Review on extragalactic neutrinos in the multi-messenger context

Maria Petropoulou, Department of Physics (NKUA)

18 June 2024 - CRIS-MAC 2024, Trapani, Sicily, Italy

In collaboration with (alphabetically): L. Comisso (Columbia), D. Fiorillo (NBI), K. Murase (Penn State), F. Oikonomou (NTNU), P. Padovani (ESO), E. Peretti (APC Paris), X. Rodrigues (ESO), L. Sironi (Columbia)

The astrophysical neutrino flux

Hunting for extragalactic neutrino point sources

Steady but variable

(e.g. Eichler 1979, Mannheim, Stanev, and Biermann 1992, Halzen & Zas 1997, Atoyan & Dermer 2001, 2003, Murase et al. 2014, Petropoulou et al. 2015, +++; see also review Murase & Stecker 2023)

Non-jetted AGN, starbursts

Steady*

* accretion disk emission is variable

(e.g. Loeb and Waxman 2006, Stecker 2007, Tamborra et al. 2014, Bechtol et al. 2017, Peretti et al. 2020; see also review Murase & Stecker 2023)

Gamma-Ray Bursts, TDEs, ...

Transients

(e.g. Waxman & Bahcall 1999, Murase 2008, Petropoulou et al. 2014, Bustamante et al. 2017, Stein et al. 2021, +++)

Highlights

- Are neutrino spectra of non-jetted and jetted AGN *different*, and why?
- Are *all* jetted AGN neutrino emitters, or only those sharing common properties with TXS 0506+056?
- Can we explain the diffuse flux with a *combination* of jetted and non-jetted AGN?

IceCube Collaboration 2023, Science

Physical models for neutrino point sources

Numerical models for neutrino point sources

- <u>Python code (implicit scheme)</u>
- <u>Processes</u>: adiabatic expansion, p-p collisions, p-γ interactions, Bethe-Heitler pair production +++
- <u>Features</u>: time-dependent, non-linear cascades from secondaries, SED fitting with MCMC

Stathopoulos S. I. et al. 2024, A&A

Code available:

https://github.com/mariapetro/LeHaMoC.git

(See also: AM³, Klinger et al., 2023, arXiv:2312.13371)

TXS 0506+056 / IC 170922A

- Blazar at z = 0.3365 from weak emission lines (Paiano et al. 2018, ApJL)
- Masquerading BL Lac with Esyn,pk < 4 eV [IBL] → hidden broad line region (Padovani et al. 2019, MNRAS)
- IC 170922A (~ 290 TeV) detected during a 6 month-long flare (IceCube collaboration 2018, Science)

- Leptonic γ-rays → inverse Compton scat. radiation of accelerated electrons (Ansoldi et al. 2018, Keivani et al. 2018, Cerruti et al. 2019, Gao et al. 2019)
- "Hidden" hadronic emission → Hybrid model (e.g. Keivani et al. 2018, Gao et al. 2019)
- Max. neutrino flux is set by the X-ray flux (Murase, Oikonomou, Petropoulou 2018)
- Max. proton energies below EeV → not an UHECR accelerator

The SIN* project

Main goals are:

- measure redshifts of BL Lacs,
- search for masquerading blazars,
- build SEDs, and
- apply physical models to test these correlations.

Sample: 36 blazars (IBL/HBL) with redshifts, within error ellipse of 70 high-energy neutrino tracks, off the Galactic plane (Giommi et al. 2020) + 4 more including M87 and 3HSP J095507.9+35510
→ 9 masguerading BL Lacs, 8 true BL Lacs, rest unidentified

Padovani et al. 2021

Lepto-hadronic modeling of SIN sources

SED fitting of 34 IHBLs accounting for host galaxy + disk + BLR contributions, and IceCube point-source neutrino fluxes derived using a <u>physical spectral template</u> from public IC data of 10 years

Main results

- 12/34 IHBLs with non-zero minimum neutrino flux at the 68% c.l.
 (5 masquerading, 3 true, 4 undetermined)
- Neutrino production site is close to the BLR
- Mix of hadronic + leptonic GeV γ -ray emission <Yv γ > ~0.8 (see also Petropoulou+2015)
- Hadronic emission expected in hard X-rays + MeV γ-rays in all sources.
- Peak neutrino energy > 10 PeV (see also Padovani+2015)

