Magnetic reconnection in blazar jets

Maria Petropoulou (Princeton University)

Collaborators: L. Sironi (Columbia), D. Giannios (Purdue) & I. Christie (Purdue)

9 March, MIAPP 2018, Garching, Munich

AGN: a reminder

- *Compact, variable bright core
- *Central engine: massive black hole $(M_{BH} \sim 10^6 10^{10} M_{sun})$
- *Radiation from core dominates the emission from galaxy (star light)
- *Radiation= thermal from accretion flow + non-thermal from relativistic jet (when this is present)

For a recent review, see Padovani+2017, A&ARv

Blazars: AGN jets viewed face-on

Blazar radiation dominated by the jet

Blazars are multi-wavelength emitters

Neutrinos (IceCube, ANTARES)

Cosmic Rays (Pierre Auger, TA)

Future Cherenkov Array

Fossati et al. 1998

Blazars are variable on many timescales

An example: 3C 454.3

Giommi 2015, JHEA; https://tools.asdc.asi.it/SED/

Coordinates

 α = 22:53:57.7479, δ = +16:08:53.560 (2000)

z = 0.85900

Landessternwarte Heidelberg-Königstuhl

Status of blazar modeling

Parametrizing our ignorance

- \star $\zeta_{\rm e}$ ($\zeta_{\rm p}$): fraction of electrons (protons) in the non-thermal tail of the distribution
- \star $\epsilon_{\rm e}$ ($\epsilon_{\rm n}$) : fraction of jet flow energy in relativistic electrons (protons)
- * $\epsilon_{_{\rm B}}$: fraction of jet flow energy in magnetic fields

PKS 2155-304

Petropoulou M, 2014, A&A

Which model materializes in blazars?

Puzzling questions

- * How is the jet energy converted to radiation?
- * Are the radiating particles electrons or protons? How can we tell?
- * Where and how are particles accelerated?

The paradigm of jet formation

Jet acceleration over a range of scales (~0.001- 0.1 pc) (e.g. Vlahakis & Koenigl 2004, Komissarov+2007)

Blandford & Znajek 1977; Begelman & Li 1992; Meier et al. 2001; Koide et al. 2001; Komissarov, Lyubarsky, McKinney, Tchekhovskoy +++

Lorentz factor F

Komissarov et al. 2007

Jet dissipation

Energy reservoir: magnetic

- Current driven kink instability
- Magnetic reconnection

Singh + 2016

Energy reservoir: kinetic

Kelvin-Helmholtz instabilities

• Shocks

Barniol-Duran+2017

Facts from blazar observations

- * Extended power-law energy distributions of radiating particles
- * Radiative power is ~ 1%-10% of jet power → efficient energy dissipation
- * Rough energy equipartition between radiating particles & magnetic fields

Celotti & Ghisellini 2008

Constraints on shock dissipation scenarios

Plasma magnetization

$$\sigma = \frac{B_0^2}{4 \pi n_0 m c^2}$$

$$\sigma = \frac{B_0^2}{4 \pi n_0 h}$$

$$n = m \langle \gamma \rangle c^2 + \frac{p}{n}$$

Dissipation efficiency

Equipartition between pairs & magnetic field

Sub-luminal shocks

 $\cos \theta_1 < v_1/c$

Magnetic reconnection

Reconnecting magnetic field

Reconnecting magnetic field

- * Magnetized plasma enters the reconnection region
- * Plasma leaves the reconnection region at the Alfvén speed
- * Magnetic energy is transformed to heat, bulk plasma motion and accelerated particles

Magnetic reconnection

Reconnecting magnetic field

Reconnecting magnetic field

- * Magnetized plasma enters the reconnection region
- * Plasma leaves the reconnection region at the Alfvén speed
- * Magnetic energy is transformed to heat, bulk plasma motion and accelerated particles

Regimes of magnetic reconnection

Triggering reconnection in jets

(e.g. Eichler 1993; Begelman 1998; Giannios & Spruit 2006; McKinney + 2009; Porth & Komissarov 2015; Parfrey, Giannios, Beloborodov 2015; Barniol-Duran + 2017)

Global MHD instability

Alternating magnetic field

Particle-in-Cell simulations

- No approximations; full plasma physics of ions and electrons
- Tiny length scales (c/ω_p) and timescales (ω_p^{-1}) need to be resolved \rightarrow expensive simulations \rightarrow limited time coverage + spatial domains
- 3D PIC code TRISTAN-MP (Buneman 1993; Spitkovsky 2005; Sironi+2013)

Magnetic reconnection in blazar jets

*General requirements of the process: efficiency, particle spectra etc.

