Neutrino emission from blazars in guiescence and flaring periods

Maria Petropoulou

Einstein Post Doctoral Fellow

Department of Physics & Astronomy, Purdue University, West Lafayette, USA

In collaboration with:

S. Coenders (TUM) & S. Dimitrakoudis (University of Alberta)

TeV Particle Astrophysics, CERN, 13/09/2016

Talk outline

Introduction

Neutrino emission from BL Lacs: flaring states vs. quiescence

1. Motivation & Goals

2. Application to Mrk 421

Conclusions

(Petropoulou, Coenders & Dimitrakoudis, 2016, APh, 80, 115)

The first discovery of high-energy astrophysical v from Icecube

Q: What is their origin?
A: Not known yet.
Q: What is needed more?
A:
More statistics

The first discovery of high-energy astrophysical v from Icecube

- Q: What is their origin?
- A: Not known yet.
- Q: What is needed more?

A:

- More statistics
- Model-independent searches of point sources

The first discovery of high-energy astrophysical v from Icecube

- Q: What is their origin?
- A: Not known yet.
- Q: What is needed more?

A:

More statistics

Model-independent searches of point sources

Theoretical model predictions for particular types of sources.

v emission during flares and quiescence

Motivation

Blazars are variable sources across the electromagnetic spectrum !

Aims

- How does the ν flux correlate with the photon flux?
- Comparison between quiescence & flares
- ★ What is the expected ν event rate from a ~day flare?
- What is the expected v event number over the 5yr IceCube livetime?

Mrk 421: an excellent lab for blazar models

3 data sets used:

- 1) ~4 month-long data in 2009; typical of the "quiescent" emission (Abdo et al. 2011, ApJ, 736)
- 2) **13-day flare in 2010;** significant X-ray and VHE variability but ~constant GeV flux (*Aleksic et al. 2015, A&A, 578*)
- 3) ~7 yr-long Fermi-LAT data

Variable source in various energy bands & timescales!

SED modeling

Unprecedented MW coverage & simultaneous obs. for MJD 55265-55277 (data are adopted from Aleksic et al. 2015)

Petropoulou, Coenders & Dimitrakoudis, 2016, APh, 80, 115

Predicted v emission

* < 1 PeV neutrino flux is ~ constant</pre>

★ > 1 PeV neutrino flux varies

* > 1 PeV neutrino flux is correlated with X-rays and γ-rays

 >1 PeV ν - GeV γ-ray correlation will be applied to the long-term Fermi/LAT light curve

Effective areas of the analyses

Up-going events

- Larger statistical sample
- Larger effective volume
- Atm. background not removed
- Poorer energy determination

High-energy starting events (HESE)

- Smaller statistical sample
- Smaller effective volume
- Atm. Background removed
- Accurate energy determination

Neutrino Events in IceCube

Back grounds
 ⇒ Cosmic ray induced atmospheric muons
 down-going events

Main Signal ⇒ Neutrino induced muons up-going events

Comparison of event rates

Muon neutrino+anti-neutrino rate (evt / yr)

	Mrk	421 ^a	Backg	ground ^b
E_{ν} (TeV)	13-day flare	quiescent	atmospheric	diffuse
	(55265-55277)	(54850-54983)		
0.1 - 100	0.023	0.019	7.371	0.010
$100 - 10^3$	0.264	0.282	1.852×10^{-3}	2.203×10^{-3}
$10^3 - 5 \times 10^4$	0.306	0.288	4.554×10^{-6}	2.236×10^{-4}

~0.57 evt/yr . ~0.57 evt/yr

Negligible

Neutrinos (> 100 TeV) expected from the flare: 13 x 0.57/333 = 0.02

* Neutrinos (> 100 TeV) expected from quiescent period: 120 x 0.57/333 = 0.2

Caution needed when associating a v event with a flaring blazar lying in the error circle of v detection

* An accumulation of many similar flares is required for a detection!

The long-term y-ray activity

The 6.9 yr Fermi light curve (0.1-300 GeV) overlaps with the 5yr IceCube livetime

Predicted #v in 5yr IceCube livetime

least 1 neutrino from the 2012 flare alone and the whole IC Season 3 * Still <50%

06/2011-05/2012	364	0.38 ± 0.05	32 ± 3
06/2012-05/2013	371	0.71 ± 0.11	51 ± 5
06/2013-05/2014	364	0.70 ± 0.11	50 ± 5
06/2014-05/2015	350	0.47 ± 0.06	38 ± 4
\sum w/o Flares	1834 ^a	2.73 ± 0.38	94 ± 2
\sum w Flares	1834	3.59 ± 0.60	97 ± 2

Constraining the model

Q: What means a neutrino non-detection of Mrk 421?

A: Correlation between >1PeV ν and GeV γ-rays differs in major flares OR Much lower power is carried by CR in blazar jets

>100 TeV v flux(normalized to 4e-10 erg/s/cm2) vs. T (yr) needed for IceCube v detection at 90% (95%) CL

<i>X</i> (yr)	ζx		$L_{p,X}$ (erg/s)	
	90%	95%	90%	95 %
6	0.71	0.9	6.2×10^{47}	7.8×10^{47}
8	0.53	0.68	4.6×10^{47}	5.9×10^{47}
10	0.43	0.54	3.7×10^{47}	4.7×10^{47}
20	0.21	0.27	1.8×10^{47}	2.3×10^{47}

What about FSRQ flares?

Mannheim & Biermann, A&A, 1992

No physical model for the flare of PKS B1424-418 *Kadler et al. 2016, Nature Physics (arXiv:1602.02012)*

And now... minute-timescale Fermi-LAT flare

Conclusions

* Hadronic SED modeling is a powerful tool for neutrino calculations!

