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Metals and selenium induce medicarpin accumulation
and excretion from the roots of fenugreek seedlings:
a potential detoxification mechanism

Ioanna Matsouka & Despoina Beri &
Ioanna Chinou & Kosmas Haralampidis &

Caroline G. Spyropoulos

Received: 24 November 2010 /Accepted: 29 December 2010 /Published online: 13 January 2011
# Springer Science+Business Media B.V. 2011

Abstract Medicarpin (M), an isoflavonoid phytoalexin,
accumulates in plants of the Fabaceae family as a
response to biotic and abiotic stresses. In an attempt to
investigate the potential participation of M in metal
detoxification, we studied the effect of three metals
(copper, cadmium, and aluminum) and selenium on M
synthesis and excretion from the roots of fenugreek
(Trigonella foenum-graecum L.) seedlings. Medicarpin
content and gene expressions were determined by RP-
HPLC and RT-PCR, respectively. All treatments signif-
icantly induced increase in the expression of M
biosynthetic genes and concomitant increase of M
content in the roots and the culture medium. The metal
and Se-induced M excretion inhibited by either
orthovanadate or KCN, an ATPase and an ATP
synthesis inhibitor respectively, and the elicitor-
induced increase of GST transcript levels may imply
the involvement of an ABC-type transport system in

which GST is involved. Interestingly, a parallel increase
of citrate exudation, a common metal detoxification
agent, was measured in response to the elicitors used.
The above results, along with the moderate effects of
these elicitors on root growth and the plasma membrane
integrity, imply that M as well as citrate exudation may
participate in metal and Se detoxification, as part of a
non element-specific resistance mechanism.
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Introduction

As a consequence of industrial development, the
environment is increasingly polluted by heavy metals
(Michalak 2006). The uptake of these elements by
plants and their accumulation at toxic levels interrupts
various plant processes at the physiological, biochemical
and molecular level, leading to growth reduction and
ultimately to cell death. However, there are plant species,
whichmay tolerate toxic amounts of these elements. The
identification of metal stress-resistance mechanisms is a
fundamental step for understanding the biochemical and
molecular mechanisms of stress resistance, towards
developing tolerant genotypes by either conventional
breeding or by genetic modification.

Several approaches have been employed towards
understanding trace element stress resistance mecha-
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nisms. These include the identification of metal-induced
genes or proteins in metal-tolerant species or varieties
(Ahsan et al. 2009 and references therein; Chandran et
al. 2008; Hoekenga et al. 2006; Zhao et al. 2009), or
mechanisms of metal detoxification, which is achieved
by the synthesis and/or exudation of metal chelating
agents. Chelating agents, excreted by root apexes to the
rhizosphere, chelate with the metal excluding it from
the root apex or the ligand-metal complex detoxify
metals internally (Ma et al. 2001; Salt et al. 1998).
Organic acids and phenolics are included among these
ligands (Barceló and Poschenrieder 2002; Michalak
2006). It is hypothesized that metal chelating ability of
some organic acids, such as citrate, malate or oxalate,
confers tolerance through the formation of stable
complexes with metals like Al, Cu, Cd or Zn (Ma et
al. 2001; Murphy et al. 1999; Nian et al. 2002; Pellet et
al. 1997; Pinto et al. 2008; Qin et al. 2007; Rangel et al.
2010). However, a number of studies have indicated
that organic acid chelation may not be the only
mechanism responsible for Al resistance (Kochian
et al. 2002; Nian et al. 2002; Pellet et al. 1997; Piñeros
et al. 2005). Other ligands with potential for metal
detoxification in the rhizosphere have received less
attention. Varietal differences in the exudation rate of
flavonoid-type phenolics by root tips of maize have been
related to differences in Al resistance (Kidd et al. 2001).
In Medicago truncatula Al induced the expression of
genes encoding enzymes of the isoflavonoid biosyn-
thetic pathway and glutathione-S-transferase (GST, EC.
2.5.1.18) (Chandran et al. 2008), which apart from other
functions, is involved in the transport of secondary plant
products (Dixon et al. 2010; Zhao and Dixon 2010).