*Properties of the plasmoids: acceleration, growth etc.

* Statistics of the plasmoid chain (e.g. size distribution)

*Radiation from a single plasmoid

*Radiation from the plasmoid chain

Plasmoid-dominated reconnection

Zenitani & Hoshino 2001, Loureiro+2007, Bhattarjee+2009, Uzdensky+2010, Loureiro+2012, Guo+2014; 2015, Sironi & Spitkovsky 2014; Kagan+2015 (for review); Sironi, Petropoulou, Giannios 2015; Werner+2016, Sironi, Giannios, Petropoulou 2016+++

2D PIC simulation of σ =10 electron-positron reconnection

Particle acceleration

Periodic

Sironi, Petropoulou, Giannios 2015

d i

Particle energy distributions

Simulation of σ =10 electron-positron reconnection

2D 3D

Sironi & Spitkovsky 2014

- * Higher σ produces harder (p<2) particle spectra (see also Guo+2014, 2015; Werner+2016)
- * The maximum energy increases LINEARLY* with time, if it is not inhibited by the boundaries

Dissipation efficiency

Sironi, Petropoulou, Giannios 2015

Efficiency

$$f_{\rm rec} \equiv \frac{\sum_{i} \int_{V_i} U_{\rm e} dV_i}{\sum_{i} \int_{V_i} (e + \rho c^2 + U_{\rm B}) dV_i}$$

- * it transfers ~ 50% of the flow energy (electron-positron plasmas) or ~ 25% (electron-proton) to the emitting particles
- * Efficiency decreases with increasing guide field

Energy equipartition

Weighted average of the ratio

$$\left\langle \frac{U_{\rm e}}{U_{\rm e} + U_{\rm B}} \right\rangle \equiv \frac{\sum_{i} \int_{V_{i}} U_{\rm e} \frac{U_{\rm e}}{U_{\rm e} + U_{\rm B}} dV_{i}}{\sum_{i} \int_{V_{i}} U_{\rm e} dV_{i}}$$

- * rough energy equipartition between particles and magnetic fields in plasmoids
- * for strong guide fields then UB >> Ue in the plasmoids

Plasmoids in reconnection layers

2D PIC simulations of relativistic magnetic reconnection in pair plasma

The plasmoid tree of life

Position

Plasmoid growth & acceleration

- * The plasmoid size grows with constant rate ~0.1 c (as measured in its rest frame)
- The growth rate depends weakly on the magnetization

$$\frac{\Gamma v_{out}}{c} \approx \sqrt{\sigma} \tanh \left| \frac{0.1 x}{\sqrt{\sigma} w} \right|$$

- "Universal" acceleration profile due to magnetic forces
- * Smaller plasmoids are faster
- * Biggest plasmoids move with non-relativistic speeds

Self-similarity

Sironi & Spitkovsky 2014; Sironi, Petropoulou, Giannios 2015

Scalings with the system size

$$r_{L,hot} = \sigma \frac{m_e c^2}{eB_0} = \sqrt{\sigma} \frac{c}{\omega_p}$$

- * The max. plasmoid size is always a fraction (~10%-20%) of the layer's length
- * The max. Larmor radius is a constant fraction (~3%-5%) of the layer's length
- This holds for large enough systems: L
 > r_{L, hot}
- Scalings can be used to extrapolate to larger systems

Plasmoid distributions

A Monte-Carlo approach

* Mimics the plasmoid dynamics as obtained from 2D PIC simulations

* Study many realizations of the layer

Included processes are:

