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Abstract: Sixteen years (July 2003–July 2019) of ground-based measurements of total ozone in the
urban environment of Athens, Greece, are analyzed in this work. Measurements were acquired with
a single Brewer monochromator operating on the roof of the Biomedical Research Foundation of
the Academy of Athens since July 2003. We estimate a 16-year climatological mean of total ozone
in Athens of about 322 DU, with no significant change since 2003. Ozone data from the Brewer
spectrophotometer were compared with TOMS, OMI, and GOME-2A satellite retrievals. The results
reveal excellent correlations between the ground-based and satellite ozone measurements greater
than 0.9. The variability of total ozone over Athens related to the seasonal cycle, the quasi biennial
oscillation (QBO), the El Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO),
the 11-year solar cycle, and tropopause pressure variability is presented.

Keywords: ozone; variability; measurements; Brewer spectrophotometer; satellite data; tropopause
pressure

1. Introduction

Ozone is a minor natural component of the clean atmosphere, found primarily in two
regions. Approximately 10% of the Earth’s atmospheric ozone resides in the troposphere,
while 90% is found in the stratosphere (commonly referred to as the “ozone layer”) [1].
Year-to-year fluctuations in total ozone are determined by the balance between chemical
processes that produce and destroy ozone and the effects of atmospheric motions that trans-
port ozone [2]. Certain industrial processes and human activities are the root cause of the
release of ozone-depleting substances (ODSs) into the atmosphere. ODSs are manufactured
halogen source gases that are controlled worldwide by the Montreal Protocol.

Concern about changes in ozone abundance is an important subject, not only for
the scientific community, but the general public and governments as well. The impor-
tance of observational and modeling results about ozone trends lies in its tremendous
importance for the life and ecosystems at the location under investigation [3]. Changes
in stratospheric ozone can change the large-scale atmospheric state, influencing the cli-
mate, both directly through radiative effects, and indirectly by affecting stratospheric and
tropospheric circulation [4].

Total ozone measurements have been conducted in Athens, Greece, since 1989, with
a Dobson spectrophotometer No 118, which is part of the World Ozone and UV Data
Centre (WOUDC) of the WMO [5]. The authors found a correlation coefficient of 0.96 with
Total Ozone Mapping Spectrometer (TOMS) data, although the TOMS values were slightly
lower than the Dobson ones. The Dobson measurements were also compared with TOMS
(version 6) and solar backscatter ultraviolet radiometer (SBUV) measurements, and better
correlations were obtained on sunny days [6]. Long-term measurements of stratospheric
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ozone in Greece have also been conducted in Thessaloniki since 1982, with a MKII Brewer
spectrophotometer #005 [7].

The aim of this study was the estimation of the variability and trends of total ozone
over Athens, Greece, from a Brewer spectrophotometer operating in Athens since July 2003.
This research contributes to developing understanding of the processes that control ozone
abundance. The ozone data set from the Brewer spectrophotometer is compared with
TOMS, Ozone Monitoring Instrument (OMI), and Global Ozone Monitoring Experiment
2 (GOME-2A and GOME-2B) satellite retrievals. This is the first time we have analyzed
long-term ground-based measurements of total ozone in Athens with the Brewer spec-
trophotometer. The measurements cover the period 2003–2019; i.e., after the ozone decline
of the 1980s and 1990s [8]. Detailed information on the data sources and methods are
provided in Section 2. In Section 3, daily values, correlations, and monthly mean total
ozone time series, as well as the ozone variability, are presented and described in detail.
Finally, Section 4 provides concluding remarks on the main findings of this study.

2. Data Sources and Methods

In this study, we used measurements of total ozone column, made using a single
Brewer MKIV spectrophotometer. This Brewer #001 monochromator has measured the
columnar amount of ozone in Athens on a daily basis, since July 2003. The measurements
are conducted on the roof of the Biomedical Research Foundation of the Academy of Athens
(37.99◦ N, 23.78◦ E) at approximately 180 m a.s.l. [9]. The institute is located in a green
area at about 4 km, away from the city center. On the east side of the station is mountain
Hymettus, at a distance of about 1 km, and to the north and northeast of the station we
find the large mountains of the county of Attica, Parnes, and Penteli, at distances of about
15 and 20 km from the station, respectively. Finally, to the south, the Saronic Gulf is about
10 km away [10].

