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Abstract—In this letter, we demonstrate that a set of absorbing
boundary conditions (ABCs) for numerical simulations of waves,
proposed originally by Engquist and Majda and later generalized
by Trefethen and Halpern, can alternatively be derived with
the use of Pauli matrices algebra. Hence a novel approach to
the derivation of one-way wave equations in electromagnetics is
proposed. That is, the classical wave equation can be factorized
into two two-dimensional wave equations with first-order time
derivatives. Then, using suitable approximations, not only En-
gquist and Majda ABCs can be obtained, but also generalized
ABCs proposed by Trefethen and Halpern, which are applicable
to simulations of radiation problems.

Index Terms—Electromagnetic field theory, Computational
electromagnetics, Maxwell equations, Finite difference methods.

I. INTRODUCTION

IN 1977, Engquist and Majda proposed a set of absorbing
boundary conditions (ABCs) for numerical simulations of

waves [1], [2]. These are partial-differential equations, also
called one-way wave equations, allowing for wave propagation
only in a certain direction. When such an ABC is applied
at the boundary of a computational domain, a one-way wave
equation numerically absorbs the outgoing waves. Therefore,
Engquist and Majda ABCs were subsequently discretized
by Mur [3] and applied to the finite-difference time-domain
(FDTD) method [4] at the boundaries of the computational
domain in simulations of radiation problems. Subsequently,
these ABCs were generalized by Trefethen and Halpern [5],
[6] to reduce further reflections from local ABCs owing to
the optimal choice of their parameters. Later on, Higdon [7],
[8] proposed a set of differential operators perfectly annihi-
lating the outgoing waves for the assumed incidence angles,
which generalizes Trefethen and Halpern as well as higher-
order ABCs. These analytical ABCs, based on one-way wave
equations, have been widely applied to FDTD simulations for
many years before the technique of perfectly matched layer
(PML) [9] became available.

Although the topic of analytical ABCs [10] may currently
seem not to be so important, we investigated it and found that
the factorization of the wave equation with the use of Pauli
matrices algebra [11] allows one to decompose it into two
two-dimensional (2-D) wave equations with first-order time
derivatives. Such factorization was already found useful for
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an alternative derivation of the Dirac equation in quantum
mechanics [12]. Then, using suitable approximations (i.e.,
the wave incidence is almost normal to ABC, or the field
vector and the wavevector are not orthogonal within ABC
as it can occur in FDTD), one-way wave equations, which
are applicable as ABCs, can be derived. Hence, in this letter,
we describe novel aspects of one-way wave equations in
electromagnetics. Then, we derive a general set of ABCs,
already proposed by Trefethen and Halpern for numerical
simulations of wave propagation, which includes Engquist and
Majda ABCs as special cases. It is worth noting that in the
seminal paper of Engquist and Majda [2], the Authors cannot
provide physical reasoning resulting in the obtained ABCs.
In our approach, we employ wave-equation factorization and
approximations which allow for derivation of their ABCs.

II. PRELIMINARIES

Let us introduce some notation. We consider the electric-
and magnetic-field vectors defined in a Cartesian coordinate
system as E = [Ex Ey Ez] and H = [Hx Hy Hz],
respectively. We develop a strategy for the derivation of
analytical ABCs which includes Engquist and Majda ABCs as
special cases. Because these ABCs were originally proposed
for fluid simulations, we keep our considerations general and
consider the functions: U , Ua and Ub. Depending on the
simulation scenario in electromagnetics, these functions are the
electric- and magnetic-field components tangential to ABCs.

For the function of space g : R3 → C (i.e., g(r) where
r = [x y z ]), the spatial Fourier transformation is defined

F(g)(k) =

∫
R3

e−ik·rg(r)d3r (1)

where k = [ kx ky kz ] is the wavevector. For the sake of
brevity, the same symbols are employed to denote the Fourier
transforms in the wavevector domain.