Isoflavonoids, which are mainly restricted to the
Papilionoideae subfamily of the Fabaceae, function as
phytoalexins (Dixon et al. 2002) and antioxidants
(Dixon and Steele 1999; Rice-Evans et al. 1997). The
isoflavonoids genistein (Jung et al. 2003) or daidzein
(Toda and Shirataki 2001) have Cu-chelating ability.
Production and excretion of genistein by the roots of
the legume Lupinus albus seedling in response to Cu
has been proposed as the plant mechanism to alleviate
Cu-mediated toxicity (Jung et al. 2003). Another
isoflavonoid, the phytoalexin medicarpin (M), in the
form of its malonyl glucoside (MGM), is a constitutive
constituent of several leguminous plants (Dixon 1999;
Tsiri et al. 2009). However, biotic or abiotic stress
induced M accumulation (Cachinero et al. 2002;
Carlsen et al. 2008; Dewick and Martin 1979; Dixon

1999; Farag et al. 2008; Jasiński et al. 2009 and
references therein; Lopez-Meyer and Paiva 2002;
Naoumkina et al. 2007; Parry et al. 1994; Saunders
and O’Neill 2004; Tsiri et al. 2009). Medicarpin
accumulation in response to Cu originated either from
de novo synthesis or it was synthesized at the expense
of its malonyl glucoside (Parry et al. 1994; Tsiri et al.
2009) and its Cu-induced exudation by the roots of
fenugreek seedlings has been attributed to the operation
of an ABC-type transport system (Tsiri et al. 2009).

Induction of isoflavonoid synthesis and/or exuda-
tion by biotic stress is a general response of plant
species of Papillionoidae subfamily (Jasiński et al.
2009 and references therein). However, to the best of
our knowledge, such a general response to metal or
Se stress has not been considered yet to this class of
phenolics. In this report, we investigated M synthesis
and exudation by fenugreek seedlings in response to
toxic amounts of two heavy metals (Cu and Cd), one
light metal (Al) and a non metal (Se) in an attempt to
evaluate the potential of M to play a metal and Se
detoxification role. Thus, we have studied M content
in fenugreek roots and in the culture medium of the
seedlings, and the expression of the M biosynthetic
pathway genes, chalcone synthase (CHS; EC
2.3.1.74), which catalyses the first committed step to
the flavonoid biosynthetic pathway, isoflavone reductase
(IFR; EC 1.3.1.45), a key enzyme involved in the latter
steps of M biosynthetic pathway, and vestitone reduc-
tase (VR), which catalyzes the penultimate step of M
biosynthesis (Guo et al. 1994; Paiva et al. 1991). The
mechanism of elicitor-induced M exudation was studied
using pharmacological approach, concomitantly with
the determination of the transcript levels of GST, since
M is transported into vacuoles via an ABC-type
transport mechanism as S-glutathionylated conjugate,
the formation of which is mediated by GST (Li et al.
1997; Zhao and Dixon 2010).

Material and methods

Plant material

Trigonella foenum-graecum L. (fenugreek) seeds
were purchased from a local market. Surface sterilized
seeds were sawn on moistened filter paper under
sterile conditions and maintained at 25±1°C with a
16/8 h photoperiod (5.3 Wcm−2) in a growth chamber.
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Six-day old seedlings were treated hydroponically with
varying concentrations (0, 1, 5, 10 and 50 μM) of AlCl3,
CuCl2, CdCl2 or Na2SeO3. Seedlings (12 per vial)
were placed into sterile vials containing 80 ml of sterile
de-ionized water (control) or the Al, Cu, Cd or Se
solutions, so that only part of their roots were
immersed in the growth medium. At the start of the
experiment the medium pH was 4.6. Six or 24 h post-
treatment, the roots from the fenugreek seedlings were
excised, blow dried, weighed and stored at −80°C,
while culture media from 24-h-treated seedlings were
collected and kept at −20°C. All experiments were
performed at the same temperature and light condi-
tions. For the inhibition experiments 5-d-old fenugreek
seedlings were transferred into vials containing 80 ml
sterile de-ionized water (control), 100 μM sodium
orthovanadate (OV), or 100 μΜ KCN. After 24 h of
incubation AlCl3 CuCl2, CdCl2 or Na2SeO3 were
added to the media to a final concentration of 10 μM
and seedlings were incubated for another 24 h. All
experiments were performed at least in triplicates.