The Brewer is an automated, diffraction-grating spectrometer that provides observa-
tions of the sun’s intensity in the near UV range. The instrument measures the intensity of
radiation in the UV absorption spectrum of ozone at five wavelengths (306.3, 310.1, 313.5,
316.8, and 320.1 nm) with a resolution of 0.5 nm. These data are used to derive columnar
ozone and sulfur dioxide amounts and the aerosol optical depth [11]. The total ozone
column (TOC) is calculated as follows [12]:

TOC =
F0 − F − ∆β m

∆α µ
(1)

where F is the weighted ratio of direct sun measurements at 4 spectral channels, i.e.,

F = logI(310.1) − 0.5 logI(313.5) − 2.2 logI(316.8) + 1.7 logI(320.1) (2)

F0, ∆β, and ∆α are the same linear combinations for logI0(λ), βλ, and αλ, i.e.,

F0 = logI0 (310.1) − 0.5 logI0 (313.5) − 2.2 logI0 (316.8) + 1.7 logI0 (320.1) (3)

∆β = β(310.1) − 0.5 β(313.5) − 2.2 β(316.8) + 1.7 β(320.1) (4)

∆α = α(310.1) − 0.5 α(313.5) − 2.2 α(316.8) + 1.7 α(320.1) (5)

βλ is the Rayleigh scattering coefficient at λ, m is the effective pathlength of direct radiation
through air, αλ is the ozone absorption coefficient at λ, and µ is the ratio of the effective
pathlength of direct radiation through ozone to the vertical path. The extra-terrestrial
constants F0 are determined from a long series of intercomparison measurements, as well
as zero air mass (µ) extrapolations.

The instrument is calibrated regularly by the travelling standard Brewer #017, which is
operated by International Ozone Services Inc., Toronto, Ontario, Canada (www.io3.ca) (last
access: 3 August 2021). Calibrations of the Brewer #001 were performed in Thessaloniki in
July 2002 and on site in Athens in July 2004, June 2007, September 2010, October 2013, and
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September 2019. Information about the stability of the instrument obtained from the results
of the calibrations is presented in the Supplementary Materials of this study. Internal
standard lamp tests are performed on a daily basis to detect possible instrumental drifts.
Ozone data are recalculated after standard lamp test corrections and are analyzed using
the O3BREWER data management software [13]. We note here that the Brewer #001 ozone
data have been used in the past to evaluate NILU–UV multi–channel radiometer ozone
data [14] and ultraviolet multifilter radiometer (UV-MFR) ozone retrievals [15].

The effect of stray light [16] or the effect of temperature dependence [17] may result in
errors in the Brewer UV measurements and, consequently, in ozone retrievals. It is known
that ozone measurements from a single monochromator Brewer spectrophotometers suffer
from non-linearity at large ozone slant column amounts, due to the presence of instrumental
stray light caused by scattering within the optics of the instrument. As the light path
(air mass) through ozone increases, the effect of stray light on the measurements also
increases [18]. In our study, in order to avoid any possible erroneous measurements
at large solar zenith angles, we processed ozone measurements up to 70 solar zenith
angles. Regarding the temperature dependence effect, there is no stratospheric temperature
correction of ozone absorption coefficients in the latest version of the O3Brewer software
which we used. At this point, it is worth mentioning that only direct sun (DS) measurements
were processed to retrieve the daily TOC values; hence, measurements in the zenith sky
scattered mode have not been considered.

