High-energy neutrinos from relativistic magnetic reconnection in black-hole coronae

Maria Petropoulou, Department of Physics (NKUA)

27 November 2023 - APC Colloquium, Paris

In collaboration with: Damiano Fiorillo (Niels Bohr Institute), Luca Comisso (Columbia U.), Enrico Peretti (APC Paris), Lorenzo Sironi (Columbia U.)

Introduction

The neutrino (v) flux spectrum

Kheirandish, A. 2020, A&SS

- Detection of HE v (E > 10 TeV) → evidence for presence of hadronic accelerators
- Sources of HE v are still not known → hints for AGN/blazars

Katz & Spiering 2012, PPNP

A zoo of astrophysical v sources

How are high-energy neutrinos produced?

Photopion production process and/or p-p collisions

Photohadronic (pγ) interactions

 $\tau_{p\gamma} \sim \sigma_{p\gamma} \cdot n_{\gamma, target} \cdot R$

Photon number density

Typical source size

Abundant radiation fields

Active Galaxies

Gamma-Ray Bursts

p-p inelastic collisions

$$\tau_{pp} \sim \sigma_{pp} \cdot n_{gas} \cdot R$$

Cold proton number density

Typical source size

Abundant gas

Star-forming galaxies

Galaxy groups/clusters

Production spectra of secondaries

Photohadronic (pγ) interactions

p-p inelastic collisions

How are protons accelerated ?

Magnetic reconnection

French et al., 2022

- Reconnection dissipates magnetic energy > heat, bulk kinetic energy, non-thermal particle energy
- Particles can gain energy via: E-field at X-points, curvature-drift, compression of plasmoids ...
- Reconnection can efficiently accelerate particles (ions & electrons) to power-law distributions

Relativistic magnetic reconnection

Relativistic magnetic reconnection

Plasma magnetization

Accreting BHs

Credit:: Kyle Parfrey

Particle-in-Cell (PIC) method (1)

Interpolate E,B from the grid to the particle positions in the cell

Move particles under

Lorentz force

Deposit current (due to particle motion in cells) onto the grid

Solve for E, B fields on the grid points

Particle-in-Cell (PIC) method (2)

Plasma frequency

$$\omega_p = \sqrt{\frac{4\pi ne^2}{m}}$$

- Fully self-consistent method → ideal for studying nonlinear phenomena (e.g. tearing instability)
- Tiny length scales (c/ω_p) and timescales (ω_p⁻¹) need to be resolved → expensive simulations requiring super- computing, usually limited in spatial and temporal domains
- Findings from PIC have to be extrapolated to the astrophysical scales

Results from 2D PIC simulations – Global properties

Tearing instability of initial current sheet -> plasmoid chain and secondary current sheets

- Dissipation efficiency up to 50% (e⁻e⁺) or 25% (ep) without guide fields
- Rough energy equipartition between magnetic fields and non-thermal particles

13

Sironi, Petropoulou, Giannios 2015, MNRAS

Results from 2D PIC simulations – particle spectra

e-e+ plasma

Sironi & Spitkovsky 2014; Guo et al. 2016, Werner et al. 2016

ep plasma

Power-law slope depends on σ \Rightarrow harder spectra for $\sigma >> 1$

Results from 2D PIC simulations – acceleration

Petropoulou & Sironi, 2018 MNRAS; Hakobyan et al. 2021, ApJ

- 1st-stage rapid acceleration at magnetic null points (X-points) up to [~]3σ
- 2nd-stage slow acceleration beyond 3σ trapped in plasmoids Click here

log(dN/dγ)

Energy $[m_e c^2]$ 10^{-2} 10^{-3} 10^{-1} 10^{0} BeppoSAX $\propto E^{0.5}$ 10^{1} + CGRO/OSSE E f_E [keV cm⁻² s⁻¹] 10^{0} $\sigma = 10$ $\sigma = 40$ 10^{-} 10^{3} 10^{0} 10^{2} 10^{1} Energy [keV] Hard X-ray flux ~ magnetic energy density

