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The results of a comparison between total ozone amounts derived from solar

backscatter ultraviolet (SBUV) satellite observations and those calculated from

the chemical transport model Oslo CTM2 are presented for the period 2001–2007.

Monthly mean total ozone amounts from improved model simulations were used

to compute monthly, seasonal and annual zonal means over 10� latitude zones, and

compared with respective satellite retrievals over the northern and southern hemi-

spheres. The results show that the improved model simulations slightly under-

estimate total ozone over the northern hemisphere when compared with the

satellites by 1.4% on average, and slightly overestimate total ozone over the south-

ern extra-tropics, middle and high latitudes by 1.6% on average. The mean differ-

ence between the model- and satellite-derived total ozone columns from 75�S to

75�N is estimated to be about -0.3%. A linear regression analysis between the

model- and satellite-derived total ozone data shows statistically significant corre-

lations between the two data sets at all latitude zones (aboutþ0.8 in the tropics and

more than þ0.9 over all other latitudes). The annual cycle of total ozone is shown

to be well reproduced by the model at all latitudes.

1. Introduction

Ozone is an important constituent of the Earth’s atmosphere at a height of between 10

and 50 km. It absorbs ultraviolet radiation from the Sun and protects the biosphere

from harmful effects of ultraviolet radiation. Ozone column amounts in the atmo-

sphere can be obtained from surface measurements and satellite observations
(e.g. Varotsos and Cracknell 1994, Zerefos et al. 1994, Chandra and Varotsos 1995,

Gernandt et al. 1995, Varotsos et al. 1995, Kondratyev and Varotsos 1996, Zerefos

1997, Fioletov et al. 2002, Varotsos 2002, Svendby and Dahlback 2004, Chipperfield

and Fioletov 2007, Kramer and Cracknell 2008), and can be calculated by chemistry-

climate and chemistry-transport models (e.g. Eyring et al. 2006, Steinbrecht et al.

2006, Stolarski et al. 2006, Austin et al. 2008, Søvde et al. 2008). The ability of models

to reproduce the observed atmosphere comes from the key physical and chemical

processes included in the models (Søvde et al. 2008).
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These models are continually being improved to include comprehensive chemistry

and physics of both the troposphere and the stratosphere (e.g. Søvde et al. 2008 and

references therein), as in the case of the Oslo chemical transport model (CTM2). To

make the Oslo CTM2 model suitable for studying processes in the upper tropospheric

and lower stratospheric (UTLS) region, the original tropospheric model (Stordal et al.

1985, Isaksen et al. 1990, Berntsen and Isaksen 1997, Sundet 1997) was extended to

include comprehensive chemistry for the stratosphere (Gauss et al. 2003). The

updated version with improved microphysics and heterogeneous chemistry and the

extension of vertical layers to 60 has improved the capability to predict the distribu-

tion of ozone and precursors in the UTLS region, in the upper stratospheric region

and in the troposphere (Søvde et al. 2008).

The purpose of this study was to provide additional evidence of improved simula-

tions in total ozone columns by the updated Oslo CTM2 model, through a compar-
ison of monthly, seasonal and annual mean total ozone, from the improved

simulations for the period 2001–2007, with respective to total ozone averages from

solar backscatter ultraviolet (SBUV) satellite data.

2. Data

2.1 The Oslo CTM2

The Oslo CTM2 is a global offline chemical transport model, driven by meteorologi-

cal data from the European Centre for Medium-Range Weather Forecasts Integrated

Forecast System (IFS) model. The meteorological data are given on a 3-hourly basis,

produced for each day by a 36-h forecast with 12 h of spin-up, initialized from the

analysis at noon (1200 Coordinated Universal Time (UTC)) the previous day (dis-

cussed by, for example, Wild et al. (2003), Søvde et al. (2008)). Using forecasts rather
than analyses gives a more dynamically self-consistent data set and has been shown to

give more realistic transport (e.g. Stohl et al. 2004, Scheele et al. 2005). The use of

3-hourly meteorological data instead of, for example, 6-hourly data, has been found

to improve the transport further (e.g. Bregman et al. 2006). In the IFS model a spectral

resolution of T319 is applied (T319 is approximately 0.5� � 0.5� grid resolution,

longitude/latitude, widely known by modellers). The horizontal resolution of the

Oslo CTM2 can be varied between T21 (resolution of 5.6� � 5.6�, longitude/latitude),

T42 (2.8� � 2.8�), T63 (1.9� � 1.9�) and 1� � 1�, into which the IFS spectral fields are
truncated. The IFS data, available as gridded data, are averaged into the model grid.

