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Not d
etected

Not d
etected

The neutrino (ν) flux spectrum

Katz & Spiering 2012, PPNP  

?

Kheirandish, A. 2020, A&SS 

● Detection of HE ν ( E > 10 TeV) → evidence 
for presence of hadronic accelerators

● Sources of HE ν are still not known → hints 
for AGN/blazars

Upper limits > 3 PeV

Atmospheric v 
background
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A zoo of astrophysical ν sources

X-ray binaries

Supernova shocks

Magnetars

γ-ray novae

Star-forming galaxies

GRBs
AGN/Blazars
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How are high-energy neutrinos produced ?

Photopion production process and/or p-p collisions
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Photon number density Typical source size Cold proton number density Typical source size

Abundant radiation fields
Abundant gas

Active Galaxies Gamma-Ray Bursts Star-forming galaxies Galaxy groups/clusters

Photohadronic (pγ) interactions p-p inelastic collisions
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Production spectra of secondaries

Photohadronic (pγ) interactions p-p inelastic collisions
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How are protons accelerated ?

Magnetic reconnection

French et al., 2022

● Reconnection dissipates magnetic 
energy → heat, bulk kinetic energy, 
non-thermal particle energy

● Particles can gain energy via: E-field 
at X-points, curvature-drift, 
compression of plasmoids …  

● Reconnection can efficiently 
accelerate particles (ions & 
electrons) to power-law 
distributions
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Relativistic magnetic reconnection
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Relativistic magnetic reconnection

Accreting BHs
Plasma magnetization

Credit:: Kyle Parfrey
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https://docs.google.com/file/d/1I2cjfPNWiIM2Yisiq2BebdSz8p91YFIq/preview


 Particle-in-Cell (PIC) method (1)

Move particles under 
Lorentz force

Deposit current (due to 
particle motion in cells) 

onto the grid

Solve for E, B fields on the 
grid points

Interpolate E,B from the 
grid to the particle 
positions in the cell
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 Particle-in-Cell (PIC) method (2)

● Fully self-consistent method → ideal for 
studying nonlinear phenomena (e.g. tearing 

instability)

● Tiny length scales (c/ωp) and timescales 
(ωp

-1) need to be resolved → expensive 
simulations requiring super- computing, 
usually limited in spatial and temporal 

domains

● Findings from PIC have to be extrapolated to 
the astrophysical scales 

Plasma frequency
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Results from 2D PIC simulations – Global properties

Sironi, Petropoulou, Giannios 2015, MNRAS

● Dissipation efficiency up to 50% (e-e+) or 25% 
(ep) without guide fields

● Rough energy equipartition between 
magnetic fields and non-thermal particles

Tearing instability of initial current sheet → plasmoid chain and secondary current sheets

e-e+

e-p+
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Results from 2D PIC simulations – particle spectra

Power-law slope depends on σ 
→ harder spectra for σ >> 1Sironi & Spitkovsky 2014; Guo et al. 2016, Werner et al. 2016

e-e+ plasma
ep plasma
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Results from 2D PIC simulations – acceleration

● 1st-stage rapid acceleration at magnetic 
null points (X-points) up to ~3σ

● 2nd-stage slow acceleration beyond 3σ 
trapped in plasmoids

Petropoulou & Sironi, 2018 MNRAS; Hakobyan et al. 2021, ApJ

log(dN/dγ)

log(γ)

γ-p

γ-3

3σ 3σ’
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Click here

https://docs.google.com/file/d/1h-9kuy-CP1uf5LxPl8N7zriaNm4yhwN8/preview


Radiative 2D PIC simulations

Shridhar, Sironi, Beloborodov, 2021, ApJ

Cyg X-1 in the hard state

Hard X-ray flux ~ magnetic 
energy density 
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Click here



Recent results from 3D PIC simulations

● σ=10, guide field = 0.1 Bo

● Typical length scale: L= 1560 
c/ωp

● Outflow boundary conditions 
in x

● Periodic boundary conditions 
in z

● 2 plasma injectors along y

e-e+ plasma

Zhang, Sironi, Giannios, 2021, ApJ 17

https://docs.google.com/file/d/1vOG23x6oIyTrisO4vVqAPdEC2AlhNUv2/preview


Zhang, Sironi, Giannios, 2021, ApJ

High-energy (free) 
particles in the 

upstream

Very few high-energy 
particles in the 

upstream

Results from 3D PIC simulations - time average spectra
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Results from 3D PIC simulations – acceleration

Fast acceleration beyond 3σ of particles 
moving in the upstream along z 

Zhang, Sironi, Giannios, 2021, ApJ
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 The particle spectrum in 3D reconnection

log(dN/dγ)

log(γ)

γ-p

γ-s

3σ

● “Injection phase”: acceleration at 
X-points up to ~3σ, with p(σ) and 
p → 1-1.3 for σ >> 1

● Acceleration beyond 3σ, with s 
being independent of σ:
○ s ~2 (zero guide field)
○ s > 2 (non zero guide field)

See also: Werner & Uzdensky 2017, Chernoglazov et al. 2023 20



NGC 1068 as a neutrino source
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A “hot spot” in the IceCube neutrino sky map