- * Plasmoid acceleration NEW
- * Plasmoid growth & suppression NEW
- * Size & position-dependent initial 4-vel NEW
- * Plasmoid mergers
- * Plasmoid advection

Comparison to PIC results

"Benchmarked"

"Predicted"

Distribution of sizes

Distribution of 4-velocities

From microscoPIC to large scales

Extrapolation to large scales

Radiation from a single plasmoid

- Plasmoids are quasi-spherical structures
- Plasmoid growth depends on σ .
- Plasmoids accelerate while smaller.
- Smaller plasmoids → faster
- <u>Larger</u> plasmoids → <u>slower</u>
- Particle density & B-field ~ constant
- Particle distribution ~ isotropic in larger plasmoids

Doppler factor

$$\delta_{p} = \frac{1}{\Gamma_{p} \left(1 - \beta_{p} \cos \omega \right)} / \delta_{j} = \frac{1}{\Gamma_{j} \left(1 - \beta_{j} \cos \theta_{\text{obs}} \right)}$$

Small & Fast

Large & Slow

Peak Flare Luminosity

Luminosity depends on:

- Total number of radiating particles
- Size of the plasmoid
- Doppler factor of the plasmoid

Small & Fast

Large & Slow

Flux-doubling timescale

It depends on:

- Acceleration profile of plasmoid
- Final Doppler factor

$\Delta \tau_{1/2} (1+z)^{-1} = \int_{w_{1/2}''}^{w_{\rm f}''} \frac{{\rm d}\tilde{w}}{\delta_{\rm p}(X/\tilde{w})}$

Small & Fast

Large & Slow

Radiation from a single plasmoid

Benchmarked with PIC: plasmoid growth & acceleration, properties of accelerated particles

 $\sigma=10$

45

44

43

42

10

 $\log v L_v (erg s^{-1})$

Large & Slow

Minute-scale duration!

18

log v (Hz)

20

24

26

Hour-scale duration

Peak luminosity ~ size² * Doppler⁴ Duration ~ size / Doppler

28

Petropoulou, Giannios & Sironi 2016

14

16

Statistics of flares

Estimates for a single plasmoid

Plasmoid chain statistics

- Several luminous flares
- Range of durations
- Range of sizes

Radiation from the whole layer

GeV light curve

Multi-wavelength spectrum

Time [hr]

Frequency [Hz]

Orientation of the layer

Layer in Jet

GeV light curve

Time [hr]

Observer's angle

Layer in Jet

GeV light curve

Open issues...

Reconnection in 3-D

- * What are the statistical properties of the plasmoid chain?
- * What is the geometry of the emitting regions?
- * What about polarization signatures?

Location of dissipation region

- * Where in the jet does the dissipation take place?
- * What is the local plasma magnetization, guide field etc?
- * Do we expect one or multiple reconnection layers?
- * What happens to the plasmoids after they are advected from the layers?
- * Is there a connection between gamma-ray and radio flares?

Plasma composition & collisions

- * Are the accelerated particle distributions affected by the composition of the plasma?
- * Are the dynamics of the reconnection (especially in 3D) change when different particle species are included?
- * Can we implement photo-hadronic interactions in PIC???

Back-up slides

Non-relativistic magnetized shocks

Parallel vs oblique shocks

Relativistic magnetized shocks

Suppression of particle acceleration for super-luminal oblique shocks (e.g. Kirk & Heaven 1987, Begelman & Kirk 1990; Sironi & Spitkovsky 2009)

Plasmoid acceleration

- (1) Plasmoids moving with the Alfven speed (relativistic)
- (2) Accelerating plasmoids (mildly relativistic)

The slope depends on the ratio of acceleration-to-growth rates

(3) Plasmoids with constant speed (Non-relativistic)

Plasmoid mergers

- Loss process for plasmoids
- Smallest plasmoid of the merging pair is absorbed

- Redistribution in sizes
- Fewer plasmoids with medium sizes
- More plasmoids with small sizes
- The slope of the soft power law is retained

Size of the system

- Power-law formation
- From small sizes (few plasma skin depths) to large sizes (10%-30% of layer's length)
- Power-law slope is the same