In our analysis, the Pauli matrices [11] are employed

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (2)

For the set of matrices (2), one obtains σ2
x = σ2

y = σ2
z = I,

where I denotes the identity matrix. Let us define the Pauli
vector σ = [σx σy σz]. Then, one can calculate the dot
product of the wavevector k and the Pauli vector σ

k · σ = kxσx + kyσy + kzσz =

[
kz kx − iky

kx + iky −kz

]
. (3)

Let us consider the 3-D wave equation in the Cartesian space

GU = (∂xx + ∂yy + ∂zz − ∂ττ )U = 0 (4)
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where U = U(x, y, z, τ) is the scalar solution, τ = ct, t ∈ R
denotes the time variable, and c denotes the wave-propagation
velocity (i.e., the velocity of light). We denote the order of
differentiation as follows: ∂xzτ = ∂x∂z∂τ . However, we also
assume that the solutions to the wave equation (4) and the
considered problem of ABC are smooth functions, for which
the order of partial derivatives can be changed. Because we
use mixed partial derivatives up to the third order, based on
Schwartz’s theorem, it is sufficient that these functions are in
C3 (i.e., all the third-order partial derivatives exist for them and
are continuous). Because we assume that the order of partial
derivatives can be changed, and τ = ct, our derivations are
valid only in a homogeneous domain where c does not depend
on either a spatial or a temporal variable.

III. ENGQUIST AND MAJDA ABCS

Let us consider ABC on the wall z = 0 (refer to Fig. 1) for
the 2-D wave equation

GU = (∂xx + ∂zz − ∂ττ )U = 0 (5)

where U = U(x, z, t) is the scalar solution which we want to
absorb at the boundary. In the considered 2-D domain Ω, the
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Fig. 1. Incidence of plane wave at boundary z = 0 of domain Ω.

function U is either the field component Ex or Hy tangential
to ABC. Then, (5) can be symbolically factorized

GU = G+G−U = 0 (6)

where

G+ = ∂z +
√
∂ττ − ∂xx G− = ∂z −

√
∂ττ − ∂xx. (7)

The operators G+ and G− describe the one-way wave prop-
agation towards +z and −z respectively. Hence G− provides
ABC across z = 0. Using 1st-, 2nd- and 3rd-order approx-
imations for the square root, one obtains, respectively, the
following one-way wave equations for the −z direction:

G−|z=0 U = (∂z − ∂τ )|z=0 U = 0 (8)

G−|z=0 U =

(
∂zτ − ∂ττ +

1

2
∂xx

)∣∣∣∣
z=0

U = 0 (9)

G−|z=0 U =

(
∂zττ − ∂τττ − 1

4
∂zxx +

3

4
∂τxx

)∣∣∣∣
z=0

U = 0.

(10)

Equation (8) stems from the factorization of 1-D wave equa-
tion along the z direction. Equations (9)–(10) can be consid-
ered as subsequent differentiations of (8) with respect to the
time τ , which include the terms increasing the ABC accuracy.

In the next step, the one-way wave equations (9)–(10)
of Engquist and Majda were generalized by Trefethen and
Halpern [5], [6]. Their approach relies on the approximation of
the square root in G+ and G− formulas by a rational function.
Then, one obtains the 2nd- and 3rd-order ABCs as follows:

G−|z=0 U = (∂zτ − p0∂ττ − p2∂xx)|z=0 U = 0 (11)

G−|z=0 U = (q0∂zττ−p0∂τττ+q2∂zxx−p2∂τxx)|z=0 U = 0.
(12)

The coefficients p0, p2, q0, q2 are real numbers depending on
incidence angles for which ABC provides an exact absorption.
The values of these angles can be found in [4, Tables 6.1 and
6.2]. In general p0 ≈ 1 and q0 ≈ 1 because the first two
terms in (11)–(12) correspond to the ones in the one-way wave
equation (8) differentiated with respect to the time τ .

Finally, Higdon’s operators

G−|z=0 U =

L∏
l=0

(∂z − cosαl∂τ )|z=0 U = 0 (13)

generalize (8)–(12) and exactly absorb the plane waves prop-
agating at specific angles αl (l = 0, ..., L). Substituting L = 2
in (13), one obtains the coefficients p0 and p2 in the 2nd-order
Trefethen and Halpern ABC (11) (cf. [4, Eq. (6.52c)])

p0 =
1 + cosα1 cosα2

cosα1 + cosα2
p2 = − 1

cosα1 + cosα2
. (14)

