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 Introduction

Astrophysical Plasmas = 

Radiation + Particles+E/M fields

Dynamics:Dynamics:

Acceleration:Acceleration:

Radiation:Radiation:

Accretion 
flows

Turbulence

Jet 
launching

Bulk flow

Particles

thermal

Non-thermal

E/M fields:E/M fields:

B -field 
generation

(Non)-Ideal 
MHD



  

 Introduction

Acceleration:Acceleration:

Radiation:Radiation:

Particles

Non-thermal

Astrophysical Plasmas = 

Radiation + Particles+E/M fields

The focus of my PhD research 



  

 Motivation
● Evidence for  particle acceleration in relativistic jets

ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. 
(Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)

Cen A



  

 Motivation
● Evidence for relativistic hadrons in cosmic accelerators 

UHECR spectrum

Neutrino skymap



  

 Motivation

A variety of GRB light curves

PKS 2155-304 

● Flux variability at short timescales ! 

~sec~sec

~min~min

TeV light curve of blazar PKS 2155-304



  

PROTON INJECTION

PROTON LOSSESPROTON ESCAPE

OBSERVED
SPECTRUM

    Leptonic processes

NEUTRINOS 
&

NEUTRONS

PROTON 
DISTRIBUTION

PHOTONS
ELECTRONS 

&
POSITRONS

Leptohadronic plasmas are ubiquitous amongLeptohadronic plasmas are ubiquitous among
  non-thermal astrophysical sources! non-thermal astrophysical sources! 

Photo-hadronic 
processes

Photo-hadronic 
processes



  

AGN GRBs

γ-rays from photo-hadronic processes

Credit: S. Dimitrakoudis



  

 Goals
● Study the interplay of  the radiative processes

●

A system of coupled
 integro-differential 

equations 

Courtesy of 
S. Dimitrakoudis

Does it simplify to a more 
familiar problem ? (e.g. 
Lotka-Volterra system)



  

 Goals
● Understand the temporal properties of the emission

(1991)

Monte Carlo

Periodicity

Limit Cycles in 
Prey-Predator systems

Which radiative process 
is responsible for the limit 

cycle behaviour?



  

 Goals
● Understand the spectral properties of the emission
– – Is the abrupt spectral and flux change a numerical artifact?Is the abrupt spectral and flux change a numerical artifact?

– – If not, what are the underlying physics of this transition?If not, what are the underlying physics of this transition?

linear
quadratic

Increase 
by ~ 1000!

““High luminosity state”High luminosity state”
akaaka

super-critical regimesuper-critical regime

““Low luminosity state”Low luminosity state”
akaaka

sub-critical regimesub-critical regime

The proton luminosity 
increases

 by a factor of 2 over its 
previous value!

Dimitrakoudis et al. 2012, A&A, 546

L
u

m
in

o
s

it
y

E / m
e
 c2



  

Feedback loops & luminosity states

linear
quadratic

Example of MW photon spectrumExample of MW photon spectrum
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Increase 
by ~ 1000!

Dimitrakoudis et al. 2012, A&A



  

Critical γ-ray luminosity

π0→ γγ

 p+B →  γ   

p+γ → π+  → μ+ 

 
- > e+ + Β → γ

 p+ γ→e- e+ +B →  γ   

Onset of supercriticality

Take away messageTake away message

If γ-ray luminosity exceeds the 
red curve then

1. low-energy photons 
exponentiate in the source

2. protons lose energy due to 
these photons

3. more photons are produced 

We derived analytically the 

– Petropoulou & Mastichiadis, 2011, 
   A&A 532

– Petropoulou & Mastichiadis, 2012, 
   MNRAS, 421

– Petropoulou, Arfani & Mastichiadis, 
   2013, A&A, 557
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● Keep only “key” processes

● Neglect equation for pairs. 

● We replace the pairs by 
their radiated photon 
spectrum.

Analytical study of supercriticality

 Petropoulou & Mastichiadis, 2012,  MNRAS,  421

Protons:

γ-ray photons: from photopion processes

Low-energy photons: from synchrotron radiation of e- e+ 

– Perform an 
eigenvalue/eigenvector analysis

– Find the real & complex 
eigenvalues

– The eigenvalues depend on the 
 proton luminosity 

Proton Luminosity

E
i
g
e
n
v
a
l
u
e
s

Im

Re



  

A variety of temporal behaviours!

● limit cycles 

● damped oscillations

● steady state 

Temporal properties

 Petropoulou & Mastichiadis, 2012,  MNRAS,  421

Proton density vs. time
Proton energy 

density

Photon energy
density

Analytical Numerical

●  Numerical solution of the full 
problem  leads to the same 
qualitative results !