Isoflavonoid extraction and analysis

Fenugreek roots were extracted with 80% methanol
and the samples were prepared for HPLC analysis as
described by Tsiri et al. (2009). Seedling culture
media were adjusted to pH 2.5, extracted and
prepared for HPLC analysis according to Tsiri et al.
(2009). HPLC analysis was performed using a
quarternary gradient pump (PU-2089, Jasco, Japan)
connected to a multi-wavelength detector (MD-2015,
Jasco, Japan) under the following chromatographic
conditions: 20 μl of sample were injected onto a
Lichrosorb RP 18, 5.0 mm, 250×4 mm column;
elution profile: 0–25 min, 55% A in B, 25–30 min
100% A, 30–35 min 100% A, 35–40 min step return
to 100% B, 40–45 min re-equilibration with 100% B.
[solvents: (A) acetonitrile and (B) water with 0.1% acetic
acid]; flow rate: 1.5 ml min−1; detection: at 283 nm.
Isoflavonoid quantification was based on a calibration
curve, plotting peak area as monitored at 283 nm
against known concentrations of medicarpin, which has
been purified in our laboratory (Tsiri et al. 2009).

Citrate quantification

After a 24-h treatment with metals or Se roots from
fenugreek seedlings were blow dried, weighed and

extracted with 80% ethanol according to Silva et al.
(2001). The supernatants of the centrifuged samples
(3,800 rpm) were evaporated to dryness and the dried
residues were taken up with distilled water (1 ml per mg
root tissue). Seedling culture media were lyophilized
and the residues were taken up with 2 ml distilled water.
Samples were tested for citrate concentration using the
enzyme assay method (Li et al. 2002). Preliminary
assays indicated that Al, Cu, Cd or Se in the samples
did not interfere with the assay for citrate quantification
because the amount of citric acid detected after
addition of known amounts of citric acid on the
mixture was approx. the same regardless of the
presence of these elements.

Semi-quantitative RT-PCR and DNA sequence analysis

Total RNA from fenugreek tissues was extracted with
the NucleoSpin RNA Plant Kit (Macherey-Nagel,
Germany) and treated with 10 U DNase I (Takara
Bio) for 10 min at 37°C. First strand cDNA was
synthesized from 0,5–1 μg total RNA with Prime-
Script Reverse Transcriptase (200 U/mL, Takara Bio)
according to the manufacturer’s protocol. Fenugreek
CHS and VR specific fragments were amplified with
degenerated primers, designed using sequence informa-
tion from known CHS and VR genes. PCR was
performed in a mixture of 50 μL that contained 1 μL
of first-strand cDNA, 0.4 mM dNTP’s, 1X PCR buffer,
2.5 U Expand High Fidelity DNA Polymerase (Roche)
and 10 pmole each of the gene-specific degenerated
primer. Primers were as follows:

for CHS, 5′-AA(G/A)GGTGCTCGTGTGCT(G/
T)GTTG-3′ and 5′-AGTCCAGGTCCAAA(G/C)
CCAAA(C/T)-3′ (amplifying a 542 bp fragment),
a n d f o r VR , 5 ′ -CAGG(T /A )TT (T /C )
CTTGGTTCATGG-3′ and 5′-ATCACTCCAA(T/
A)CA(C/G)TCTCATCC-3′ (amplifying a 420 bp
fragment). IFR (accession number X58078) and
GST (accession number AB040439) specific frag-
ments were amplified using primer pair 5′-
CTGCTAATCCTGAAACCAAG-3 ′ , 5 ′ -
GCTCCTTTCACATTTCCATC-3′ (amplifying a
425 bp fragment), and 5′-CAATAAAAGTG
CACGGAAGCCC-3′ , 5′-GCAAATCCAC
CAAGGTGAAACA-3′ (amplifying a 498 bp frag-
ment), respectively. The amplified PCR products
were subsequently cloned and sequenced, in order

Plant Soil (2011) 343:235–245 237



to verify by BLAST analysis (National Centre for
Biotechnology Information) the homology to the
known CHS, VR, IFR and GST sequences depos-
ited in the databases. The 18 S rRNA gene was
used as an internal control for RNA calibration (5′-
TTGTGTTGGCTTCGGGATCGGAGTAAT-3′ and
5′-GCACCACCACCCATAGAATCAAGAA-3′).
To verify the exponential phase of RT-PCR amplifi-
cation, 15, 25 and 35 cycles were tested for each
gene, and data was collected at 16 cycles for 18 S
rRNA and at 25–30 cycles for CHS, VR, IFR and
GST. All experiments were performed in triplicate.
DNAwas sequenced by the dideoxy chain termina-
tion method with the use of an automated sequencer
model 377 (Applied Biosystems).