IV. FACTORIZATION BASED ON PAULI MATRICES

Let us consider the two field components Ua and Ub,
which satisfy the wave equation (4). We assume that Ua is
the main field component which we want to absorb at the
boundary, whereas Ub is employed to help with this task. Both
field components Ua and Ub are part of the same solution
to Maxwell’s equations. For the transverse-magnetic (TM)
propagation in Fig. 1, Ua and Ub correspond to Ex and Ez

respectively. Then, one can write

(GI)

[
Ua

Ub

]
= 0 (15)

where I is the identity matrix of size 2×2. Then, transforming
(15) into the wavevector domain, one obtains(

I∂ττ + Ik2
) [Ua

Ub

]
= 0 (16)

where k2 = k2x + k2y + k2z . This equation can be written as(
I∂τ + ik

√
I
)(

I∂τ − ik
√
I
)[

Ua

Ub

]
= 0. (17)

The set of solutions to
√
I is infinite; hence, in our derivations,

only the solutions obtainable with the use of Pauli matrices
are considered. Since (k · σ)2 = (k · σ)(k · σ) = k2I, one
obtains

(I∂τ + ik · σ) (I∂τ − ik · σ)
[
Ua

Ub

]
= 0. (18)
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Because the operators (I∂τ + ik · σ) and (I∂τ − ik · σ) com-
mute, one can change their order in (18). Then, if either

(I∂τ + ik · σ)
[
Ua

Ub

]
= 0 or (I∂τ − ik · σ)

[
Ua

Ub

]
= 0

(19)
is satisfied, then the wave equation (18) is satisfied as well.
Such a factorization strategy can be applied to other classical
equations in physics (e.g., the diffusion equation), but it can
result in factors with fractional-order time derivatives [13].

V. ABCS BASED ON DERIVED FACTORIZATION

Let us consider ABC for the 2-D wave propagation as in
Fig. 1. Then, ky = 0 and (19) implies that the following two
2-D matrix wave equations are satisfied at ABC:[

∂τ + ikz ikx
ikx ∂τ − ikz

] [
Ua

Ub

]
= 0 (20)

[
∂τ − ikz −ikx
−ikx ∂τ + ikz

] [
Ua

Ub

]
= 0. (21)

We employed the orientation of axes in the considered prob-
lem of ABC to ultimately obtain spatial derivatives without
complex coefficients in differential equations. Therefore, we
can respectively transfer (20)–(21) into the spatial domain[

∂τ + ∂z ∂x
∂x ∂τ − ∂z

] [
Ua

Ub

]
= 0 (22)

[
∂τ − ∂z −∂x
−∂x ∂τ + ∂z

] [
Ua

Ub

]
= 0. (23)

In (22), the function Ua satisfies the one-way wave equation
in the +z direction, corrected by the term ∂xUb, whereas the
function Ub satisfies the one-way wave equation in the −z
direction, corrected by the term ∂xUa. On the other hand, in
(23), the function Ua satisfies the one-way wave equation in
the −z direction, corrected by the term −∂xUb, whereas the
function Ub satisfies the one-way wave equation in the +z
direction, corrected by the term −∂xUa. Because we aim to
derive ABCs for z = 0, we focus afterwards on (23) and the
absorption of the component Ua. Hence we further consider
the system of equations as follows:

(∂τ − ∂z)Ua − ∂xUb = 0 (24)

−∂xUa + (∂τ + ∂z)Ub = 0. (25)

From this point on, we assume that Ua = Ex and Ub = Ez ,
i.e., we restrict our considerations to the 2-D configuration in
Fig. 1. Additional to (24)–(25) in electromagnetics, Gauss’s
law in free space without charges (i.e., ∂xEx + ∂zEz = 0)
remains a constraint for the plane-wave propagation. This
enforces the orthogonality of the Fourier-transformed electric-
field vector and the wavevector (i.e., kxEx+ kzEz = 0). This
also means that tan θe = Ez/Ex = −kx/kz = tan θ (where
kz < 0, see Fig. 1), hence θe = θ. In numerical methods, such
as FDTD, the condition θe = θ is not valid in general [14]–
[16]. That is, E, H and k in the discrete FDTD domain do not
form a mutually orthogonal set. Therefore, we introduce the

real parameter p = tan θe/ tan θ which describes the relation
between the angles θe and θ

tan θe =
Ez

Ex
= −p

kx
kz

= p tan θ (26)