●  The limit cycle behaviour found by 
Stern & Svensson (1991) is now 
understood.



  

A variety of temporal behaviours!

● limit cycles 

● damped oscillations

● steady state 

Temporal properties

 Petropoulou & Mastichiadis, 2012,  MNRAS,  421

Proton energy 
density

Photon energy
density

Numerical

●  Numerical solution of the full 
problem  leads to the same 
qualitative results !

●  The limit cycle behaviour found by 
Stern & Svensson (1991) is now 
understood.

Photons

Protons



  

SUPER-CRITICAL

B=10 G R=3e16  cm

SUB-CRITICAL

Time-dependent 
transition of 
photon spectra from the 
subcritical to the 
supercritical 
regime 

A “zoo” of transitions

Proton Energy
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PPS Loop

SUB-CRITICAL REGIME:
        low efficiency

B=10 G R=3e16  cm
SUPER-CRITICAL 
        REGIME:
  high efficiency

Kirk & AM 1992

Feedback loops are a way of extracting efficiently energy stored in protons 

A “zoo” of transitions: our understanding
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SUPER-CRITICAL 
        REGIME:
  high efficiency

Feedback loops are a way of extracting efficiently energy stored in protons 

A “zoo” of transitions: our understanding

Proton Energy

– Stawarz & Kirk, 
  2007, ApJL, 661

– Petropoulou & Mastichiadis, 
  2011,   A&A,  532

– Petropoulou & Mastichiadis,
   2012,  MNRAS, 421 1015 eV1013 eV

PPS Loop

SUB-CRITICAL REGIME:
        low efficiency

B=10 G R=3e16  cm

Kirk & AM 1992
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of γ-rays from
photopion 
interactions



SUPER-CRITICAL 
        REGIME:
  high efficiency

Feedback loops are a way of extracting efficiently energy stored in protons 

A “zoo” of transitions: our understanding

Proton Energy

– Stawarz & Kirk, 
  2007, ApJL, 661

– Petropoulou & Mastichiadis, 
  2011,   A&A,  532

– Petropoulou & Mastichiadis,
   2012,  MNRAS, 421 1015 eV1013 eV

PPS Loop Quenching 
of  γ-rays 
from 
photopair 
interactions

SUB-CRITICAL REGIME:
        low efficiency

B=10 G R=3e16  cm

Kirk & AM 1992
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B=10 G R=3e16  cm

            

Feedback loops are a way of extracting efficiently energy stored in protons 

Astrophysical applications
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Blazar 
spectra

Blazar 
neutrinos

GRB
 emission

Variability

ParticleParticle
AccelerationAcceleration Blazar 

Flares

Hysteresis 
Loops



A variety of GRB LC

GRB emission
Typical GRB spectrum

Dissipation region
in the GRB jet

Central Engine



Petropoulou et al. 2014, MNRAS, 444 

GRB emission

Time (s)

1 MeV10 keV
Time (s)

Model-derived GRB spectrum

Model-derived LC

Petropoulou, Vasilopoulos, Mastichiadis, in prep.
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B+p                               γ ray GRB-like emission ! Super - criticality



  

PKS 2155-304 

● Radio-loud AGN 
(< 5/% of all AGN)

● Super-luminal motion 

● GeV emitters

● TeV emitters 

Blazar emission

http://tools.asdc.asi.it/SED

http://tevcat.uchicago.edu/

X-rays
TeV 

γ-rays

Short variability (min-hr) @ TeV
“Double-hump” SED

http://tools.asdc.asi.it/SED


  

Blazar emission & neutrinos 

PhotonsPhotons νν

From one blazar 

            to the whole
            population

Petropoulou et al. 
2015, MNRAS, 448

 Padovani 
et al. 2015, 
MNRAS, 
452

Petropoulou, 
Coenders,
Dimitrakoudis,
2016, APh

γ-ray – ν 
correlations→ 
 # of muon ν 



  

Towards an ab initio model for blazars 
in collaboration with D. Giannios (Purdue) & L. Sironi (Columbia)

1

Giannios 2006, Giannios & Spruit 
2007, Mc Kinney & Uzdensky 
2012, Parfrey, Giannios & 
Beloborodov 2015

Alternating magnetic field lines → 
Reconnection 

● Plasmoids contain B + energetic particles in 
equipartition

● Proton & Electron power-law distributions

● Plasmoids form, accelerate and grow through 
mergers  in the layer 

● Large plasmoids exit the layer with non-relativistic 
speeds

● Small plasmoids exit the layer with relativistic 
speeds

Sironi, Petropoulou & Giannios, 2015, MNRAS



  