Sigma pressure hybrid coordinates are used in the vertical, extending in 40 layers from

the surface up to 2 hPa (the uppermost layer mass centre is at 10 hPa). In the

tropopause region the vertical resolution varies between about 0.8 km at high lati-

tudes and about 1.2 km at low latitudes, and above 100 hPa the resolution is 20 hPa.

Advective transport is calculated using the highly accurate and low diffusive second-

order moments scheme (Prather 1986).

To make the Oslo CTM2 suited for studying processes in the UTLS, the original
tropospheric model (Stordal et al. 1985, Isaksen et al. 1990, Berntsen and Isaksen

1997, Sundet 1997) was extended to include comprehensive chemistry for the strato-

sphere as well (Gauss et al. 2003). A heterogeneous chemistry scheme (Carslaw et al.

1995) and the Fast-J2 method for the calculation of photodissociation coefficients

(Wild et al. 2000, Bian and Prather 2002) were included, and the vertical resolution

was improved. The parameterizations of lightning and aircraft emissions, both impor-

tant for the nitrogen budget in the UTLS, were refined. The Oslo CTM2 has now been
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improved with a new scheme for microphysics and heterogeneous chemistry, to better

represent the formation of polar stratospheric clouds, including denitrification and

dehydration (Søvde et al. 2008).

The Oslo CTM2 has previously been applied in model/model comparisons and

tested against observations (Isaksen et al. 1990, 2005, Grini et al. 2002, Brunner et al.

2003, 2005, Gauss et al. 2003, 2006, Isaksen 2003, Andersen et al. 2006). It has been

evaluated against measurements by satellite-based instruments, ozonesondes and

aircraft (Søvde et al. 2008).

The tropospheric chemistry scheme is run with a numerical time step of 15 min

(5 min for OH/HO2/RO2 reactions), contains 51 species and takes into account 86

thermal reactions, 17 photolytic reactions and 2 heterogeneous reactions (which are

important in the new heterogeneous chemistry). It includes hydrocarbon chemistry

and has been thoroughly tested (Brunner et al. 2003). The stratospheric chemistry
scheme is an extension of the scheme used by Stordal et al. (1985) for the Oslo 2-D

model and was later updated to include heterogeneous chemistry (Isaksen et al. 1990)

before it was included in the 3-D Oslo stratospheric chemical transport model

(SCTM-1; Rummukainen et al. 1999) and the Oslo CTM2. Fifty-five species and

seven families are included, and a total of 159 reactions (104 thermal, 47 photolytic

and 8 heterogeneous), which are integrated with a numerical time step of 5 min. Of

these species, 17 are also treated in the tropospheric scheme. The heterogeneous

chemistry scheme is part of the stratospheric chemistry. The total number of species
in the Oslo CTM2 amount to 97, including families. Bromine, chlorine chemistry and

NOx are included. All reactions and species in the Oslo CTM2 are described in detail

in the study by Søvde et al. (2008).

2.2 SBUV satellite data

The total ozone satellite data used in this study come from the Solar Backscatter

UltraViolet Instrument (SBUV/2). Use was made of the Version 8 Zonal Profile

Ozone data set for the period January 2001 to December 2007. The SBUV/2 instru-

ment is a scanning double monochromator measuring backscattered solar radiation

in 12 discrete wavelength bands ranging from 252.0 to 339.8 nm. In previous SBUV

algorithms, total column ozone was retrieved using the four longest wavelengths, and

then a profile was retrieved using the eight shortest wavelengths. In the version 8
algorithm released in 2004, an ozone profile is retrieved using all 12 wavelengths, and

total column ozone is the integral of the profile (Bhartia et al. 2004). The version 8

algorithm is optimized to provide a self-consistent long-term ozone record. The

SBUV/2 satellite data used here have been reprocessed with the version 8 algorithm

and are available at www.cpc.ncep.noaa.gov/products/stratosphere/sbuv2to. The

data are available as column ozone in Dobson Units (DU) for 13 layers. The results

of SBUV/2 ozone profile comparisons with other data sources are discussed by

Petropavlovskikh et al. (2005), Nazaryan and McCormick (2005), Fioletov et al.