In this study we compare the Brewer ground-based ozone data with satellite ozone
data from the Total Ozone Mapping Spectrometer (TOMS) aboard Earth Probe, Ozone
Monitoring Instrument (OMI) aboard AURA, and the Global Ozone Monitoring Exper-
iment 2 aboard MetOp A (GOME-2A) and MetOp B (GOME-2B), respectively. More
specifically, we analyzed: (a) the Earth Probe TOMS version 8 ozone overpass data
for Athens (OVP293_epc.txt), which were downloaded from the website https://acdisc.
gesdisc.eosdis.nasa.gov/data/EarthProbe_TOMS_Level3/TOMSEPOVP.008/ (last access:
25 June 2021), (b) the OMI version 8.5 (collection 3) ozone overpass data from the website
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMTO3/ (last
access: 25 June 2021), (c) the GOME-2A level-2 overpass data from the website https:
//avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME2/V03/L2OVP/GOME2A/ (last
access: 25 June 2021), and (d) the GOME-2B level-2 overpass data from https://avdc.
gsfc.nasa.gov/pub/data/satellite/MetOp/GOME2/V03/L2OVP/GOME2B/ (last access:
25 June 2021). We analyzed the satellite overpass ozone data for the station in Athens and,
in addition, we assessed data within a 100 km radius from the Brewer site. Subsequently,
we performed correlation analyses between the Brewer and the satellite ozone measure-
ments using daily TOC values for common days between the four data pairs, Brewer and
OMI, Brewer and GOME-2A, Brewer and GOME-2B, and Brewer and TOMS, which are
presented in Section 3.

The Quasi Biennial Oscillation (QBO) component at 30 hPa on total ozone was exam-
ined by analyzing the monthly mean zonal winds at Singapore at 30 hPa (QBO30). For QBO
at 50 hPa, we analyzed the monthly mean zonal winds at 50 hPa (QBO50). The data were
provided by the Freie Universität Berlin (FU-Berlin) at http://www.geo.fu-berlin.de/met/
ag/strat/produkte/qbo/qbo.dat (accessed on 8 May 2021) [19]. The possible impact of El
Nino Southern Oscillation (ENSO) was examined by using the Southern Oscillation Index
(SOI) from the Bureau of Meteorology of the Australian Government (http://www.bom.
gov.au/climate/current/soi2.shtml) (access on 8 May 2021). The effect of the 11-year solar
cycle on total ozone was investigated by analyzing the monthly sunspot number series from
the World Data Center/Sunspot Index and Long-term Solar Observations (WDC/SILSO)
of the Royal Observatory of Belgium, Brussels (http://sidc.be/silso/datafiles) (access on
8 May 2021). The monthly North Atlantic Oscillation (NAO) index was provided from the
Climate Data Guide of NCAR at https://climatedataguide.ucar.edu/climate-data/hurrell-
north-atlantic-oscillation-nao-index-pc-based (access on 8 May 2021).

https://acdisc.gesdisc.eosdis.nasa.gov/data/EarthProbe_TOMS_Level3/TOMSEPOVP.008/
https://acdisc.gesdisc.eosdis.nasa.gov/data/EarthProbe_TOMS_Level3/TOMSEPOVP.008/
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMTO3/
https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMTO3/
https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME2/V03/L2OVP/GOME2A/
https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME2/V03/L2OVP/GOME2A/
https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME2/V03/L2OVP/GOME2B/
https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME2/V03/L2OVP/GOME2B/
http://www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/qbo.dat
http://www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/qbo.dat
http://www.bom.gov.au/climate/current/soi2.shtml
http://www.bom.gov.au/climate/current/soi2.shtml
http://sidc.be/silso/datafiles
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
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Total ozone variability is also related to variability related to tropopause height,
e.g., [20–22]. The impact of tropopause height variations on total ozone variability was
examined by analyzing the tropopause pressure from the National Centers for Environ-
mental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis 1
data set computed on a 2.5◦ grid. The NCEP/NCAR reanalysis data were downloaded
from the website https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.
tropopause.html (access on 30 April 2021) [23].

