1995, 603–605 (Engl. trans. Russ. Acad. Sci., Dokl. Math. 51,
1995, 287–289).

[248] V. V. Kravchenko, On the relation between the Maxwell system and
the Dirac equation, WSEAS Trans. Syst. 1, 2002, 115–118.

[249] V. V. Kravchenko, On Beltrami fields with nonconstant proportion-
ality factor, J. Phys. A 36, 2003, 1515–1522.

[250] V. V. Kravchenko, Quaternionic equation for electromagnetic fields
in inhomogeneous media, in Progress in Analysis, volume 1 (eds.
H. Begehr, R. Gilbert, M. Wah Wong), World Scientific, Singapore,
2003, 361–366.

[251] V. V. Kravchenko, Applied Quaternionic Analysis, Research and Ex-
position in Mathematics Series vol. 28, Heldermann-Verlag, Leipzig,
2003.

[252] V. V. Kravchenko, Applied Pseudoanalytic Function Theory,
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groups, Birkhäuser, Basel, 2009.

[415] V. Twersky, Scattering of waves by two objects, in Electromagnetic
Waves (ed. R. E. Langer), University of Wisconsin Press, Madison,
1962, 361–369.

[416] V. Twersky, Multiple scattering by arbitrary configurations in three
dimensions, J. Math. Phys. 3, 1962, 83–91.

[417] V. Twersky, Multiple scattering of electromagnetic waves by arbi-
trary configurations, J. Math. Phys. 3, 1967, 589–598.
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stochastic, 32, 34
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weak formulation, 63
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Maxwell operator
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modified (MA), 58
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Media
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Nonlinear
a priori estimates, 233
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Beltrami, 125
boundary integral, 100
coercive, 315
diagrams, 46, 54
far-field, 120
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properties, 57

Maxwell modified (MA), 58
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trace, 46
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Poynting theorem, 16
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Silver-Müller, 25
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Reciprocity principle
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spherical waves, 122

Resonating cavity (interior) problem, 24

Saddle point formulation
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wave operator, 216
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far-field operator, 118
far-field operators, 135
far-field pattern, 115, 118
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