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 Blazars: AGN with jets viewed face-on

Urry & Padovani 1995

Giommi 2015, JHEA (https://tools.asdc.asi.it/SED/)
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Many talks at the Session: 
Relativistic outflows from extragalactic sources

3FGL Acero et al. 2015

~3000 sources ~58% AGN



  

 Origin of γ-rays: leptonic or hadronic ?

Abdo et al. 2011

MP,Vasilopoulos, Giannios 2017
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● Synchrotron radiation
● Inverse Compton scattering
● Pair production

● Synchrotron radiation
● Inverse Compton scattering
● Pair production
● Photo-meson production 
● Photo-pair (Bethe-Heitler) 

production
● Hadro-nuclear collisions

Leptonic models Hadronic models
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Early studies: Mannheim & Biermann 1992; Sikora+1994; 
Dermer & Schlickeiser 1994; Mastichiadis & Kirk 1995; 
Bloom & Marscher 1996; Rieger +1998; Aharonian 2000,  
Atoyan & Dermer 2001; Muecke+2003



  

 Status of the field prior to 2017

Leptonic

Boettcher et al. 2013

Hadronic

● Both models describe equally well the photon spectra.

● Leptonic models:

a) Work for both FSRQs and BL Lacs.
b) Jet power L

j
~ 1044 – 1046 erg/s for BL Lacs, ~1046 – 1048 erg/s for FSRQs

c) Particle-dominated emitting regions in BL Lacs.
d) No neutrinos.

● Proton-synchrotron hadronic models:

a)  Work for both FSRQs and BL Lacs 
b)  High jet power L

j
~ 1047 – 1048 erg/s for FSRQs, but  lower for BL Lacs

c)  High proton energies, e.g. E
pmax

 ~ 10 EeV (for BL Lacs)
d)  Strong magnetic fields, e.g. B ~1-100 G 
e)  ~ EeV neutrinos

● Photo-pion hadronic models:

a)  Work for BL Lacs, but unlikely for FSRQs
b)  High jet power  L

j
~ 1047 – 1048 erg/s 

c) Moderate proton energies e.g. E
pmax

 ~ 10 PeV 
d) Moderate magnetic fields, e.g. B ~ 0.1-1 G
e)  ~ PeV neutrinos

Modeling studies: Ghisellini et al. 2010; Boettcher et al. 2013;  Dimitrakoudis, MP, Mastichiadis 2014; MP 2014; 
MP, Dimitrikoudis et al. 2015; Cerruti et al. 2015; Diltz, Boettcher & Fossati 2015; MP & Dermer 2016;  Gao, 
Winter & Pohl 2017; MP, Nalewajko et al. 2017; Cerruti et al. 2017 +++ 3
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 Neutrinos: the smoking gun of hadrons
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Photo-meson efficiency:

All-flavor ν luminosity:

Typical neutrino energy:
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 The multi-messenger flare of TXS 0506+056

IceCube Colloboration et al. 2018a

IC-170922A: a 290 TeV neutrino

Fermi-LAT MAGIC

IceCube Colloboration et al. 2018a
Keivani, Murase, MP, Fox et al. 2018

Swift-XRT
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 Models for the 2017 multi-messenger flare

Sahakyan 2018

Hadro-nuclear

Photo-hadronic

Gao et al. 2019

Keivani et al. 2018

Ansoldi et al. 2018

Cerruti et al. 2019

● Ansoldi et al. 2018 for MAGIC
● Keivani,Murase, MP, Fox et al. 2018
● Murase, Oikonomou, MP 2018
● Cerruti et al. 2019
● Gao et al. 2019
● ...

● Sahakyan 2018
● Murase, Oikonomou, MP 2018
● Liu et al. 2019
● ...
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 Summary of results for the 2017 flare

Origin of γ-rays  E
p,max 

 # of ν
μ
 in 0.5 yr

Ansoldi et al. 2018 Leptonic – ECS 0.4 EeV ~0.06

Keivani et al. 2018 Leptonic – ECS ~0.04 – 2 EeV ~0.001 – 0.01

Cerruti et al. 2019 Leptonic – SSC ~(0.6-20)x (δ/10) EeV ~0.004 – 0.05

Gao et al. 2019 Leptonic – SSC 4.5 PeV ~0.13

● Past studies of neutrinos from blazars predicted hadronic γ-rays.  Modeling of TXS 
0506+056/IC-170922A requires a leptonic origin of γ-rays.