Assessment of the loss of integrity of the plasma
membrane

Fenugreek roots from 6-d-old seedlings were treated
for 24 h with several concentrations of Al, Cu, Cd or
Se. Histochemical detection of the loss of plasma
membrane integrity in roots was performed with
Evans blue according to Yamamoto et al. (2001).
All stained roots with Evans blue were washed
extensively, and observed under a Zeiss Axioplan
light microscope equipped with a Zeiss Axiocam
MRcs digital camera.

Results

Root growth and integrity of plasma membrane of the
root cells are suitable phenotypic characteristics to
assess metal resistance (Magnavaca et al. 1987;
Cançado et al. 1999). Thus, we used these parameters
to rank metal and Se resistance of fenugreek seed-
lings. Six-d-old seedlings were treated with several
concentrations (1–50 μM) of AlCl3, CuCl2 CdCl2 or
Na2SeO3 for 24 h. As expected, these trace elements
caused reduction of root growth. Reduction of root
fresh weight and root elongation in response to these
elements was dose-dependent and in the order Cu>
Cd> Al> Se and Cd> Cu> Al> Se for the root fresh
weight and the root elongation, respectively (Fig. 1a
and b). The highest reduction of root fresh weight was
caused by 50 μM Cu (38%), while that of root
elongation by 50 μM Cd (88%).

The assessment of the effect of the above men-
tioned concentrations of Al, Cu, Cd or Se on plasma
membrane integrity of roots from treated seedlings
was performed by histochemical staining using Evans
blue (Fig. 2). The extent of root staining was trace
element concentration-dependent; staining intensity
increased with increasing concentration. The roots
which were treated with 50 μΜ concentrations of Al,
Cu or Cd were stained extensively, while those treated
with Se were slightly affected. Stain intensity of roots
from 50 μM metal-treated seedlings was in the order
Se< Cd< Cu< Al.

Next, we determined the expression of M bio-
synthetic pathway genes in the roots and the content
of M in both the roots of treated seedlings and in the
culture medium. In the presence of trace elements the
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Fig. 1 Root fresh weights (a) and root elongation (b) of 6-d-old
fenugreek seedlings treated with (1, 5, 10 and 50 μM) Al, Cu, Cd
and Se for 24 h. Values are the mean±SE of at least 24 roots
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abundance of transcript levels of the root CHS, IFR,
and VR was increased (Fig. 3). In agreement with the
molecular data, a significant increase inM accumulation
in both roots and the seedling culture medium was
measured (Fig. 4). The highest total M production (M
in roots + M in the seedling culture medium) was
observed at 1 μM Cd treatment and the lowest in
response to Al treatment. However, the amount of
synthesized M decreased with increasing Cd. In
contrast, in Al, Cu or Se-treated seedlings M synthesis
peaked at the concentration of 10 μM whereas at
50 μM it decreased significantly. At this concentration
of Cu or Se MGM was reduced by approx. 45%.

An appreciable amount of M, which was synthe-
sized in response to the studied elements, was
excreted in the seedling culture medium, and the
amount was dependent on the element and on its
concentration. However, in any of these treatments,
the amount of excreted M was considerably higher to
that accumulated in the roots. The pattern of M
exudation vs. M accumulation in the roots was
depended on the element. The total amount of M
accumulated in both the roots and in the seedling
culture medium was 25-fold higher in seedlings
treated with 1 μM Cd, 88% of which was excreted.
However, M synthesis decreased with increasing Cd
concentration and so did the percentage of excreted

Fig. 2 Effect of Al, Cu Cd,
or Se treatment on the loss
of the root plasma mem-
brane integrity. Six-d-old
fenugreek seedlings were
treated for 24 h with Al, Cu,
Cd or Se (1, 5, 10 and
50 μM), and roots were
stained with Evans blue
(see Material and Methods).
Concentrations used for
all treatments were, from
left to right 1, 5, 10 and
50 μM. Bar, 5 mm