Light curves & spectra 

Large & SlowSmall & Fast

Model Spectrum Model Spectrum

Petropoulou, Giannios 
& Sironi  2016, 
submitted to MNRAS



  

Orientation of the layer 
Plasmoids move relative to the bulk flow of the jet → Doppler boosting

Θ' (deg)

Θ_obs (deg) Θ_obs (deg)

Θ' (deg)

Peak flare luminositySmall & Fast Large & Slow

“Off-axis”
observer

“Off-axis”
observer



  

Summary

Thank you

●  Lepto-hadronic plasmas are very common among non-thermal 
emitting sources.

● The interplay between protons, leptons and photons can be 
described by a set of non-linear coupled equations.

● It is the first time that a lepto-hadronic system is treated as a 
dynamical system.

● Understanding the radiative processes in lepto-hadronic plasmas is 
crucial for modeling of the emission observed from different sources 
(blazars, GRBs, γ-ray binaries…)

● Many astrophysical applications including photon & neutrino 
emission, energy dissipation in jets and particle acceleration



EXTRA MATERIAL



  

Parameterizing our ignorance
● ζ

e  
( ζ

p 
 ) : fraction of electrons (protons) in the non-thermal tail of the distribution

●  ε
e  

( ε
p 
 ) : fraction of jet flow energy in relativistic electrons (protons)

●  ε
Β 
: fraction of jet flow energy in magnetic fields

 Petropoulou, M. , 2014, A&A 

PKS 2155-304

Leptonic

Low ε
B   

and  ε
p 
=ζ

p
 =0

Hadronic

High ε
B   

and  ε
p , 

ζ
p
 ≠ 0

Which model materializes in blazars?Which model materializes in blazars?



  

PIC simulations

Credit: L. Sironi

No approximations – full plasma physics of ions and electrons

Tiny length scales need to be resolved → Large & expensive 
simulations with limited time coverage



  

Implications for blazar emission

 Ghisellini et al. 2014

Relativistic reconnection is efficient

Efficiency

Blazar phenomenology:

● Blazars are efficient emitters.

● 10% jet power = radiation power

Relativistic reconnection:

● it transfers ~ 50% of the flow energy 
(electron-positron plasmas) or ~ 25% 
(electron-proton)  to the emitting particles

Sironi, Petropoulou & Giannios, 2015, MNRAS



  

Implications for blazar emission

Sironi, Petropoulou & Giannios, 2015, MNRAS

Equipartition of particles and fields

Blazar phenomenology:

●  Rough equipartition between  radiating 
particles and magnetic fields

Relativistic reconnection:

● In the magnetic islands it naturally results 
in rough energy equipartition between 
particles and magnetic field

● For strong guide fields then UB >> Ue in 
the plasmoids

electron energy

magnetic energy

Celotti & 
Ghisellini 2008



  

Small & Fast vs. Large and Slow

Sironi, Giannios & Petropoulou, 2016, 
submitted to MNRAS

Petropoulou, Giannios & Sironi  2016,
 submitted to MNRAS

Credit: 
L.Sironi



  

Plasmoid-dominated reconnection
Zenitani & Hoshino 2001, Loureiro+2007, Bhattarjee+2009, Uzdensky+2010, Loureiro+2012, Guo+2014; 
2015, Sironi & Spitkovsky 2014, Werner+2016

Plasmoids before merger

~ 1e6 cm

Inflow

Sironi, Petropoulou & Giannios, 2015, MNRAS



  

Towards an ab initio model for blazars

Questions to be addressed:

● Are the plasmoids the emitting regions of blazars?

● What is the  spectrum & LC from a plasmoid? 

● What is the emission from all plasmoids in the layer?

● What are the flare statistics of the model?

● Are UHECRs accelerated in a layer?

● What is the expected neutrino signal?



  

The “blobs” of blazar jets

Credit: S. 
Dimitrakoudis

Phase I (benchmarked with PIC):  plasmoids 
grow and accelerate in the layer, particle & 
magnetic energy density stay constant, 
isotropic particle distribution

Phase II: plasmoids leave the layer and 
expand in the bulk flow of the jet, particle & 
magnetic energy densities decay

Petropoulou, Giannios & Sironi  2016, submitted to MNRAS



  

When magnetic reconnection is relativistic?

σ=
B0

2

4 π n0 m p c
2
≫1 v out∼v A∼c √ σ

1+σ
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