● Maximum proton energies below ~EeV → TXS 0506+056 is unlikely to be an  
UHECR &  PeV neutrino source.

● Number of muon neutrinos per yr < 1. Still, the predictions are statistically 
consistent with the detection of 1 event in 0.5 yr (e.g. Strotjohann et al. 2019).
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Model fit by Keivani, Murase, 
MP, Fox et al. 2018

 What sets the maximum neutrino flux?
Murase, Oikonomou, MP 2018
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 What sets the maximum neutrino flux?
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I. Optical depth for absorption of 10-100 GeV γ-rays must be low: 
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 What sets the maximum neutrino flux?

II. Synchrotron emission from Bethe-Heitler pairs must not overshoot X-ray data:
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 What sets the maximum neutrino flux?

III. Synchrotron emission from photo-meson pairs produces ~MeV emission:

Log [photomeson efficiency]
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 What sets the maximum neutrino flux?
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Maximum all-flavor neutrino flux:
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 Are there more neutrinos from TXS 0506+056?

IceCube Colloboration 2018b

Fermi-LAT Collaboration 2019 
(see also Padovani et al. 2018)

IceCube Colloboration 2018b

● 13 +/- 5  neutrinos above atmospheric background over ~6 months (~3.5 σ)

● Neutrino luminosity (averaged in ~6 months) 4 times larger than average γ-ray 
luminosity!

● No γ-ray flaring activity in 2014-15.  No evidence for flares at other energies either.
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 A challenge for one - zone models
Rodrigues et al. 2018

Blob

● < 1.8 events
● MeV band unconstrained!
● X-ray flux close to UL

● < 4.8 events
● Attenuation > 10 GeV
● X-ray flux close to UL
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External 
photons



  

 Minimal requirements for the 2014-15 neutrinos

Reimer, Boettcher & Buson 2018

● Goal: find the required target photon field to explain neutrino “excess”

● Synchrotron-& Compton-supported linear cascades 

● Stationary X-ray photon field as target for photo-meson interactions

● No correlation between TeV/PeV neutrinos with GeV γ rays

● The blazar EM emission is not co-spatially produced with the neutrinos 

Neutrinos, pairs, γ rays Compton-cascade  Synchrotron cascade
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See also talk by M. Boettcher



  

 The neutral beam model

I. Photo-disintegration + Bethe Heitler 
processes of nuclei in blob  → 
production of pairs, γ-rays neutrinos & 
neutrons

II.  Photo-meson interactions of escaping 
neutrons with external photons  → 
production of pairs, γ-rays, neutrinos

III. Isotropization of pairs in weak B-field 
of large-scale jet → suppression of 
cascade emission 

A 3-step process

Model parameters

I. Blob: radius,magnetic field, Lorentz 
factor

II.Cosmic rays: composition, luminosity, 
maximum energy, power-law index

III. External radiation fields: energy 
density, spectrum, luminosity

Atoyan & Dermer 2003; Dermer et al. 2012, 2014; 
Murase, Oikonomou, MP 2018
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Zone 1: Blob

Zone 2: Beam



  

 Preliminary results from the neutral beam model

Zhang, MP, Murase, Oikonomou, in prep.
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Nuclei

● Light composition of nuclei (proton & He)

● Neutrinos produced by the beam and in the blob

● Stationary high-density (UV) photon field as target for photo-meson/photo-
disintegration 

● Compact blob (~1015 cm) with strong (~30-50 G) magnetic fields 

● Attenuation of γ-rays > 100 GeV in blob 

beam

blob

Neutrinos Photons

Ext.phot.



  

 Conclusions

➢ TXS 0506+056 is the first source to be ever associated with a high-energy neutrino (at ~3σ).

➢ More high-energy neutrinos (~13) were discovered from the direction of TXS 0506+056 in 
2014-15 (neutrino “excess” at ~3.5σ).

➢ The 2017 multi-messenger flare of TXS 0506+056 can be explained by one-zone leptonic 
models with a radiatively sub-dominant hadronic component.

➢ The neutrino luminosity from TXS 0506+056 is bound by X-ray data (<1045 erg/s) in one-
zone models of the 2017 flare.

➢ The 2014-15 neutrino “excess” & EM  radiation cannot be explained by one-zone models → 
need for more complex models (e.g., multi-zone models).

