Physics of AGN jets in the Fermi era

Maria Petropoulou

L. Spitzer Postdoctoral Fellow Princeton University

8th International Fermi Symposium, Baltimore, USA

Relativistic jets are ubiquitous!

Active galactic nuclei (AGN)

X-ray binaries (XRBs)

Gamma ray bursts (GRBs)

See talks by Wilson-Hodge, H. Zhou & more in Galactic sessions See talks by A. Beloborodov, B. Zhang, P. Beniamini & more in GRB sessions

Jet power ~ 10^{44} - 10^{48} erg s⁻¹ ~ 10^{38} erg s⁻¹

 $\sim 10^{52} \text{ erg s}^{-1}$

Lorentz factor ~ 3 - 30

This talk; see also talks by

I. Christie, H. Zhang, E. Meyer

& more in AGN sessions

~ 3

~ 300 - 1000

Extragalactic y-ray sky dominated by AGN

2

Highlights from Fermi era

Neutrinos from blazar jets

(e.g. Mannheim '95, Halzen & Zas '97, Atoyan & Dermer '01, Murase+14, Petropoulou+15, Padovani, MP+15, Gao+15)

Ideal environment for v production

* Powerful jets have the potential to accelerate and confine high-energy protons
* Many target photon fields are available (from e.g. jet , BLR, torus, disk)

The role of blazar flares

Blazars are variable sources across the electromagnetic spectrum!

Giommi '15, JHEA (https://tools.asdc.asi.it/SED/)

Neutrino flux can increase during flares

If target photon luminosity increases, then:

$$L_v \propto f_{p\gamma} L_p \propto \frac{L_{ph} L_p}{\varepsilon_{ph} t_v \delta^4}$$

* If γ-ray flare has a hadronic origin, then:

 $L_v \propto L_{\gamma}^a$

Fermi in understanding neutrino models The 6.9 yr Fermi light curve (0.1-300 GeV) overlapping with the 5yr IceCube livetime

The multi-messenger flare of TXS 0506+056

IceCube Collaboration, '18, Science

See talk by A. Franckowiak

- IC 170922A: track event with E_v~300 TeV (ang. res. < 1 deg)
- Automatic public alert via AMON/GCN
- Fermi-LAT reported TXS 0506+056 was in a flaring state (Atel # 10791)
- Many MW observations followed

7/

Interpretations

Photo-hadronic models

- Ansoldi+18 for MAGIC, ApJL •
- Cerruti+18 (1807.04335) •
- Gao+18 (1807.04275) •
- Keivani, Murase, MP+18, ApJ
- Murase, Oikonomou, MP '18, ApJ •

10

 10^{-17}

More in Keivani's talk!

a)

ε F_ε [erg cm⁻²

10⁻¹²

10⁻¹³

10

Keivani+18¹⁰ÅpJ

10³

10

ε [eV]

10⁵

10⁵ 10¹⁰

10¹⁵

Ansoldi+18,ApJL

(max Lò. $2 \times L_p^{(max)}$

Hadro-nuclear models

- He+18 (1808.04330) •
- Liu+18 (1807.05113)
- Murase, Oikonomou, MP '18, ApJ
- Sahakyan '18, ApJ •

10²⁹

10⁴⁷

10⁴⁶

s_

10⁴⁵ ဦ _ĩ

10⁴⁴

10⁴³

LM

1031

$$F_v < 2 \times 10^{-12} erg/cm^2/s$$
$$U_p/U_e > 300$$
$$E_{p,max} < 0.3 EeV$$

8

Fermi detects sub-orbital variability from 3C 279

Challenging for standard models because of:

- Minute-scale duration
- * High γ-ray luminosity (~ 10^{49} erg s⁻¹)
- High Compton ratio ($A_c \sim 100$)

9

Status of blazar modeling

What's up next?