Cyg X-1 in the hard state

Recent results from 3D PIC simulations

e-e+ plasma

- $\sigma=10$, guide field = 0.1 Bo
- Typical length scale: L= 1560 c/ω_p
- Outflow boundary conditions in x
- Periodic boundary conditions in z
- 2 plasma injectors along y

Zhang, Sironi, Giannios, 2021, ApJ

Results from 3D PIC simulations - time average spectra

Zhang, Sironi, Giannios, 2021, ApJ

Results from 3D PIC simulations – acceleration

Zhang, Sironi, Giannios, 2021, ApJ

Fast acceleration beyond 3σ of particles moving in the upstream along z

$$\dot{\gamma} = \frac{\Delta \gamma}{\Delta t} \approx \frac{e E_{\rm rec}}{mc} \beta_z \approx \beta_z \eta_{\rm rec} \sqrt{\sigma} \omega_{\rm p}$$

The particle spectrum in 3D reconnection

- "Injection phase": acceleration at X-points up to ~3σ, with p(σ) and p → 1-1.3 for σ >> 1
- Acceleration beyond 3σ, with s being independent of σ:
 - s ~2 (zero guide field)
 - s > 2 (non zero guide field)

See also: Werner & Uzdensky 2017, Chernoglazov et al. 2023

NGC 1068 as a neutrino source

A "hot spot" in the IceCube neutrino sky map

Bauer et al. 2015

IceCube Collaboration 2023, Science

X-rays GeV γ-rays TeV γ-rays

Ajello, Murase, McDaniel, 2023, ApJ

NGC 1068: a complex environment

Many potential sites for proton acceleration and neutrino production

NGC 1068: many theoretical models

Inoue, Cerruti et al. (arXiv:2207.02097) "Multi-zone" models log ε [eV] $\log \epsilon [eV]$ $\log (z/r_s)$ 12 10 12 14 8 45 inner — outer BeH cascade 44 v_{μ} BeH 1st gen EIC successful ----- pp π0 γ outer region 43 wind ---- pp π± pair syn ∽ -10È failed wind 42 gg p+pto 000 vfv [erg cm ³T3 41 Mus Y <Tev 40 [erg $\gamma_{>TeV} + \gamma_{IR}$ 0 →e± 39 00 မ်ာ-14 disk+corona MAR Y CGeV 38 log (r/rs) obs $p+\gamma_X \rightarrow V_{TeV}$ -15 torus 37 $p + \gamma_{UV-X} \rightarrow BeH case$ -16E →Y<GeV 36 -17 inner region 20 22 282 24 26 28 30 pc scales 8 10 12 14 18 24 26 16 $\log v [Hz]$ log v [Hz]

NGC 1068: many theoretical models

"Coronal" models

Ajello, Murase, McDaniel, 2023, ApJ (see also Murase et al. 2020, Murase 2022)

A constrained, reconnection-based model for NGC 1068

Fiorillo et al. 2023 (arXiv:2310.18254)

Our model

Image from Ripperda et al. 2022, ApJL

Our model

Our model

Our model Magnetic energy density log(E_p²dN/dE_p) Relativistic proton Comptonized energy density X-ray flux J-3 Thomson opacity ~ 0.5 Proton Pair density spectrum E_{p, br}~ 25 TeV log(E_p) Neutrino

spectrum

31

Hierarchy of proton energy scales

- E_{p,br}: break of proton spectrum, inferred from peak of v spectrum.
- E_{p,cool}: pγ cooling time = escape time from the reconnection layer.
- **E**^{*} : change of photo-hadronic efficiency (dependent on the lower cutoff of the X-ray spectrum).
- E_{p,rad}: pγ cooling time = acceleration time.