➢ The predictions of the neutral beam model for the 2014-15 neutrino “excess” are consistent 
with the data, if

➢ the dissipation region is compact and strongly magnetized
➢ Stationary external photon field (~UV)
➢ Proton-Helium composition
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 Open questions

➢ What is the best observing strategy to search for neutrino 
point sources, if GeV γ rays flares are not correlated with 
periods of high TeV/PeV neutrino flux? 

➢ Which wavelength is the best probe for the neutrino emission 
of blazars?

➢ Is there a consistent physical picture for the 
multi-messenger emission of TXS 0506+056 
for  2014-15 and 2017?

➢ What do we learn about the blazar population?
 

➢ Do we have leptonic and hadronic flares? How?

➢ What will are the implications for the origin of neutrinos, if the 
association with TXS 0506+056 weakens over the years?

 THANK YOU
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  Fact sheet of TXS 0506+056

Ghisellini et al. 2011

Fermi 3LAC 2015

● Redshift z=0.336(5) (Ajello et al. 2014; Paiano et al. 2018)

● Among ~4.5% of 3LAC blazars with highest energy flux 
(Fermi-LAT Collaboration 2015; 2019)

● Among the brightest radio sources (~0.3 %) (Padovani et 
al. 2018)

● ISP BL Lac, if classified with line width (Stickel et al. 1991; 
Stocke et al. 1991) or γ-ray properties (3LAC)

● “Masquerading” BL Lac → with BLR whose emission is 
swamped by the jet (Padovani et al. 2007; Padovani, 
Oikonomou, MP et al. 2019)



 Multi-wavelength observations 
Keivani,Murase, MP, Fox et al. 2018



 Swift flux variability 
Keivani,Murase, MP, Fox et al. 2018



 Swift spectral variability 
Keivani,Murase, MP, Fox et al. 2018



 Multi-wavelength spectrum 



 Eddington bias for neutrino sources
Strotjohann et al. 2019

● More likely to detect 1 neutrino from sources with median flux << 1 
● Bright rare sources are more likely to be detected with >1 events
● The size of bias depends on: source evolution & luminosity function



  

 A challenge for one - zone models 
MP, Murase et al., in prep.

Blob

SynchrotronCompton

● Wide parameter search 

● Linear & non-linear cascades

● Synchrotron & Compton supported 
cascades

● No model consistent with  L
ν
 > L

γ 
 

and EM data.

Photons Neutrinos



 Lepto-hadronic models for the 2017 flare

Keivani et al. 2018

Gao et al. 2019

Cerruti et al. 2019
● Lepto-hadronic SED models for TXS 

0506+056/IC-170922A are excluded.

● EeV neutrinos are predicted.

● Low neutrino flux, unless cascade 
emission overshoots X-rays.



  

 Status of the field prior to 2017 - neutrinos

Padovani & Resconi 2014; MP et al. 2015
● BL Lacs as probable counterparts of 

high-energy neutrinos (Padovani & Resconi 
2014, 2016; Righi et al. 2017; 2018)

● IceCube constrains most optimistic 
models of constant neutrino emission 
(e.g. Aartsen et al. 2017; 2018)

Righi et al. 2018

Aartsen et al. 2017

Aartsen et al. 2018



  

 Blazar flares & neutrino prediction for Mkr 421
MP, Coenders & Dimitrakoudis, 2016



  

* Similar probability for detecting at least 1 
neutrino from the 2012 flare alone OR the 
whole IC Season 3 

* Still <50%

 Blazar flares & neutrino prediction for Mkr 421

Major GeV flares

Without major GeV flares



  

 Fraction of neutrinos produced during flares - (1)

● Duty factor (>5σ): ~ 0.3-10 %

● Fraction of flare energy release: ~10% 

● Luminosity distribution: 
(α~2-4)

FAVA sample of 6 blazars

Murase, Oikonomou, MP 2018

TXS 0506+056
● Model-predicted scaling (e.g., Murase et al. 

2015, Tavecchio et al. 2015, MP et al. 2016):

●  Neutrino luminosity distribution:

● Flares dominate neutrino output, if α < 3
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 Fraction of neutrinos produced during flares - (2)
Yoshida, MP, Oikonomou, Vasilopoulos, Urry, Murase, in prep.

Fermi-LAT sample of 124 blazars

● Duty factor (>6σ): power-law with 
index -1 (~0.3-10 %)

● Fraction of flare energy release: 
power-law with index -1 (~1-60 %)
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