* Accumulation of many week-duration flares necessary for the detection of at least 1 neutrino from Mrk 421

* Neutrino flux >1 PeV correlates with X-ray and γ -ray fluxes

Major flares (long duration & large flux increase) have a significant impact on the # ν over time

 Ltilizing the >1 PeV v / GeV γ-ray correlation and Fermi/LAT light curve of Mrk 421 we expect: ~3.6 v with flares and ~2.7 v without flares included. These exceed the threshold value for detection of at least 1 neutrino at 95% CL and 90% CL respectively

No high-energy v detection would suggest that the correlation does not hold during major flares or/and set upper limits on the CR power of the blazar.

Thank you!

SED modeling

 Successful hadronic fits to all 13 days.

 Small changes
 (~2-3) of the parameter values.

 Calculation of daily v spectra.

Radiative processes in a nutshell

A zoo of candidate sources

e.g. Kachelriess & Ostapchenko 2014

e.g. Guetta et al. 2002, Torres et al. 2005

> plasma/shocks compact object Accretion disk

microquasar

e.g. Murase et al. 2011, Zirakashvili & Ptuskin 2015

Supernovae/Hypernovae

GRBs

e.g. Waxman & Bahcall 1999, Murase 2008, Hummer et al. 2012, Petropoulou et al 2014

Star-forming galaxies

e.g. Tamborra et al. 2014, Loeb & Waxman 2006

e.g. Mannheim 1995, Halzen & Zas 1997, Atoyan & Dermer 2001, 2003, Petropoulou et al. 2015

e.g. Metzger et al. 2015

y-ray novae

(Review by Ahlers et al 2015)

v production processes

Jets as v sources

PHOTOHADRONIC INTERACTIONS

CR reservoirs as v sources

INELASTIC pp COLLISIONS

Star forming

galaxies

Introduction: v production processes

Jets as v sources

CR reservoirs as v sources

PHOTOHADRONIC INTERACTIONS

INELASTIC pp COLLISIONS

Numerical treatment

5

BL Lacs as counterparts of IceCube neutrinos

PR 2014

* Catalogs used:

- TeVCat (VHE detected)
- 1WHSP (~1000 VHE candidates)
- 1FHL (>10 GeV)
 Cute applied to the sample of
 - * Cuts applied to the sample of 35 events:
- E >60 TeV
- median angular error < 20 deg
 * "Energetic" criterion

* Catalogs used:

- 3LAC (>100 MeV)
- 2WHSP (~1700 VHE candidates)
- 2FHL (>50 GeV
 - * Cuts applied to the sample of 51 events:

PR etal 2016

- E >60 TeV
- median angular error < 20 deg
 * "Energetic" criterion

BL Lacs as counterparts of IceCube neutrinos

PG 1553+113

BL Lacs as counterparts of IceCube neutrinos

Hadronic y-ray emission

≪1 ₩**₩**

Leptonic y-ray emission

Neutrino emission from all BL Lacs

Predicted # of events

	With Glashow resonance	Without Glashow resonance
Y=0.8 , Eγ=200GeV,	7 (2-10 PeV)	4.6 (2-10 PeV)
ΔΓ=0.5	9-10 (2-100PeV)	6.6-7.6 (2-100 PeV)
Y=0.8, Eγ=100GeV,	~6 (2-10 PeV)	4 (2-10 PeV)
ΔΓ=1.0	~8-9 (2-100PeV)	6-7 (2-100PeV)
Y=0.3, Εγ=200GeV, ΔΓ=0.5	2.6 (2-10 PeV) ~4 (2-100PeV)	1.7 (2-10 PeV) ~3 (2-100PeV)

6.6 is the 3σ upper limit for 0 events (Gehrels 1985)

Using the effective areas from IceCube (2013) in the range 2-10 PeV and extrapolating for the energy range 10-100 PeV.

Extragalactic backgrounds

Another source population?
(e.g. starburst galaxies: Lacki et al. 2014; Stecker 2007)
Another physical process?
(e.g. pp collisions; Mannheim 1995, Ahlers et al. 2012) Contribution from individual BL Lacs ? (e.g. Mrk 421)
Galactic contribution? (e.g. PWN)

Neutrino emission from all BL Lacs

An "outlier" in the Monte Carlo simulation (a single bright source) mimics the neutrino emission from a

of BL Lacs that make 95% of the NBG at 1 PeV.

Bottom right: Results from individual simulations showing the scatter in Monte Carlo simulations

Calculation of muon neutrino number

 $N_{\nu} = T \int_{E_{\nu,\min}}^{E_{\nu,\max}} dE_{\nu} \int_{\Delta\Omega(E_{\nu})} d\Omega A_{\text{eff}}(E_{\nu}, \vec{x}) \sum_{i} \frac{\partial^2 F_{\nu,i}}{\partial\Omega\partial E_{\nu}}$

 Atmospheric background
 Diffuse Astrophysical Flux
 Point source flux

5.

Calculation of uncertainties

$$N_{\nu} \equiv \dot{N}_{\nu}T = \frac{\dot{N}_{\nu}^{q}}{F_{\nu}^{q}} \int_{T} dt F_{\nu}(t) = \dot{N}_{\nu}^{q} \int_{T} dt \left(\frac{F_{\gamma}(t)}{F_{\gamma}^{q}}\right)^{2}$$

$$\sigma_{n_{\nu}}^{2} = f_{\dot{N}_{\nu}^{q}}^{2} + f_{F_{\gamma,i}}^{2} + f_{F_{\gamma}^{q}}^{2} + f_{A}^{2}$$

Stacked contributions of various sources of uncertainty to the total one