Fig. 3 RT-PCR analysis of CHS, IFR, VR and GST gene
expression. Semi-quantitative RT-PCR of steady state CHS,
IFR, VR, and GST mRNA in roots of 6-day-old fenugreek
seedlings after 6 h elicitation with 10 μM Al, Cu, Cd, or Se
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M; reduction of M excretion was followed by
increased M in the roots. In contrast, the pattern of
M excretion vs. total M in response to Al, Cu or Se
differed. The highest amount of synthesized M as
well as the highest percentage of its excretion was
detected when fenugreek seedlings were treated with
10 μΜ Cu, Al or Se (Fig. 4). M excretion in response
to the tested elements does not seem to be due to non-
specific leakage, since further increase of metal or Se
concentration resulted in less M excretion.

Treatment of fenugreek seedlings with 10 μM Al,
Cd or Se in the presence of the ATPase or the ATP
synthesis inhibitors, OV (100 μM) or KCN reduced
the metal or Se-induced M excretion, and the
percentage of excretedM. In Cd or Se-treated seedlings,
a great part of M which was not excreted, due to the
inhibition by OV, accumulated in the roots mostly in the
form of freeM. In contrast, in Al-treated seedlings in the
presence of OV or KCN and in Se-treated seedlings in
the presence of KCN, most of the non-excreted M
accumulated in the roots in its malonyl glucoside form
(Fig. 5). The increase of total “M” (root MGM and M
plus M of the seedling medium) which was effected in
the presence of these elicitors was not affected
significantly in the presence of OV or KCN, with the
exception of Se-treated seedlings in the presence of
KCN (Fig. 5). The amount of M excreted and the
percentage of its excretion were further reduced in the
presence of higher OV or KCN concentrations (data
not shown).

Medicarpin is sequestered into vacuoles via an
ABC-type transport mechanism in the form of
S-glutathionylated conjugate, the formation of which
is through the action of GST (Li et al. 1997). In order
to test a possible implication of GST in M excretion,
we studied the induction of a Phi GST gene
(AB040439) in the presence of 10 μM Al, Cu, Cd
and Se. Semi-quantitative RT-PCR showed that these
elements induced an increase of the GST transcript
levels in the order Cu> Cd> Se> Al (Fig. 3).

Twenty four-h treatment of fenugreek seedlings
increased the total amount of citrate (citrate in the
roots plus seedling culture medium), but most of it
was excreted and the amount was being dependent on
the element and its concentration. The highest amount

Fig. 4 MGM and M concentrations in the roots and the
seedling culture media in response to Al, Cu, Cd, or Se
treatment (1, 5, 10 and 50 μM). Values are the mean of at least
three experiments±SE
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of excreted citrate was induced by Cu and, like in the
presence of Al, increased with increasing metal
concentration, although citrate excretion in the presence
of 50 μM Al was only slightly higher compared to that

of control. The opposite occurred when seedlings were
treated with Cd or Se (Fig. 6).

Discussion

Among the common effects of metal stress is
inhibition of root growth and loss of the root plasma
membrane integrity, the extent of which depends on
the species, developmental stage and the kind and
metal concentration (Peralta-Videa et al. 2004). The
trace element-induced reduction of the root fresh
weight of fenugreek seedlings was significantly lower
compared to that of root elongation. The highest
reduction of root fresh weight was caused by 50 μM
Cu (38%), but the corresponding reduction of root
elongation was considerably higher (72%). Yet, in
other plant species the induced inhibition of root
elongation by certain metals, like Cd or Al, was found
to be higher compared to that of fenugreek seedlings.
One-day treatment of Arabidopsis seedlings with
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incubated for another 24 h. Values are the mean of at least three
experiments±SE
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10 μM Cd caused a 75% reduction of root elongation
(Hou et al. 2010) against a 60% inhibition in
fenugreek seedlings,, while treatment of Al-tolerant
Medicago truncatula seedlings with 5 μM Al caused
a 50% reduction (Chandran et al. 2008) against a 42%
reduction of fenugreek root elongation caused by
10 μM Al.