The mean annual ozone cycle was calculated for the period 2004–2018, and then
the ozone time series were deseasonalized by subtracting the long-term monthly mean
(2004–2018) pertaining to the same calendar month; i.e., monthly value–long-term monthly
mean. Next, the deseasonalized data were used in a multivariate linear regression (MLR)
model to describe influences of dynamic origin on total ozone variability. The MLR
statistical model includes the QBO, SOLAR, ENSO, NAO, and trend terms, as described by
Zerefos et al. [24] and later adopted by Eleftheratos et al. [25], for further analyses. Those
studies, however, had a slightly different approach, as they also included the effects of
aerosol optical depth (AOD) and Antarctic oscillation. Those studies examined stations
in the northern and southern mid-latitudes, which justified the inclusion of the Antarctic
oscillation in the MLR model. Due to the fact that our station is located in the northern
and not in the southern mid-latitudes, we did not include the Antarctic oscillation proxy
here. The AOD proxy was used by Zerefos et al. to account for the volcanic injections
of El Chichon (1982) and Mt Pinatubo (1991) into the stratosphere, which caused large
stratospheric disturbances, increasing ozone depletion. However, the AOD proxy has not
been considered in this study, since the mentioned volcanic eruptions occurred in the past
and should not affect the period of our analysis. The same procedure, i.e., deseasonalization
and MLR analysis, was also applied to the tropopause pressure data, in order to estimate
the tropopause pressure residuals (not shown here). Then, the residuals of tropopause
pressure from the MLR analysis were correlated with the respective residuals of ozone, in
order to determine the effect of tropopause height variations on total ozone variations. The
correlation coefficient between the ozone and tropopause pressure residuals was R = +0.448
(t-value = 6.533, p < 0.0001, N = 172). The correlation is presented in Section 3.3.

3. Results and Discussion
3.1. Daily Values and Correlations

The daily column ozone measurements made by the Brewer spectrophotometer at the
Academy of Athens from July 2003 to July 2019 are presented in Figure 1. The respective
ozone columns retrieved by TOMS, OMI, GOME-2A, and GOME-2B satellite instruments
agree fairly well with the ground-based Brewer measurements. The satellite overpass
data were selected to be within a 100 km radius from the Brewer site. The daily values
span between 250 DU and 500 DU; in full agreement with Tzanis [26], who compared
daily column ozone observations from the Dobson spectrophotometer with SCIAMACHY,
TOMS, and OMI satellite data. A good agreement between satellite data and a Brewer spec-
trophotometer has been demonstrated in other studies, for instance in Kim et al. [27], who
used a Brewer spectrophotometer to evaluate the quality of the total ozone column (TOC)
produced by multiple polar-orbit satellite measurements at three stations in Antarctica. As
a result of their study, high correlations between the TOC from the Brewer and the TOC
from TROPOMI and OMI measurements were observed, contrary to the correlations from
AIRS measurements. The study confirmed the high quality of OMI TOCs.

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.tropopause.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.tropopause.html
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Figure 1. Daily total ozone over Athens, Greece (2003–2019) from Brewer ground-based measurements and OMI, TOMS,
and GOME-2A and GOME-2B satellite measurements.

Figure 2 presents the Pearson correlation coefficients, R, the mean biases, the linear
fit coefficients, and the root mean square error (RMSE) between ozone from the Brewer
spectrophotometer and ozone from each of the satellite instruments. The numbers speak
for themselves. The R between the Brewer and OMI, GOME-2A, GOME-2B, and TOMS
ozone data are 0.962, 0.955, 0.945, and 0.953, respectively. The mean biases and RMSE
between the four data pairs are: 4.4 DU and 9.2 DU (Brewer vs. OMI), −1.7 DU and 10.2 DU
(Brewer vs. GOME-2A), −0.1 DU and 10.5 DU (Brewer vs. GOME-2B), and 2.2 DU and
9.0 DU (Brewer vs. TOMS). Accordingly, we provide the mean biases and RMSE between
the four satellite data pairs of OMI, TOMS, GOME-2A, and GOME-2B, as follows: −5.3 DU
and 7.8 DU (OMI vs. GOME-2A), −4.8 DU and 7.6 DU (OMI vs. GOME-2B), −2.7 DU
and 7.7 DU (OMI vs. TOMS), and −1.5 DU and 5.2 DU (GOME-2A vs. GOME-2B). All
R were tested for significance using the t–test formula for the correlation coefficient with
n − 2 degrees of freedom [28] and were found to be statistically significant at a confidence
level greater than 99%. More detailed correlation statistics between the various data pairs
are provided in Table 1. It is evident that all correlation coefficients pass the significance
level (p-values < 0.0001). We include here for the reader the statistical test of the correlation
coefficient, which is:

t = R
√

n − 2
1 − R2 (6)



Oxygen 2021, 1 37

Oxygen 2021, 1, FOR PEER REVIEW 6 
 

 