NGC 1068: a multi-messenger view

Murase 2022

Padovani et al. 2014, to appear in Nat. Ast. (arXiv:2405.20146)

NGC 1068 models: pick your flavor

Different hypotheses

• CR acceleration:

Ο

- Diffuse shock acceleration (Inoue et al. 2019, 2020, Eichmann+2022)
- Magnetic reconnection (Kheirandish+2021, Fiorillo+2024a)

Common results

- Neutrino production site:
 - inner disk and/or corona
 - opaque to TeV γ -rays \rightarrow constraints on coronal size
- GeV γ-rays: starburst
- MeV γ-rays: hadronic cascade

Different results

- Properties of corona:
 - Pair dominated plasma
 - Electron-proton plasma
 - Plasma magnetization
 - Size

Proposal No. 1: reconnection layers

 $\cdots \nu_o + \bar{\nu}_o$

 $- \nu_{u} + \bar{\nu}_{u}$

 10^{15}

 $(E_{v}^{2}Q_{v})^{pk}$

Shridhar, Sironi, Beloborodov, 2021

For particle acceleration see : Werner & Uzdensky 2017, Chernoglazov et al. 2023, Zhang et al. 2021, 2023

- Compact corona: L ~ (3-10)*R_g
- Pair dominated corona: $n_{e}/n_{p}^{2} \sim 10^{6-7}$
- Highly magnetized corona: $\sigma_e^{-10^2} \approx 10^2$ and $\sigma_p^{-10^5}$
- Non-thermal-to-thermal proton fraction: ~1

Proposal No. 1: reconnection layers

Shridhar, Sironi, Beloborodov, 2021

• Non-thermal-to-thermal proton fraction: ~1

- Is neutrino production in jets *steady* or *transient* ?
- Are there *different* neutrino production *sites* in a jet ? If so, how does neutrino production depend on *jet conditions* ?
- What is the contribution of γ-ray flaring blazars to diffuse neutrino flux ? (Yoshida et al. 2023)

Non-jetted AGN

- How can we *distinguish* between competing physical *models* of NGC 1068?
- What is the contribution of *hadronic* interactions to the *pair content* of the corona?
- Are *all* AGN coronae neutrino emitters?

Conclusions & Outlook

- The most compelling astrophysical neutrino point sources today are: a jetted AGN (TXS 0506+056) and a Seyfert galaxy (NGC 1068).
- There are hints that masquerading BL Lacs, like TXS 0506+056, are more efficient neutrino emitters than true, lower power BL Lacs. Neutrino production site is located close to the BLR.
- The most promising neutrino production site in NGC 1068 is the corona, but it's properties are very different among models.

- Hadronic emissions are expected in the MeV γ-ray range. All-sky sensitive MeV satellite ???
- Detailed neutrino spectra may unveil the physics of proton acceleration. *IceCube-Gen2*?
- More physical input to the neutrino source models is needed !

Thank you!

Backup slides

The Galactic neutrino emission

= diffuse from p-p CR interactions and/or unresolved point sources (e.g. SNRs, PWNe)

Icecube Collaboration, 2023, Science

Ambrosone et al., 2024, Phys. Rev. D

20

A summary of interesting neutrino alerts & blazars

TXS 0506+056 / IC - 170922A (IceCube collaboration 2018, Science)

- Masquerading BL Lac with Esyn,pk < 4 eV [ISP] (Padovani et al. 2019, MNRAS)
- Neutrino (~ 290 TeV) detected during a MW 6 month-long flare

• 3HSP J095507.9+35510 / IC-200107 (Giommi et al. 2020, MNRAS; Paliya et al. 2020, ApJ)

- BL Lac with Esyn,pk > 1 keV ["extreme" HSP]
- \circ Neutrino (??) detected 1 day before a hard X-ray flare in 2020 no $\gamma\text{-ray}$ flare

