Exploring the properties of leptohadronic plasmas: from theory to observations

Maria Petropoulou

Department of Physics & Astronomy, Purdue University, West Lafayette, USA

12th Hellenic Astronomical Conference Thessaloniki, 30.06.2015

>Motivation & goals of my PhD research

>What is "hadronic supercriticality"?

>Motivation & goals of my PhD research

>What is "hadronic supercriticality"?

>Hadronic supercriticality as a trigger for Gamma-Ray Burst (GRB) prompt emission

>Leptohadronic models for Active Galactic Nuclei (AGN)

>Predictions of neutrino emission from AGN

Evidence of particle acceleration in AGN, GRBs etc

Detections of ultra-high energy cosmic-rays (UHECR) up to ${\sim}10^{20}\,eV$

neutrinos

Evidence of particle acceleration in AGN, GRBs etc

cosmic-rays (UHECR) up to $\sim 10^{20} \, eV$ 10'9 log(FLUX * E³ in eV²m⁻²s⁻¹sr⁻¹) BL Lac PKS 2005-489 Yakutsk 2004 HiRes Stereo 2008 10⁻¹⁰ z = 0.069AGASA 2003 energy=0.9 HiRes1 2008 = 0.071Flys Eye Stereo 1994 0 HiRes2 2008 10⁻¹¹ HiRes-MIA 2000 Auger 2008 25.5 Haverah Park 2003 0.34p, 0.66Fe 10-12 Mrk 421 Mrk 501 E²dN/dE [TeV/cm²/s] = 0.031t = 0.03425 W Comae PKS 2155-304 B3 2247+381 RGB J0710+591 n 1nz z = 0.116z = 0.1187z = 0.12524.5 24 H1426+428 1ES 0806-524 1ES 0229+20 1RXS J1010-3119 10-10 z = 0.129z = 0.14= 0.138= 0.14263923.5 10-11 10⁻¹² 23 17 17.5 19.5 20.5 2 18 18.5 10⁻¹³ log(ENERGY in eV) 10 0.1 0.1 10 0.1 1 100.110 Background Atmospheric Muon Flux 10² Detections Energy [TeV] Energy [TeV] Energy [TeV] Energy [TeV] Bkg. Atmospheric Neutrinos (π/K) Background Uncertainties /// Atmospheric Neutrinos (90% CL Charm Limit) Bkg.+Signal Best-Fit Astrophysical (best-fit slope $E^{-2.3}$) Events per 988 ḋays Bkg.+Signal Best-Fit Astrophysical (fixed slope E^{-2}) - -10¹ ••• Data 10⁰ 10^{-1} FR Class II source: quasar 3C175 10^{2} 10^{3} 10^{4} Deposited EM-Equivalent Energy in Detector (TeV)

Detections of ultra-high energy

Evidence of particle acceleration in AGN, GRBs etc

Detections of ultra-high energy cosmic-rays (UHECR) up to $\sim 10^{20} \, eV$

Motivation

Leptohadronic plasma in a magnetized source **B**+relativistic electrons/protons/neutrons +photons+ neutrinos A system of coupled integro-differential equations

Motivation

Leptohadronic plasma in a magnetized source What are the temporal properties of a leptohadronic system? After all... prey-predator systems are everywhere.

B+relativistic electrons/protons/neutrons +photons+ neutrinos

> A system of coupled integro-differential equations

Limit Cycles in Electromagnetic Cascades in Compact Objects (1991)

Boris Stern¹, Roland Svensson²

Abstract: Electromagnetic cascades possibly occurring near accreting compact objects have been discovered to show limit cycle behaviour. The power from accelerated protons gets converted by the cascade into soft radiation (X-rays and below) if the photon compactness is sufficiently large. Then the proton-photon system may develop limit cycles much like a prey-predator system with each component interchangebly dominating. This causes periodic large amplitude short time variability of the nonthermal luminosity from a compact object even if the acceleration or injection process is completely steady. Results both from detailed Monte Carlo simulations and from a simple phenomenological model are presented.

>What causes this limit cycle behaviour?

>For what parameters does the system exhibit this temporal behaviour?

Goals

Examples of multi-wavelength photon spectra within the leptohadronic model (Numerical calculations are performed with the code described in Dimitrakoudis et al. 2012, A&A)

>Is the abrupt spectral and flux change a numerical artifact?

> If not, what are the underlying physics of this transition?