Brewer vs. GOME-2A +0.955 19.073 0.936 0.006 163.474 <0.0001 10.179 2580 
Brewer vs. GOME-2B +0.945 33.199 0.897 0.007 120.840 <0.0001 10.502 1759 

Brewer vs. TOMS +0.953 39.709 0.882 0.011 79.359 <0.0001 8.972 632 
OMI vs. GOME-2A +0.972 20.026 0.922 0.004 210.739 <0.0001 7.824 2600 
OMI vs. GOME-2B +0.972 20.283 0.923 0.005 169.102 <0.0001 7.593 1668 

OMI vs. TOMS +0.972 25.869 0.909 0.011 83.520 <0.0001 7.736 405 
GOME-2A vs. GOME-2B +0.988 2.591 0.987 0.005 218.776 <0.0001 5.158 1122 

 
Figure 2. Correlation analysis between the Brewer and satellite ozone measurements for common days: (a) Brewer and 
OMI; (b) Brewer and GOME-2A; (c) Brewer and GOME-2B; (d) Brewer and TOMS. 

  

Figure 2. Correlation analysis between the Brewer and satellite ozone measurements for common days: (a) Brewer and
OMI; (b) Brewer and GOME-2A; (c) Brewer and GOME-2B; (d) Brewer and TOMS.

3.2. Monthly Means and Annual Cycle

The monthly mean total ozone time series were computed from at least 14 daily
averages and are shown in Figure 3 for the Brewer ground-based data in comparison to
OMI, TOMS, GOME-2A, and GOME-2B satellite data. The monthly mean values range
between 270 DU and 400 DU; again in agreement with results from Tzanis [18]. The
long term mean ±2σ of total ozone over Athens is estimated to be 322 ± 53 DU, with
no significant change since 2003. The respective estimates from OMI, TOMS, GOME-
2A, and GOME-2B satellite data are 318 ± 51 DU, 316 ± 46 DU, 324 ± 53 DU, and
325 ± 51 DU, accordingly.
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Table 1. Statistics of correlations between the Brewer and satellite ozone data pairs.

Data Pair R Intercept (DU) Slope Error t-Value p-Value RMSE N

Brewer vs. OMI +0.962 7.393 0.991 0.005 208.733 <0.0001 9.203 3468

Brewer vs. GOME-2A +0.955 19.073 0.936 0.006 163.474 <0.0001 10.179 2580

Brewer vs. GOME-2B +0.945 33.199 0.897 0.007 120.840 <0.0001 10.502 1759

Brewer vs. TOMS +0.953 39.709 0.882 0.011 79.359 <0.0001 8.972 632

OMI vs. GOME-2A +0.972 20.026 0.922 0.004 210.739 <0.0001 7.824 2600

OMI vs. GOME-2B +0.972 20.283 0.923 0.005 169.102 <0.0001 7.593 1668

OMI vs. TOMS +0.972 25.869 0.909 0.011 83.520 <0.0001 7.736 405

GOME-2A vs. GOME-2B +0.988 2.591 0.987 0.005 218.776 <0.0001 5.158 1122
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Figure 3. Monthly mean total ozone from July 2003 to July 2019 calculated from at least 14 daily averages from Brewer
ground-based data, and OMI, TOMS, GOME-2A, and GOME-2B satellite data.

Figure 4 shows the seasonal cycle of total ozone over Athens for the period 2004–2018
from Brewer ground-based measurements and OMI and GOME-2A satellite retrievals. The
highest values occurred in spring in March and April, while the lowest values occurred in
autumn in October and November. This is a general and consistent feature seen in all three
datasets. The explanation for the observed seasonal cycle is transport mechanisms. The
spring maximums are a result of the increased transport of ozone from its source region
in the tropics toward high latitudes during late autumn and winter. This poleward ozone
transport is much weaker during the summer and early autumn periods and is weaker
overall in the Southern Hemisphere [2]. Ozone transport from the tropics to the poles is
caused by stratospheric wind patterns. In the mid-latitudes these patterns, known as the
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Brewer–Dobson circulation, make the ozone layer thickest in the spring and thinnest in
the fall.
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Figure 4. Mean annual cycle of total ozone over Athens, Greece (2004–2018) from Brewer ground-
based data, and OMI, GOME-2A satellite data.