* Build a bottom-up theory for the origin of "blobs"

* Test theory predictions against spectro-temporal properties of blazar emission

Energy dissipation in jets

Shocks

- Internal shocks: time-dependent energy injection to the jet
- Recollimation shocks: abrupt changes in the density of external medium

(e.g. Kazanas & Ellison'86, ApJ; Blandford & Eichler'87; PhR, Kirk+98; A&A; Ostrowski'98, A&A; Boettcher & Dermer' 10, ApJ; Marscher+10, ApJ; Baring+17, MNRAS; for review, see Sironi+15, SSRv)

Magnetic reconnection

- * Magnetic kink instability at jet interior
- * Striped wind structure of jet

(e.g. Romanova & Lovelace '92, A&A; Eichler'93, ApJ; Begelman'98, ApJ; Giannios & Spruit'06, A&A; McKinney & Uzdensky '12, ApJ; Giannios & Uzdensky '18, MNRAS)

Magnetic reconnection

Reconnecting field

* Magnetized plasma enters the reconnection region

* Plasma leaves the reconnection region at the Alfvén speed

* Magnetic energy is transformed to heat, bulk plasma kinetic energy and non-thermal particle energy

Extended non-thermal distributions

Broad non-thermal photon spectra \rightarrow

- * Extended non-thermal distributions
- * No unique power-law index

Sironi & Spitkovsky '14, ApJ (Melzani+14, A&A; Guo+'15, ApJ; Werner+16, ApJ)

Relativistic reconnection \rightarrow

- * Extended non-thermal distributions
- * Power-law index dependent on σ (σ >10, p<2)

Efficient energy dissipation

* Efficient energy dissipation

* Radiative power is ~1-10% of jet power

 it transfers ~ 50% of the flow energy (electron-positron plasmas) or ~ 25% (electron-proton) to the emitting particles

* Efficiency decreases with increasing guide field

Plasmoids in reconnection: the blobs of blazar emission

* The layer fragments into plasmoids (Loureiro+07, PhPI; Uzdensky+10, PhRvL)

- * Plasmoids move relativistically in the jet frame (e.g. Giannios'09, MNRAS; Giannios '13, MNRAS)
- * Plasmoids have a power-law distribution of sizes (e.g. Uzdensky+10,PhRvL; Loureiro+11, PhPI; Sironi, Giannios,MP'16, MNRAS; Petropoulou+18, MNRAS)

From microscoPIC to large scales

Self-similarity

Inner Structure of an Active Galaxy

Extrapolation to large scales

Dissipation 0.1 lightyears Relativistic Jet Supermassive Black Hole Accretion Disk Opaque Torus (Inner Regions)

Variability at multiple scales

Each plasmoid produces a flare of characteristic duration and flux

Each reconnection layer produces a chain of plasmoids

(Giannios '09; Giannios'13; Petropoulou+16; Christie, MP+18)

(Sironi,MP, Giannios '15; Sironi, Giannios, MP '16 Petropoulou+18; Christie,MP+18)

 $\sigma = 10$ (FSRQ–like)

Fast flares on top of slowly evolving envelope

Physical model for multi-timescale variability in jets

More in Christie's talk!

Future prospects

cta cherenkov telescop

ICECUBE

Summary

Fermi is the only mission that can perform long-term monitoring of blazar jets.

Timing analysis of light curves
Flare properties

Fermi's role in multi-messenger observations of blazar jets is central, as demonstrated by the flare of TXS 0506+056.

Cosmic-ray content of jets

Cosmic-ray acceleration in jets

Synergy of *Fermi* with Cherenkov telescopes delivers high-quality γ-ray spectra extending more than 4 decades in energy.

- Spectral breaks or attenuation features
 - Multiple spectral components

Fermi as an integral part in the map of future multi-messenger missions.

Thank you

Back-up slides

The y-ray spectrum of Centaurus A

- Closest radio galaxy (FR I type)
- D=3.8 ± 0.1 Mpc (Harris+10, PASA)
- VHE γ-ray source (Aharonian+09, ApJ)
- *Fermi* after launch confirmed early EGRET detection (*Abdo+09, ApJ*)

SSC modeling of Centaurus A

Cen A as misaligned blazar \rightarrow SSC modeling of core emission

Parameter	Model		
	SSC	SSC (Abdo et al. 2010a)	
R(cm)	4×10^{15}	3×10^{15}	
<i>B</i> (G)	6	6.2	
δ	1	1	
$\gamma_{ m e,min}$	1.3×10^{3}	300	
$\gamma_{ m br}$	_	- 800	
$\gamma_{ m e,max}$	10^{6}	10^{8}	
$p_{e,1}$	_	1.8	
$p_{e,2}$	4.3	4.3	
$\ell_{ m e}^{ m inj}$	6.3×10^{-3}	8×10^{-3}	
ℓ_B	4.6×10^{-3}	3.7×10^{-3}	

Large viewing angle → Weak Doppler boosting

 $L_{obs} \propto \delta^4 L_{e,co} \approx L_{e,co}$

 L_{obs} high $\rightarrow L_{e,co}$ high $\rightarrow 2^{nd}$ order SSC not negligible!