(2006) and Terao and Logan (2007).

In this study, total ozone was calculated by summing the profile ozone data for all

13 layers.

3. Results and discussion

Figure 1(a) shows the latitudinal distribution of zonally averaged annual mean total

ozone from Oslo CTM2 calculations for the period 2001–2007 in comparison with

Total ozone from Oslo CTM2 and SBUV satellite data 2537
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total ozone from SBUV satellite observations. Figure 1(b) shows the respective
differences between the two data sets as a percentage, calculated as [(model value –

satellite value)/model value]� 100%. From figure 1 it is evident that there are specific

differences between the model- and satellite-derived annual mean total ozone. The

model generally underestimates total ozone over the northern hemisphere by 1.4%,

over the tropics by 0.8% and over the southern subtopics by 1.1%. However, over the

southern extra-tropics, middle and high latitudes, total ozone from the model is

overestimated by 1.5, 0.7 and 2.7%, respectively. Table 1 summarizes the mean

differences between the model- and satellite-derived total ozone columns at each 10�

latitude zone: the mean differences are less than �2.7%.

Figure 2 shows the comparison between the model and satellite total ozone amounts for

each season (December-January-February (DJF), March-April-May (MAM), June-July-

August (JJA) and September-October-November (SON)), together with the respective

differences as a percentage. Again there is good agreement between the latitudinal distribu-

tions of seasonally averaged total ozone from the model calculations and the satellite data.

In wintertime, the highest differences between the model and the satellite data are found

over the southern tropical latitudes where the model underestimates total ozone by 4.6%
(figure 2(b)). In the northern hemisphere, however, the wintertime simulated total ozone

shows excellent agreement with the satellite observations (differences less than about 1%).

In springtime, differences between model and satellite-derived total ozone do not exceed

�3% (figure 2(d)), and in the summer a mean difference of about -6.5% in total ozone is

observed between the latitudes 55�S and 65�S (figure 2(f)). In autumn, the highest

200 250 300 350 400 450 500
Zonal mean total ozone (DU)

65–75°N

(a) (b)

65–75°S

55–65°N

55–65°S

45–55°N

45–55°S

35–45°N

35–45°S

25–35°N

25–35°S

15–25°N

15–25°S

5–15°N

5–15°S

Equator

Oslo CTM2
SBUV

–5 –2.5 0 2.5 5
Difference (%)

(model-satellite)/model

Annual
mean

Annual
mean

Figure 1. (a) Comparison between annual mean total ozone (DU) from Oslo CTM2 calcula-
tions and SBUV satellite data for the period 2001–2007. Error bars show the standard deviation
(2s) from each mean. (b) The respective differences are shown as percentages.
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differences between the model and satellite data are found over the tropics of the northern

hemisphere, where the model underestimates total ozone by about 4.5% (figure 2(h)).

In addition to the seasonal comparisons described above, total ozone data from

the Oslo CTM2 were compared with SBUV satellite retrievals on a monthly basis,

using linear regression analysis. Figure 3 shows scatter plots between the Oslo

CTM2- and SBUV satellite-derived monthly mean total ozone, over different lati-
tude zones: (a) northern extra-tropics (25-45�N), (b) northern middle latitudes

(45-65�N), (c) northern high latitudes (65-75�N), (d) northern tropics (5-25�N),

(e) equator (5�S-5�N), (f) southern tropics (5-25�S), (g) southern extra-tropics

(25-45�S), (h) southern middle latitudes (45-65�S), (i) southern high latitudes

(65-75�S). The correlation analysis was performed using monthly mean data from

the two data sets for the period 2001–2007. As can be inferred from the scatter plots

and from the slopes of the regression lines, there are statistically significant correla-

tions between the two data sets at all latitudes. The highest correlation coefficients
are found over the extra-tropics, over middle and high latitudes and in both hemi-

spheres (correlations greater than þ0.9). Over the tropics the correlation coefficients

are estimated to be about þ0.8. All correlation coefficients are statistically signifi-

cant at the 99% confidence level.