- Masquerading BL Lac with Esyn,pk < 4 eV [ISP]
- \circ IC neutrino (~ 172 TeV)detected at peak of a 3-week $\gamma\text{-ray}$ flare
- Lower energy neutrinos detected by Baikal, KM3Net (low significance)

PKS 1502+106 / IC-190730A (Franckowiak et al. 2020, ApJ)

- FSRQ with Esyn,pk < 0.4 eV [LSP]
- Neutrino (~ 300 TeV) detected during period of low MW activity (no flare)

Gamma-ray flaring blazars in Fermi 4LAC

Gamma-ray flaring blazars in Fermi 4LAC

23

Scenario 2

Gamma-ray flaring blazars in Fermi 4LAC

The origin of all-sky neutrinos observed in IceCube is one of the most important puzzles in high-energy neutrino astrophysics. We found that scenarios (1) and (2) suggest that no more than ~50% and ~14% of the all-sky neutrino flux can originate from gamma-ray flares of FSRQs and BL Lac objects, respectively. A more realistic neutrino spectrum than the usual E_{ν}^{-2} power law yields upper limits of the all-sky diffuse neutrino flux that are a factor of 2 more constraining. The upper limits are consistent with those obtained the previous literature despite different methods and assumptions.

3σ neutrino discovery potential* at location of TXS 0506+056

* source flux in order to have a 50% chance to be detected with 3σ significance

Differential neutrino point-source fluxes

Proton and neutrino spectra from NGC 1068

Fiorillo et al., 2024a

Fiorillo et al., 2024b

Dependence of proton (top) and neutrino (bottom) distributions on two main model parameters:

 $\begin{array}{l} - \mbox{ plasma magnetization } \sigma_{\mbox{tur}} \\ - \mbox{ coherence length of } \\ \mbox{turbulence/corona size } \eta \end{array}$

$$\frac{\partial f_p}{\partial t} = \frac{1}{p^2} \frac{\partial}{\partial p} \left[\frac{p^4}{t_{\rm acc}} \frac{\partial f_p}{\partial p} \right] + \frac{1}{p^2} \frac{\partial}{\partial p} \left[\frac{p^3}{t_{\rm cool}(p)} f_p \right] - \frac{f_p}{t_{\rm esc}} + q_p(p)$$

$$t_{\rm acc} \equiv \frac{p^2}{D_p} \simeq \frac{10}{\sigma_{\rm tur}} \frac{\ell}{c} \,. \qquad t_{\rm esc} \simeq \frac{R}{c} \max\left[1, \frac{R}{\ell} \left(\frac{eB\ell}{E_p}\right)^{1/3}\right],$$

 $t_{\text{cool}}^{-1} = t_{p\gamma}^{-1} + t_{\text{BH}}^{-1} + t_{pp}^{-1} + t_{\text{synch}}^{-1}.$

29

Proton Timescale vs. Energy plot

$$t_{\rm acc} \equiv \frac{p^2}{D_p} \simeq \frac{10}{\sigma_{\rm tur}} \frac{\ell}{c} \,.$$

$$t_{\rm esc} \simeq \frac{R}{c} \max\left[1, \frac{R}{\ell} \left(\frac{eB\ell}{E_p}\right)^{1/3}\right],$$

$$t_{\rm cool}^{-1} = t_{p\gamma}^{-1} + t_{\rm BH}^{-1} + t_{pp}^{-1} + t_{\rm synch}^{-1}.$$

Fiorillo et al., 2024b 30

Coronal/disk models

- Neutrinos produced in inner disk and/or corona, opaque to TeV γ rays → constraints on coronal size
- CR acceleration: stochastic acceleration in turbulence or magnetic reconnection or shock acceleration

Generic acceleration / pp or py

Murase 2022; Ajello, Murase, McDaniel, 2023

(Inoue et al. 2019)

See also Inoue, Cerruti et al. (arXiv:2207.02097)

- "Two-zone" models
- Neutrinos produced in inner disk and/or corona (<< pc)
- radio/IR/GeV γ-rays from starburst region (kpc)
- CR acceleration: gyro-resonant scattering in turbulence (corona) + DSA (starburst)