Loss of the root plasma membrane integrity caused
by metal treatment may be the result of metal-induced
plasma membrane peroxidation (De Vos et al. 1993).
Moderate to severe metal toxicity effects, which were
deduced from the intensity of Evans blue root
staining, appeared only when fenugreek seedlings
were treated with 50 μM Al, Cu or Cd, while roots
from 50 μM Se-treated seedlings were hardly stained.
This is substantiated further by the operation of an
M-specific transport system, possibly an ABC-type
transporter, by which M, in the presence of these trace
elements, is excreted in the seedling growth medium.
These results suggest that fenugreek seedlings are
resistant at a different extent to 10 μΜ Cd, Cu, Al and
Se.

Synthesis and excretion mainly of organic acids,
but also of phenolics, has been proposed as a potential
mechanism of amelioration of metal toxicity in plants
(Ma et al. 2001; Michalak 2006). In contrast, no such
mechanisms have been reported for Se resistance. On
the other hand, induction of isoflavonoid synthesis in
response to heavy metals is restricted to only certain
plant species of the Papillionoidae subfamily. Cd
treatment of endocarps from immature pea pods
induced phenylalanine ammonia lyase (PAL) activity
and the synthesis of the isoflavonoid phytoalexin
pisatin (Hadwiger et al. 1973), while Al treatment of
Medicago truncatula seedlings induced the expression
of genes encoding enzymes of the isoflavonoid
biosynthetic pathway (Chandran et al. 2008). In our
previous work we showed that roots of 6-day old
fenugreek seedlings synthesized M, which accumulat-
ed mainly in the form of MGM. Moderate Cu
concentration (10 μM) induced de novo biosynthesis
of M in the roots of these seedlings, while in seedlings
treated with higher Cu concentrations (from 50 to
1,000 μM) the accumulated M was mainly or totally
formed at the expense of its constitutive malonyl
conjugate (Tsiri et al. 2009). Our results showed that
fenugreek seedlings responded to both metals and Se
by inducing de novo synthesis of M in the roots, most
of which was exuded in the seedling culture medium,

although at 50 μM concentration of Cu and Se, part of
the accumulated M seems to be formed at the expense
of constitutive MGM, since the concentration of the
later was reduced by approx. 45%.

For certain plant species metal-induced citrate
excretion plays a central role in mechanisms of metal
and especially of Al resistance (Murphy et al. 1999;
Ma et al. 2001; Nian et al. 2002; Pinto et al. 2008;
Poschenrieder et al. 2008; Rangel et al. 2010). In
contrast, to date, no such a role has been attributed for
metal-induced isoflavonoid excretion, apart from the
Cu-induced excretion of genistein from the roots of
white lupin (Jung et al. 2003) and flavonoid exudation
by root tips of maize seedlings (Kidd et al. 2001),
which have been related to Cu or Al resistance,
respectively. Fenugreek seedlings responded to the
studied metals and Se by excreting citrate and M, two
potential metal and Se chelators, which may contribute
to metal detoxification mechanisms. Despite the
significant increase in the amount of excreted M in
the presence of these elicitors, the contribution of
citrate to Cu, Cd, or Se detoxification seems to be
considerably higher to that of M, since roots, depend-
ing on the elicitor concentration, excreted about 10
to100-folds more citrate than M. Interestingly, in Al
treated seedlings, the possible detoxification mecha-
nism seems to involve M rather than citrate. Similarly,
in maize seedlings flavonoids, and not organic acids,
are involved in Si-induced amelioration of Al toxicity
(Kidd et al. 2001).

Although flavonoid transport mechanisms are far
from being clarified there is increasing body of
evidence which implicates ABC transporters in their
transport (Zhao and Dixon 2010 and references
therein). In the rhizobium-induced excretion of the
isoflavonoid genistein is involved an ABC-type
transporter, which is specific for isoflavones, like
daidzein and formononetin (Sugiyama et al. 2007). If
elicitor-induced M excretion by the roots of fenugreek
seedlings is mediated by ABC-type transporters, ATP
must play a central role and inhibition of ATP
productionmust modify the excretion process. Potassium
cyanide inhibits ATP synthesis (Lew and Spanswick
1984) while OV, a typical inhibitor of ATP-binding
cassette transporters, inhibits the membrane ATPases by
acting as a phosphate analogue (Sugiyama et al. 2007).
The mechanism of M excretion induced by Al, Cd, or
Se, like that by Cu (Tsiri et al. 2009) is likely to involve
an ATP-dependent transport system, as indicated by the
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inhibition of metal and Se-induced M excretion in the
presence of OV or KCN.