 $E_{p,\mathrm{br}} \leq E_{p,\mathrm{cool}} < E_p^* < E_{p,\mathrm{rad}}$

A constrained problem

Constraints:

- E_{p,br} ~25 TeV (from peak neutrino energy)
- E_{p,br} [~] E_{p,cool} → almost calorimetric limit
- L_v ~ (0.8-4)*1E+42 erg/s (all flavor)
- L_x ~ (1-6)*1E+43 erg/s (2-10keV)

Results

- Compact corona: L[~] (3-10)*Rg
- Highly magnetized corona: σ_{e}^{\sim} 1E+2 and σ_{p}^{\sim} 1E+5
- Pairs from the proton-initiated cascade may account for most of the leptons required by Thomson opacity

Click here

Conclusions & Outlook

- Sources of diffuse astrophysical neutrino flux are still unknown, but there are strong hints that AGN cores and jets are neutrino emitters.
- Relativistic magnetic reconnection is a fast acceleration process, leading to (broken) power-law particle distributions.
- Magnetic dissipation in a compact, strongly magnetized corona could power hard X-ray and TeV emission from NGC 1068.

- What does our model predict for other Seyfert galaxies?
- What is the role of pairs from pγ interactions in shaping the Comptonized X-ray spectrum?
- 3D simulations of magnetic reconnection in high proton-sigma plasmas are needed for an accurate characterization of the post-break spectrum.

Backup slides

Photohadronic (pγ) interactions

P-P inelastic collisions

$$p + p_{gas} \rightarrow \begin{cases} p + \pi^0 \\ n + \pi^+ \end{cases}$$

Particle-in-Cell (PIC) method

Particle pusher $\frac{\mathbf{x}^{i+1} - \mathbf{x}^i}{\Delta t} = \mathbf{v}^{i+1/2},$ $\frac{d\mathbf{x}}{dt} = \mathbf{v},$ $rac{\gamma^{i+1/2}\mathbf{v}^{i+1/2}-\gamma^{i-1/2}\mathbf{v}^{i-1/2}}{\Delta t}=rac{q}{m}ig(\mathbf{E}^i+\mathbf{ar{v}}^i imes\mathbf{B}^iig).$ $\frac{d\left(\gamma\mathbf{v}\right)}{dt} = \frac{q}{m} (\mathbf{E} + \mathbf{v} \times \mathbf{B}),$ Staggered "Yee" mesh Leapfrog time integration Δt Field solver time E,J n-1 n-1/2 n n+1/2 n+1 n+3/2 n+2 n+5/2 E J,B E J,B E J,B E J,B X V X V X V X V $\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$ $\frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{B} - \mathbf{J}$ EwJy $\nabla \cdot \mathbf{E} =$ ρ → $D_t G|_{i,j,k}^n = \left(G|_{i,j,k}^{n+1/2} - G|_{i,j,k}^{n-1/2}\right) / \Delta t$ $\nabla \cdot \mathbf{B} =$ 0 $\sum D_x G|_{i,j,k}^n = \left(G|_{i+1/2,j,k}^n - G|_{i-1/2,j,k}^n \right) / \Delta x$

Plasmoid internal structure and particle distribution Click here

Impact of IC cooling on plasmoid chain

Click here

(i) Strong IC cooling

(ii) Moderate IC cooling

40

Particle trajectories in 2D vs 3D simulations

Zhang, Sironi, Giannios, 2021, ApJ

Proton and neutrino spectra from NGC 1068

Click here

How are protons accelerated ?

Shock acceleration

Möbius & Kallenbach, 2005, ISSI Scientific Reports Series

- Shocks dissipate bulk kinetic energy → internal energy, non-thermal particle energy
- Fermi acceleration → particles gain energy via multiple scatterings across a velocity gradient (there is also shock-drifting, ...)
- Shocks can efficiently accelerate particles with power law distributions, unless we consider
 - High magnetization σ plasma
 - Superluminal shocks

Relativistic shocks

 $\gamma_0=15$ Low- σ shocks:

 $\sigma = 0$

- returning particles
- filamentation instabilities

$$\sigma = 0.1$$
$$\gamma_0 = 15$$

High-o shocks:

- no returning particles
- no turbulence

