Long-term evolution of the particle energy spectrum in relativistic magnetic reconnection

> Maria Petropoulou (Princeton) L. Spitzer Postdoctoral Fellow

Lorenzo Sironi (Columbia)

6 September 2018

Magnetic Reconnection in Space, Solar, Astrophysical, and Laboratory Plasmas (MR2018)

Astrophysical motivation

1

Simulations & results

Open questions

Non-thermal broadband radiation

3

Relativistic reconnection

Non-thermal particle distributions

dN $-p \exp\left[-\gamma/\gamma_{cut}\right]$ ∞ dy

Power-law slope (σ-dependent) High-energy cutoff

Open questions

What is the long-term evolution of the particle distribution?

Does the high-energy cutoff saturate at 4σ ? (Werner+2016; Kagan+2018)

How do energetic particles get accelerated?

Simulations

- 2D PIC simulations of anti-parallel reconnection in pair plasma
- Code: TRISTAN-MP (Buneman 1993, Spitkovsky 2005, Sironi +2013)
- Boundary conditions: Periodic in x-direction, receding injector in y-direction
- Different physical parameters (magnetization, upstream temperature, current sheet thickness)
- Different box sizes $(500 4250 r_L, r_L = \sqrt{\sigma} c / \omega_p)$

MP & Sironi 2018, sub. (arXiv:1808.00966)

Particle distribution fitting

One large plasmoid in the domain \rightarrow

Reconnection will shut off

Evolution of slope & cutoff

8

here

Spectrum of an "isolated" plasmoid

Click here

Plasmoid "tomography"

Particle tracking - 1

Particle tracking - 2

Particle magnetic moment

Magnetic moment in isolated phase is ~ constant

Magnetic field along trajectory

Particles experience stronger B-fields

Click here

Energy evolution of particles

Sub-linear evolution of particle energy with time

Summary

The high-energy cutoff increases beyond 4σ, if box size is large & reconnection stays active.

The high-energy cutoff increases as $t^{1/2}$ after it exceeds the ~4 σ value.

Particles controlling the cutoff reside in a magnetized ring around the core.

Particles gain energy due to local B increase in plasmoids & conservation of magnetic moment.

Thank you!

Back-up slides

Plasmoid-dominated reconnection

Zenitani & Hoshino 2001, Loureiro+2005; 2007, Bhattacharjee+2009, Uzdensky+2010, Loureiro+2012, Guo+2014; 2015, Sironi & Spitkovsky 2014; Nalewajko+2015; Sironi+2015; Werner+2016, Sironi+2016 ...

What makes plasmoid-dominated reconnection appealing for astrophysical applications?

What makes plasmoid-dominated reconnection appealing for astrophysical applications?

Sironi, MP, Giannios 2015 (see also Werner+2017) What makes plasmoid-dominated reconnection appealing for astrophysical applications?

Sironi, MP, Giannios 2015

Simulations with periodic BC

σ	c/ω_p [cells]	L [c/ω _p]	L [r _{L, hot}]*	Duration $[1/\omega_p]$
10	5	1680	531	3375
10	5	3360	1062	13500
10	5	6720	2125	18360
10	5	13440	4250	27000
10	10	1680	531	3375
10	10	3360	1062	6750
50	5	1680	237.5	3375
50	5	3360	475	6750
50	5	6720	950	13500
50	5	13440	1900	27000

Note: $r_{L,hot} = \sqrt{\sigma} c / \omega_p$

Click here

Combined view of layer & particle spectrum

The extent of the power law (1)

The extent of the power law (2)

Effects of physical parameters

Late-time evolution of cutoff is independent of current sheet thickness Similar evolution of cutoff for different upstream temperatures

Energy crisis for $\sigma >> 1$?

Werner+2016

Hardness ratio

Energy evolution of particles (2)

Click here

Magnetic field along trajectory (2)

Particle magnetic moment (2)

Click here