Interlude: Spontaneous γ-ray quenching

Stawarz & Kirk 2007, ApJ, 661L; Petropoulou & Mastichiadis 2011, A&A, 532; Petropoulou et al. 2013, A&A, 557

Hadronic supercriticality (in a nutshell)

Petropoulou & Mastichiadis, 2012, MNRAS, 421

Optically thick

Optically thin

Optically thick

Optically thick conditions at large radii $(>10^{14} \text{ cm})$?

Optically thick

Optically thick conditions at large radii $(>10^{14} \text{ cm})$?

Sketch of the coupling between protons, electrons and photons

Petropoulou, Dimitrakoudis, Mastichiadis, Giannios. 2014, MNRAS, 444

 $\log \tau_{\rm T}$

White noise

Petropoulou, Vasilopoulos, Mastichiadis (in prep)

Petropoulou, Vasilopoulos, Mastichiadis (in prep)

Blazar emission

•632 BL Lacs
•467 FSRQs
•460 blazars unknown type
•32 non-blazar AGN

Ackermann et al. 2015, arXiv:1501.06054

Active Galactic Nuclei

Low, intermediate & high synchrotron peaked

Leptohadronic models for blazar emission

The case of Mrk 421

BL Lacs as counterparts of IceCube neutrinos

(The IceCube collaboration, 2014, Phys.Rev.Lett)

Top left: muon v spectrum (28 events)

Top right: "hybrid SED" from Padovani & Resconi, 2014, MNRAS, 443

Bottom left: Sky map of 5 neutrino events and BL Lac counterparts from Petropoulou et al. 2015, MNRAS, 448

Neutrino emission from individual BL Lacs

Mrk 421: possible positive detection of neutrinos might be achievable with some confidence ($\sim 3\sigma$ level) using preliminary discovery potentials based on 6 years IceCube life time

PG 1553+113: model prediction is much below the 3σ error bars. Gamma-ray emission mostly from SSC

Petropoulou et al. 2015, MNRAS, 448

Neutrino emission from all BL Lacs

Padovani et al. 2015, submitted in MNRAS

Summary

Leptohadronic plasmas are dynamical systems with interesting properties:

→ for constant injection they reach steady state or show limit cycle behavior of a prey-predator type; gradual accumulation of proton energy → explosive release – for variable injection in and out from the supercritical regime → series of randomly distributed outbursts – more GRB-like behaviour than AGNT – hadronic supercriticality → high radiative efficiency and GRB-like spectraT

Two variants of leptohadronic models for AGN MW emission:

- > LH π : γ -rays from photopion + EM cascade (more energetically demanding)
- > LHs : γ -rays from proton synchrotron (requires higher proton energies
 - both fit equally well the MW spectra $% \left({{{\rm{W}}} \right)$
 - the LH π predicts a Bethe-Heitler hump at MeV energies
 - the LH π model predicts neutrinos at ~2-20 PeV

BL Lac - IceCube neutrino events correlations:

- successful MW fits using the $LH\pi$ model of 6 sources
- Mrk 421 potential point source of neutrinos

– the NBG from BL Lacs explains the 1-2 PeV flux but requires another population for the sub-PeV neutrino flux

Back up slides

Time-dependent v emission from Mrk 421

18.

What are the sources of NBG?

Redshift distribution of sources ${\sim}95\%$ of NBG

Padovani et al. 2015, submitted in MNRAS

The "Bethe-Heitler" hump: py vs. pe timescales

$$f_{p\pi}(\xi_{p\pi}) \simeq 22 \frac{L_{\text{syn,45}}\lambda(\beta,\epsilon_{\text{s}})}{r_{\text{b,15}}\delta^{3}\nu_{\text{s,16}}(1+z)} \begin{cases} \xi_{p\pi}^{\beta}, & \xi_{p\pi} < \frac{\epsilon_{\text{s}}}{\epsilon_{\text{min}}} \\ \left(\frac{\epsilon_{\text{s}}}{\epsilon_{\text{min}}}\right)^{\beta}, & \xi_{p\pi} > \frac{\epsilon_{\text{s}}}{\epsilon_{\text{min}}} \\ f_{\text{pe}}(\xi_{\text{BH}}) \simeq 0.06 \frac{L_{\text{syn,45}}\beta(\beta+2)\lambda(\beta,\epsilon_{\text{s}})}{r_{\text{b,15}}\delta^{3}\nu_{\text{s,16}}(1+z)} \xi_{\text{BH}}^{\beta}I(\gamma_{\text{p}},\beta) \end{cases}$$

The "Bethe-Heitler" hump: generic SEDs

Back-up slides

Redshift distribution of sources ${\sim}95\%$ of NBG

Padovani et al. 2015, submitted in MNRAS