at the boundary z = 0 for a single frequency (note that kz <
0 in Fig. 1). For the normal wave incidence at ABC (i.e.,
θ = 0◦), one obtains kx = 0 and Ez = 0 (i.e., θe = 0◦)
independent of the p value. If θe = 0◦, then Ez = 0. This
case is satisfied when (i) p = 0 or (ii) p ̸= 0 and kx = 0
(i.e., θ = 0◦). Assuming the perfect plane-wave propagation
in the continuous domain, one obtains θ = θe and p = 1
due to Gauss’s law in free space without charges. Otherwise,
the parameter p ̸= 1 can provide a matching between the
dispersion relations valid for ABC and the wave equation. To
some extent, (26) implies Gauss’s law within ABC in the form
p∂xEx + ∂zEz = 0, which can be written as ∂xEx + ∂zEz =
(1 − p)∂xEx where the right-hand side denotes the charge
depending on the derivative ∂xEx. Based on (26), we propose
the additional condition (i.e., assumption)

p ∂xUa + ∂zUb = 0 (27)

which is a constraint for (24)–(25) in our ABC derivations. In
this case, one obtains from (25) that

∂τUb = (1 + p)∂xUa. (28)

Because τ = ct, the constant coefficient (1 + p) before the
spatial derivative ∂xUa can also be considered as a tuning
parameter for the wave-propagation velocity. In numerical
simulations such as FDTD, the wave-propagation velocity is
different from c and depends on the direction of propagation.

Now we are going to show that certain approximations (i.e.,
the wave incidence is almost normal to ABC, or the field
vector and the wavevector are not orthogonal within ABC)
applied to (24)–(25) lead to Trefethen and Halpern ABC.

A. 1st-order ABC

Let us consider an almost normal wave incidence at ABC
(i.e., θ ≈ 0◦). One obtains Ub = Ez = 0 which implies
∂xUb = 0. Then, one obtains from (24) the one-way wave
equation for the function Ua

G−|z=0 Ua = (∂z − ∂τ )|z=0 Ua = 0 (29)

which is equivalent to (8) proposed by Engquist and Ma-
jda. Equation (29) appears in various methods of computa-
tional electromagnetics when the plane-wave approximation
is applicable. For instance, the one-way wave equation can
be demonstrated as an outgoing wave in the discontinuous
Galerkin pseudospectral time-domain method, during the Rie-
mann problem solving procedure [17], [18].

B. 2nd-order ABC

Let us assume that ∂zUb = ∂zEz ≈ 0, i.e., the component
of the electric field normal to ABC does not vary significantly
along the direction normal to the boundary around z = 0.
Thus one obtains from (25) that

∂τUb = ∂xUa (30)
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which is equivalent to (28) for p = 0. Then, we differentiate
(24) with respect to the time τ and obtain

(∂ττ − ∂τz)Ua − ∂τxUb = 0. (31)

Because we assumed that the order of partial derivatives can
be changed for the solutions of the wave equation (4), one
finally obtains ABC at z = 0, i.e.,

G−|z=0 Ua = (∂zτ − ∂ττ + ∂xx)|z=0 Ua = 0. (32)

It has the form of Trefethen and Halpern ABC (11) with p0 =
1 and p2 = −1. As one can note, it is associated with the
Newman-points approximation with the angles of the exact
absorption equal to 0◦ and ±90◦ (cf. [4, Table 6.1]).

Let us generalize the result presented above substituting (28)
into (31). Hence one obtains ABC at z = 0, i.e.,

G−|z=0 Ua = [∂zτ − ∂ττ + (1 + p)∂xx]|z=0 Ua = 0. (33)

Equation (33) has the general form of Trefethen and Halpern
ABC (11) with p0 = 1 and p2 = −(1+p) as the varying values
of the coefficient p allow for changing the angles of the exact
absorption in this ABC (cf. [4, Table 6.1]). Moreover, for p =
0, one obtains the analysed before case: ∂zUb = ∂zEz ≈ 0
represented by ABC (32).