Table 2 summarizes the monthly mean differences between the Brewer, OMI, and
GOME-2A total ozone data. The Brewer–OMI differences are within ±1% in all months
except June, July, and August, where they are within ±2%, but even these are considered
small. We note here that a difference of 1% corresponds to about 3 DU. Differences larger
than ±2% are found between Brewer and GOME-2A in the winter months (November,
December, January, and February). Similar deviations, larger than 2%, are also found
between GOME-2A and OMI satellite data.

Table 2. Mean differences between Brewer and satellite total ozone data (1% ∼= 3 DU).

Brewer—OMI Brewer—GOME-2A GOME-2A—OMI

January −0.2% (−1 DU) −3.7% (−13 DU) 3.6% (12 DU)
February −0.1% (0 DU) −2.6% (−9 DU) 2.6% (9 DU)

March 0.4% (2 DU) −1.4% (−5 DU) 1.8% (6 DU)
April 1.0% (3 DU) −0.4% (−2 DU) 1.4% (5 DU)
May 1.0% (3 DU) −0.2% (−1 DU) 1.1% (4 DU)
June 1.8% (6 DU) 1.4% (4 DU) 0.4% (1 DU)
July 1.2% (4 DU) 1.2% (4 DU) 0.0% (0 DU)

August 1.9% (6 DU) 1.7% (5 DU) 0.2% (1 DU)
September 1.0% (3 DU) 0.3% (1 DU) 0.7% (2 DU)

October 0.5% (1 DU) −1.1% (−3 DU) 1.5% (4 DU)
November −0.6% (−2 DU) −2.5% (−7 DU) 2.0% (6 DU)
December −0.2% (−1 DU) −3.8% (−12DU) 3.7% (11 DU)

MEAN 0.6% (2 DU) −0.9% (−3 DU) 1.6% (5 DU)

With regard to the observed differences, we must keep in mind that the Brewer
instrument is operating at ground level, while the satellite instruments are measuring
from space using different retrieval algorithms than the ground based instrument. The
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Brewer instrument is measuring continuously the ozone amount overhead, while the
satellite instruments provide few measurements during the day, sometimes one or two
measurements. In addition, the Brewer is a remote sensing instrument, while for the
satellite data, we processed measurements within a 100 km radius from the Brewer site.
The aforementioned issues are known to cause differences between ground measurements
and satellite overpasses. However, despite the different approaches of the ground and
satellite instruments, the average long-term differences between the ground and satellite
measurements are small, within ±1%, indicating the maturity of the measuring systems in
achieving such small deviations in the long-term.

3.3. Ozone Variability

We estimated the contribution of different explanatory variables to ozone fluctua-
tions using MLR analysis, as explained in Section 2. The MLR statistical model is of the
following form:

desTOC = 2.623 +0.002·QBO30(i, j) + 0.111·QBO50(i, j) + (−0.093)
·ENSO(i, j) + 0.678·NAO(i, j) + (−0.070)·SOLAR(i, j)
+0.003·TREND(i, j) + 0.378·TROP(i, j) + residuals

(7)

where i denotes the month and j is the year of the deseasonalized total ozone column
(desTOC) and its components; that is, the QBO at 30 and 50 hPa, the ENSO, the NAO,
the solar cycle effect (SOLAR), a straight line to fit the long term trend (TREND), and
finally a tropopause pressure related term (TROP). We remind here that TOC data were
deseasonalized by subtracting the long-term monthly mean (2004–2018) pertaining to the
same calendar month. The contribution of the individual proxy terms is shown in Figure 5.
The MLR analysis was applied to the deseasonalized ozone data, which are shown on the
top panel of Figure 5 (black line). The two terms representing the QBO are shown by the
lines with blue colors, followed by the ENSO term (red line), the NAO term (green line),
the solar cycle term (orange line), and the trend term (brown line). The bottom panel of
Figure 5 shows the residuals of ozone from the MLR model (grey color), together with the
respective residuals of tropopause pressure from an MLR analysis that had been applied
to the tropopause data in a previous step (magenta color). The ozone residuals are well
correlated with the tropopause pressure residuals, indicating the dynamical influence
on ozone induced by the tropopause movement. The graph shows that whenever the
tropopause pressure decreases, i.e., tropopause height increases, the amount of ozone
increases, and vice versa. We estimate that the correlation coefficient between ozone and
tropopause height variations in Athens is +0.448 (slope = 0.376, error = 0.058, t-value = 6.533,
p < 0.0001, N = 172).