Medicarpin excretion induced by these trace
elements may also involve GST. GSTs have been
implicated in the transport of secondary metabolites
and are regarded as important cellular detoxifiers of
toxic endogenous metabolites or xenobiotics (Dixon
et al. 2010; Zhao and Dixon 2010). The plant-specific
Phi GSTs are involved in cellular detoxification by
catalyzing the conjugation of glutathione (GSH) with
a wide range of endogenous and xenobiotic agents.
Some Phi GSTs have other functions including
transport of flavonoid pigments into the vacuole and
GSH peroxidase activity (Alfenito et al. 1998; Dixon
et al. 2010; Zhao and Dixon 2010). Also, GST
activity is induced in response to a variety of
environmental stresses, including heavy metals (Dixit
et al. 2001; Ezaki et al. 2004; Edwards and Dixon
2004; Gajewska and SkŁodowska 2008). In Medicago
sativa, for example, carbon monoxide alleviates
Cd-induced oxidative damage by modulating GSH
metabolism in the roots (Han et al. 2008). The
hypothesis that metal or Se-induced expression of
GST in the roots of fenugreek seedlings might be
related to the M excretion mechanism is based on a
proposed mechanism of flavonoid transport across
various membranes; flavonoid, transport likely takes
place in the form of GST-flavonoid via an ABC-type
transporter (Zhao and Dixon 2010). By this mechanism
anthocyanins are sequestered into plant vacuoles
(Alfenito et al. 1998). Moreover, GST is used for M
sequestration in vacuoles. It has been demonstrated that
M, when reacting with GST-containing cellular extracts
from maize, forms a GS conjugate that is transported
into mung bean tonoplast vesicles by a similar to ATP-
dependent mechanism and in a four-fold higher
velocity when compared to un-conjugated M (Li et
al. 1997). Based on these findings and on our results, it
may be speculated that M is transported through the
root plasma membrane to the rhizosphere as GS-M
conjugate, which is formed through the action of
GST. The relatively lower GST gene transcript
levels in the roots of Al-treated seedlings correlate
well with the significantly smaller amount of
Al-induced M excretion.

The induction of de novo synthesis and excretion
of M and of an ABC-type transport system for M,
together with citrate excretion, by four different in
their nature elements, two heavy metals, one light

metal and a non metal, may be part of a non-trace
element specific resistance mechanism mediated by
common signal(s). In Medicago sativa cell cultures
the induction of PAL activity and M production by an
isolate of Verticillium albo-atrum implicated reactive
oxygen species (ROS) in the signal pathway that
activated these responses (Tang and Smith 2001). The
generation of ROS is a common event in both biotic
and abiotic stresses, including metal and Se stress
(Gomes-Junior et al. 2007; Michalak 2006; Mithöfer
et al. 2004; Tamaoki et al. 2008). Oveproduction of
ROS signals the induction of the antioxidant genes
necessary for cell survival/adaptation like genes of
ROS scavenging enzymes and secondary defence
metabolites (Moschou et al. 2008a and literature
therein; Tang and Smith 2001; Zhao et al. 2009).
Thus, in metal and Se-treated fenugreek seedlings,
endogenous ROS may be candidate signals which
induced M and citrate synthesis and excretion, as it
was the case with salinity-induced ROS generation
and induction of protection mechanisms (Moschou et
al. 2008b).

In this report we have shown for first time that
apart from heavy metals, Al and Se induced de novo
biosynthesis and excretion from the roots of fenugreek
seedlings, of an isoflavonoid phytoalexin, M, which
may be involved in metal and Se detoxyfication.
Furthermore, we have shown that all elicitors induced
the operation of an ABC-type transport system of M
probably involving GST. In parallel to M excretion
fenugreek seedlings responded to the same elicitors by
citrate exudation, which may be part of metal and Se
detoxification mechanism. These responses seem to be
part of a non-element specific resistance mechanism of
fenugreek seedlings, induced by common signal(s). The
identification of these signals as well as the role of GST
is currently being investigated.
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