Probing cosmic-ray particle acceleration in radio supernovae

Maria Petropoulou (Purdue)

2 September 2016

Atish Kamble (CfA-ITC), Lorenzo Sironi (Columbia), Dimitrios Kantzas (University of Athens), Apostolos Mastichiadis (University of Athens)

FELLOWS AT THE FRONTJERS 2016

UGUST 31 - SEPTEMBER 2, 2016 EVANSTON, ILLINOIS #FF16CIERA

Motivation

* Cosmic ray (CR) spectrum on Earth

* Evidence of CR acceleration in SNR

Color map: 400 MeV-3 GeV (AGILE) Contours: 324 MHz (VLA)

Credit: Giuliani, 2011, ApJL, 742

Color map: CO (NANTEN2) Contours: 400 MeV-3 GeV

Spatial correlation of dense molecular clouds & γ-rays

Probing CR acceleration

* **Process?** Inelastic pp collisions

* **Probes?** Emission from secondaries (γ-rays, electrons/positrons, neutrinos)

$$\mathbf{p} \rightarrow \mathbf{p} \rightarrow \mathbf{p} \rightarrow \mathbf{p} \rightarrow \mathbf{r}^{\dagger} \rightarrow \mathbf{r}^{\dagger} \rightarrow \mathbf{r}^{\dagger} \rightarrow \mathbf{r}^{\dagger}$$

$$\mathbf{r}^{0} \rightarrow \mathbf{r} \rightarrow \mathbf{r} \rightarrow \mathbf{r}^{\dagger} \rightarrow \mathbf{r}^{\dagger} \rightarrow \mathbf{r}^{\dagger}$$

$$\mathbf{r}^{\dagger} \rightarrow \mathbf{r}^{\dagger} \rightarrow$$

* Requirements? Relativistic p and dense environments

Pp collisions

Cross section $<< \sigma_{T}$

Secondary particle energy spectra

Credit: Kafexhiu et al. 2014, PhysRevD, 90

Credit: M.Sc. Thesis by D. Kantzas

Optical depth for pp collisions:

Radio SNe

- Interaction powered (e.g. Type IIn, superluminous SNe)
- Dense CSM (n>1e7 cc)
- Radio emission few 10-100 days after explosion
- Radio emission absorbed at early times

Credit: Perez-Torres et al. 2001, A&A, 374

Credit: Chandra et al. 2012, ApJ, 755

(Chevalier 1982, Chevalier 1998, Weiler 2001 +++)

Credit: Weiler et al. 2002, ARA&A, 40

(Chevalier 1982, Chevalier 1998, Weiler 2001 +++)

Credit: Weiler et al. 2002, ARA&A, 40

Optical emission T ~ 6000 K

(Chevalier 1982, Chevalier 1998, Weiler 2001 +++)

Credit: Weiler et al. 2002, ARA&A, 40

(Chevalier 1982, Chevalier 1998, Weiler 2001 +++)

radio SNe ?

(*Murase et al.* 2014, *MNRAS*, 440)

Pp collisions in

Credit: Weiler et al. 2002, ARA&A, 40

Model ingredients (Petropoulou, Kamble, Sironi 2016, MNRAS)

Novelty: Addition of secondary electrons from pp collisions \rightarrow particle evolution \rightarrow spectra & light curves

- Shock dynamics: free expansion (v_{sh}: shock velocity)
- CSM: power-law density profile (A_w: mass loading parameter, w: power-law index, r_{bo}: shock breakout radius)
- Particle injection: power-law distributions with exp. cutoff (s: power-law index, K_{ep} : electron-to-proton ratio, ε_p : proton acceleration efficiency, E_{min} : minimum particle energy, E_{max} : maximum particle energy)
- Physical processes: adiabatic expansion, pp collisions, synchrotron emission and absorption (SSA), free-free absorption (FFA)
- Particle evolution: injection + cooling processes

Evolution of particle distributions

Parameters: $v_{sh} = 9000 \text{ km/s}, A_w = 10^{16} \text{ gr/s} (0.05 \text{ M}_{sun} / \text{yr}), \text{Mej} = 10M_{sun}, \epsilon B = 0.01, \epsilon p = 0.1, K_{ep} = 0.001$

Radio spectra & light curves

Parameters: $v_{sh} = 9000 \text{ km/s}$, $A_w = 10^{16} \text{ gr/s} (0.05 M_{sun} / \text{yr})$, $Mej = 10M_{sun}$, $\varepsilon B = 0.01$, $\varepsilon p = 0.1$, $K_{ep} = 0.001$, $T_e = 10^5 \text{ K}$

Radio light curves

Role of CSM mass-loading parameter

Non-thermal broad-band spectrum

(M.Sc. Thesis of D. Kantzas, 2016, UoA)

Include pp collisions (Kelner et al. 2006) to numerical code for particle evolution (Mastichiadis & Kirk 1995, A&A; Dimitrakoudis et al. 2012, A&A)

Non-thermal broad-band spectrum

(Kantzas, Petropoulou, Mastichiadis 2016, arXiv:1607.05847; Petropoulou et al. 2016, in prep.)

$$k_0 = 10^{-4} cm$$

 $p = 2$
 $L_p = 10^{41} erg/s$
 $L_e = 0.01 L_p$
 $[t] = days$

D

Conclusions

* Synchrotron emission from secondaries decay faster with time than that from shock-accelerated electrons

* A transition from secondary to primary dominated synchrotron radiation is indicated by a flattening of the light curve

* A higher electron-to-proton ratio decreases the contribution of secondaries to the radio emission

* γ-ray emission from nearby (<10 Mpc) and dense (>1e12 cc) Type IIn SN is detectable with Fermi

Future aspects

* Extension of the numerical code by adding:
- relativistic bremsstrahlung
- γγ absorption on optical SN photons
- pγ interactions on thermal X-ray bremsstrahlung emission

* Radio & γ-rays important for constraining microphysical parameters

* Application of the model to radio & γ -ray observations (upper limits)

THANK YOU

(Chevalier 1982, Chevalier 1998, Weiler 2001 +++)

Radio light curves

Role of magnetic field strength

Radio light curves

Role of electron-to-proton ratio

Peak luminosity vs. Peak time

Peak time (days)

Peak luminosity at 5 GHz