The MLR regression coefficients and their standard errors are presented in Table 3.
It appears that the regression coefficient of the QBO50 proxy is significant at the 90%
confidence level (coefficient = 0.111, error = 0.059, t-value = 1.874, p-value = 0.063). The
regression coefficient of the solar proxy is more significant than the QBO50 proxy (co-
efficient = −0.070, error = 0.018, t-value = −3.853, p-value = 0.00017). The regression
coefficient of the trend proxy is not statistically significant (coefficient = 0.003, error = 0.013,
t-value = 0.249, p-value = 0.803). Finally, the regression coefficient of the tropopause proxy
is 0.378 ± 0.059 (t-value = 6.459, p-value < 0.0001).

Figure 6 summarizes the monthly ozone data from the Brewer spectrophotometer, the
seasonal cycle, the QBO (30 hPa, 50 hPa), ENSO, NAO, solar cycle and trend components
joined together, and an estimated tropopause pressure related component. The amplitude
of the annual cycle, calculated as ((maximum value–minimum value)/2), is about 35 DU
and is estimated to contribute to about 64% to the observed ozone fluctuations. The QBO,
ENSO, NAO, SOLAR, and TREND terms are estimated to together explain about 11% of
the observed ozone fluctuations. Adding a tropopause pressure related term, the statistical
model explains about 27% of ozone fluctuations.
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Table 3. MLR regression statistics for the proxy terms considered in Equation (7).

MLR Regression Statistics Coefficient Error t-Value p-Value

Intercept 2.623 1.683 1.556 0.12102
QBO at 30 hPa 0.002 0.039 0.047 0.96233
QBO at 50 hPa 0.111 0.059 1.874 0.06272
ENSO −0.093 0.069 −1.348 0.17953
NAO 0.678 0.632 1.073 0.28472
SOLAR −0.070 0.018 −3.853 0.00017
TREND 0.003 0.013 0.249 0.80335
TROPOPAUSE 0.378 0.059 6.459 1.15 × 109
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Figure 6. Time series of monthly ozone from the Brewer spectrophotometer versus the annual cycle;
the QBO, ENSO, NAO, SOLAR, TREND terms grouped together; and the tropopause pressure term
separately. The highest contribution comes from the seasonal cycle (see text).

The contribution of all components to ozone fluctuations cumulatively is presented in
Figure 7, which shows the observed versus the regressed ozone data. As can be seen, there
is good agreement between the observed ozone data and the statistical model calculations
obtained from Equation (7). The correlation coefficient between the observed and regressed
ozone data is estimated as R = +0.941. The residuals (observed minus regressed data) are
shown in the bottom panel.
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4. Conclusions

We analyzed 16 years of total ozone measurements over Athens, Greece, with a Brewer
spectrophotometer. The main findings can be summarized as follows:

• There are strong correlations between total ozone from the Brewer spectrophotometer
and total ozone from the OMI, TOMS, GOME-2A and GOME-2B satellite instruments
greater than 0.9.

• The main contribution to ozone variability comes from the seasonal cycle. We estimate
that the seasonal variability explains about 64% of the variability in total ozone
over Athens.

• Natural fluctuations (QBO, ENSO, NAO, solar cycle trend) together explain about 11%
of total ozone variability. Adding the variability related to the tropopause pressure,
the multiple linear regression model explains about 27% of ozone fluctuations.

• Accounting for seasonal, solar cycle, and tropopause pressure variability in a statistical
regression model, we can simulate the variability of total ozone over Athens quite well.

• We estimate a small, insignificant change in total ozone over Athens, Greece, during
the period 2003–2019 of 0.6 ± 4.9 DU (change ±2 standard error limits).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/oxygen1010005/s1, Figure S1: Information about the stability of the Brewer spectrophotometer
according to the calibrations of the instrument in (1) 2004, (2) 2007, (3) 2010, (4) 2013 and (5) 2019.
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