C. 3rd-order ABC

Let us differentiate (31) again with respect to the time τ

(∂τττ − ∂ττz)Ua − ∂ττxUb = 0. (34)

Then, we differentiate (25) twice with respect to the spatial
variable x and the time τ , and obtain

∂ττxUb = ∂τxxUa − ∂τxzUb. (35)

In the next step, after substituting (35) into (34), one obtains

(∂τττ − ∂ττz − ∂τxx)Ua + ∂τxzUb = 0. (36)

Let us assume that ∂zUb = ∂zEz ≈ 0 as in the first part of
Subsection V-B. Then, based on (25), one obtains (30). Hence
the following ABC formula is obtained from (36) :

G−|z=0 Ua = (∂zττ −∂τττ −∂zxx+∂τxx)|z=0 Ua = 0. (37)

This is Trefethen and Halpern ABC (12) with p0 = 1, p2 =
−1, q0 = 1 and q2 = −1. Some values of these coefficients
are available in [4, Table 6.2] for varying angles of the exact
absorption, but those obtained above are not available there.

Let us finally assume the validity of the formula (27).
One obtains (28), which is substituted into (36), and then the
following formula for ABC is obtained:

G−|z=0 Ua =

[∂zττ − ∂τττ − (1 + p)∂zxx + ∂τxx]|z=0 Ua = 0.
(38)

It has the general form of Trefethen and Halpern ABC (12)
with p0 = 1, p2 = −1, q0 = 1, and q2 = −(1 + p). As
one can note in [4, Table 6.2], the coefficient q0 = 1 whereas
p0 ≈ 1 and p2 ≈ −1. This stems from the fact that the first
two terms in (38) correspond to the ones in the one-way wave
equation (8) twice differentiated with respect to the time τ .
Assuming that the wave-propagation velocity is different from

c in numerical simulations, one can introduce the variable
coefficient −p2 before the derivative ∂τxx in (38) to obtain
a better level of absorption of incident waves at ABC. Such
an equation is a general Trefethen and Halpern ABC (12).

To sum up, we can derive Engquist and Majda ABCs and
the generalized ABCs proposed by Trefethen and Halpern
in an alternative way. The reflection error is at the level of
0.1-1% for these ABCs, as reported in [4]. Currently, ABCs
based on PMLs can provide an arbitrarily small reflection
error. Furthermore, PMLs can terminate domains comprising
inhomogeneous, dispersive, anisotropic, and nonlinear media.
Therefore, the presented results can fill the gap in understand-
ing ABCs, rather than propose analytical ABCs better than the
state of the art in 2024.

VI. VERIFICATION

Let us consider the incidence of the harmonic plane wave
at ABC (33) as in Fig. 1, i.e., Ua = Ua0e

i(kxx+kzz−ωτ) and
Ub = Ub0e

i(kxx+kzz−ωτ) (where kz < 0 and ω > 0). The
substitution of these formulas into the wave equation (5) and
the system (24)–(25) provides the same dispersion relation

ω2 = k2x + k2z . (39)

However, the substitution of the plane-wave formula into (33)
provides the following dispersion relation:

ω2 + kzω − (1 + p)k2x = 0. (40)

For the angles of the exact absorption, the wavevector length
ω should be the same for free space and ABC, i.e., calculated
based on (39) and (40). Hence one obtains from (39) and (40)

kz
√

k2x + k2z + k2z − pk2x = 0. (41)

Because kz < 0, one obtains the first solution kx = 0 which
implies θ = 0◦. The second solution can be derived taking
into account the fact that tan θ = −kx/kz . The condition
ω > 0 implies that p < tan−2 θ, which allows for selecting the
correct solution in terms of p, providing the exact absorption

p = − 1

1 +
√
1 + tan2 θ

. (42)

Taking into account the fact that p0 = 1 and p2 = −(1 + p)
in (33), one obtains from (42) the Higdon formula (14) when
α1 = 0◦ and α2 = θ. It demonstrates the logical consistency
of our ABC derivations.

VII. CONCLUSION

We demonstrate that the factorization of the wave equa-
tion with the use of Pauli matrices algebra allows one to
decompose it into two 2-D wave equations with first-order
time derivatives. Then, assuming that the wave incidence is
almost normal to ABC or the field vector and the wavevector
are not orthogonal within ABC, as it can occur in FDTD,
we derive in a systematic way a general set of ABCs already
proposed by Trefethen and Halpern, which includes Engquist
and Majda ABCs as special cases. The presented theory is
logically consistent because it allows one to obtain exactly
the same absorption angles as in Higdon’s ABC theory.
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