Part of the strong correlations shown in figure 3 can be attributed to the annual

cycle of total ozone, which is presented in figure 4 for (a) the Oslo CTM2 calcula-

tions and (b) the SBUV satellite data. There is excellent agreement between the

annual cycles of the two data sets, indicating the close correspondence between the
model simulations and the satellite total ozone retrievals. Good comparison also

exists between the latitudinal distributions of the amplitudes of the annual cycles,

calculated as [(maximum value – minimum value)/2] as a percentage of the zonal

mean, as shown in figure 4(c). Over the tropics the differences in the amplitude of

the annual cycle are up to 2%. Over the north and south middle latitudes the

differences are less than � 2%, increasing over high latitudes.

Table 1. Comparison between annual mean total ozone (in DU) from Oslo CTM2 calculations
and SBUV satellite data for the period 2001–2007, averaged for each 10� latitude zone.

2001–2007 Annual mean total ozone (in DU)

Latitude zone Oslo CTM2 SBUV Mean difference (%)

65–75�N 352.4 358.4 -1.7
55–65�N 353.6 357.4 -1.1
45–55�N 345.9 349.6 -1.1
35–45�N 320.0 321.7 -0.5
25–35�N 286.9 289.0 -0.7
15–25�N 265.0 270.7 -2.1
5–15�N 257.4 262.2 -1.9

Equator 256.4 258.5 -0.8
5–15�S 252.6 257.6 -2.0
15–25�S 263.7 264.2 -0.2
25–35�S 284.4 281.0 þ1.2
35–45�S 306.4 300.8 þ1.8
45–55�S 318.4 313.7 þ1.5
55–65�S 307.4 307.8 -0.1
65–75�S 280.0 272.4 þ2.7
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4. Summary

This study analysed annually and seasonal averaged total ozone amounts from improved

OsloCTM2simulationsfor theperiod2001–2007,andcomparedthemwithrespective total

ozone columns from SBUV satellite data. The main results can be summarized as follows:

l Global total ozone amounts from the Oslo CTM2 calculations show good agreement

with respective total ozone amounts retrieved from the SBUV satellite data set.

l Oslo CTM2 simulations slightly underestimate the total ozone over the northern

hemisphere by about 1.4% on average, and slightly overestimate the total ozone over

the southern extra-tropics, middle and high latitudes by about 1.6% on average. The

mean difference between the model- and satellite-derived total ozone columns over

75�Sto75�Ngivesanunderestimationoftotalozonefromthemodelbyabout-0.3%.
l Monthly mean total ozone from the model was also compared with satellite

retrievals using linear regression analysis. The results show statistically signifi-

cant correlations between the two data sets at all latitudes (correlation coeffi-

cients of þ0.8 over the tropics, and greater than þ0.9 over all other latitudes).

l The latitudinal distribution of the seasonal variations of zonally averaged total

ozone from the model agrees well with the respective distribution of zonally

averaged total ozone from the satellite observations.
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Figure 2. Comparison between total ozone (DU) from Oslo CTM2 calculation and SBUV
satellite data for the period 2001-2007 for different seasons: (a)-(b) DJF, (c)-(d) MAM, (e)-(f) JJA
and (g)-(h) SON.
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l Good agreement also exists between the latitudinal distributions of the ampli-

tudes of the annual cycles in total ozone from model and satellite data. Over the

tropics differences of up to 2% in the amplitude of the annual cycle are observed.

Correspondingly, over the north and south middle latitudes the differences are

less than � 2%, increasing over high latitudes.

l In general, the zonal mean total ozone columns from the improved Oslo CTM2

simulations compare well with the SBUV satellite data. The differences are
within �2.7%.
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