● Astrophysical neutrinos at the location of NGC 
1068: N=79 (+22,-20) 

● Neutrino spectrum: dN/dE ~ E^-γ, γ=3.2 +/- 0.2

IceCube Collaboration 2023, Science
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A multi-wavelength view
IceCube Collaboration 2023, ScienceBauer et al. 2015

X-rays GeV γ-rays TeV γ-rays

50 MeV - 1 TeV

Ajello, Murase, McDaniel, 2023, ApJ
23

X-rays



NGC 1068: a complex environment

Credit: Eichmann et al. 2022

Many potential sites for proton acceleration and neutrino production
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NGC 1068: many theoretical models

“Multi-zone” models Inoue, Cerruti et al. (arXiv:2207.02097)

See also Eichmann et al. 2022 25

 pc scales



NGC 1068: many theoretical models

“Coronal” models

Blanco et al. (arXiv:2307.03259)
Inoue, Khangulyan, Doi, 2020, ApJ

DSA, pp+pγ

 Magnetic dissipation, pp+pγ

Ajello, Murase, McDaniel, 2023, ApJ 
(see also Murase et al. 2020, Murase 

2022)

DSA, pp
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A constrained, reconnection-based model 
for NGC 1068

Fiorillo et al. 2023 (arXiv:2310.18254)
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https://ui.adsabs.harvard.edu/abs/2023arXiv231018254F/abstract


Our model

X-rays

Magnetic 
energy density

Comptonized 
X-ray flux

Relativistic proton 
energy density

Pair density

Thomson 
opacity ~ 0.5
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~ 0.5~ 0.1

Image from Ripperda et al. 2022, ApJL



Our model Magnetic 
energy density

Comptonized 
X-ray flux

Relativistic proton 
energy density

Pair density

Thomson 
opacity ~ 0.5

Proton 
spectrum 

log(Ep^2 dN/dEp)

log(Ep)

γ-p+2

γ-s+2

Ep, br~3σpmpc2
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Our model

X-rays

Magnetic 
energy density

Comptonized 
X-ray flux

Relativistic proton 
energy density

Pair density

Thomson 
opacity ~ 0.5

Proton 
spectrum 

Neutrino 
spectrum

30
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Our model Magnetic 
energy density

Comptonized 
X-ray flux

Relativistic proton 
energy density

Pair density

Thomson 
opacity ~ 0.5

Proton 
spectrum 

Neutrino 
spectrum
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log(Ep^2dN/dEp)

log(Ep)

γ+1

γ-3

Ep, br~ 25 TeV



Hierarchy of proton energy scales

● Ep,br : break of proton spectrum, 
inferred from peak of ν spectrum.

● Ep,cool : pγ cooling time = escape
time from the reconnection layer.

● Ep* : change of photo-hadronic
efficiency (dependent on the lower
cutoff of the X-ray spectrum).

● Ep,rad : pγ cooling time = acceleration 
time.
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 A constrained problem

Constraints:

● Ep,br ~25 TeV (from peak 
neutrino energy)

● Ep,br ~ Ep,cool → almost 
calorimetric limit

● Lν ~ (0.8-4)*1Ε+42 erg/s (all 
flavor)

● LX ~ (1-6)*1Ε+43 erg/s (2-10keV)
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  Results

● Compact corona: L~ (3-10)*Rg 
● Highly magnetized corona: σe ~ 1E+2 and  σp~1Ε+5
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Click here

● Pairs from the proton-initiated cascade may account 
for most of the leptons required by Thomson opacity



Conclusions & Outlook
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● Sources of diffuse astrophysical neutrino flux are still unknown, but there are strong 
hints that AGN cores and jets are neutrino emitters.

● Relativistic magnetic reconnection is a fast acceleration process, leading to (broken) 
power-law particle distributions.

● Magnetic dissipation in a compact, strongly magnetized corona could power hard 
X-ray and TeV emission from NGC 1068.

● What does our model predict for other Seyfert galaxies?  

● What is the role of pairs from pγ interactions in shaping the Comptonized X-ray 
spectrum?

● 3D simulations of magnetic reconnection in high proton-sigma plasmas are needed 
for an accurate characterization of the post-break spectrum. 



Backup slides
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Photohadronic (pγ) interactions P-P inelastic collisions
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 Particle-in-Cell (PIC) method
Particle pusher

Field solver 
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Plasmoid internal structure and particle distribution 

39

Click here



Impact of IC cooling on plasmoid chain
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Click here



Particle trajectories in 2D vs 3D simulations 
Zhang, Sironi, Giannios, 2021, ApJ
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Proton and neutrino spectra from NGC 1068
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Click here



How are protons accelerated ?

Möbius & Kallenbach, 2005, ISSI Scientific Reports Series

Shock acceleration ● Shocks dissipate bulk kinetic 
energy → internal energy, 
non-thermal particle energy

● Fermi acceleration → particles gain 
energy via multiple scatterings 
across a velocity gradient (there is 
also shock-drifting, …)

● Shocks can efficiently accelerate 
particles with power law 
distributions, unless we consider
○ High magnetization σ plasma
○ Superluminal shocks
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Relativistic shocks 
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