Alternative interpretations

Inner jet models

- Leptonic processes in black-hole magnetosphere (Rieger & Aharonian 09, ApJL)
- SSC from 2 zones (Joshi+18, MNRAS Letters; HESS & Fermi Collaborations '18)
- Millisecond pulsar population (Brown+17, A&A)
- DM annihilation (Brown+17, A&A)
- ICS cascades on dusty tori (Roustazadeh & Boettcher '11,ApJ)
- (Photo-hadronic processes (Kachelriess+10, PASA; Reynoso+11,A&A; Petropoulou+14, A&A)

Large-scale jet models

• ICS on background photons (Hardcastle & Croston '11,MNRAS)

X-rays from large-scale AGN jets

How are X-rays being produced?

IC/CMB model (Tavecchio+00, ApJL; Celotti+01,MNRAS)

Electron synchrotron models (e.g.Harris+04,ApJ; Hardcastle'06, MNRAS)

- Beaming (δ~10) from kpc-scale jet is necessary
- Electron distribution extends to low Lorentz factors (y~20-200)
- Particles at low energies → increased jet power requirements
- No freedom in GeV flux predictions

- Strong beaming is not required
- 2 electron distributions with different energy ranges
- 2nd electron distribution must begin from high Lorentz factors (y~10⁶-10⁷)
- Less energydemanding
- Freedom in GeV flux predictions

Lepto-hadronic models

(Aharonian '02, MNRAS; Bhattacharyya & Gupta '16, ApJ; Kusunose & Takahara '17, ApJ; Meyer, MP+18, ApJ)

Fermi rules out the IC/CMB model

Neutrino properties in a nutshell

Neutrino spectrum depends on:

* Density of target photons
* Energy spectrum of target photons
* Energy spectrum of protons

Typical neutrino energies

Production efficiency

Jet photons:

BLR photons:

 $E_v \approx 0.05 E_p \geq 90 PeV \Gamma_1^2 (\varepsilon_s / 10 eV)^{-1}$

 $E_v \approx 0.05 E_p \geq 0.9 PeV (\varepsilon_{BLR}/10 eV)^{-1}$

Effective areas of the analyses

Up-going events

- Larger statistical sample
- Larger effective volume
- Atm. background not removed
- Poorer energy determination

High-energy starting events (HESE)

- Smaller statistical sample
- Smaller effective volume
- Atm. Background removed
- Accurate energy determination

Neutrino Events in IceCube

Back grounds
 ⇒ Cosmic ray induced atmospheric muons
 down-going events

Main Signal ⇒ Neutrino induced muons up-going events

Predicted #v in 5yr IceCube livetime

 \sum w Flares

1834

 3.59 ± 0.60

 97 ± 2

alone and the whole IC Season 3 * Still <50% Constraining the model Q: What means a neutrino non-detection of Mrk 421? A: Correlation between >1PeV v and GeV γ-rays differs in major flares OR Much lower power is carried by CR in blazar jets

>100 TeV ν flux (normalized to 4e-10 erg/s/cm2) vs. T (yr) needed for IceCube ν detection at 90% (95%) CL

<i>X</i> (yr)	ζx		$L_{p,X}$ (erg/s)	
	90%	95%	90%	95 %
6	0.71	0.9	6.2×10^{47}	7.8×10^{47}
8	0.53	0.68	4.6×10^{47}	5.9×10^{47}
10	0.43	0.54	3.7×10^{47}	4.7×10^{47}
20	0.21	0.27	1.8×10^{47}	2.3×10^{47}

Global instabilities

• Magnetized jets may be unstable (e.g. Eichler 1993; Begelman 1998; Giannios & Spruit 2006; Porth & Komissarov 2015)

kink instability

Sites of jet's energy dissipation

(Barniol-Duran, Tchekhovskoy, Giannios, 2016)

accoult 10

Alternating magnetic fields

 $\Delta z \approx 100 R_a$

 The jet may contain field reversals with a scale ~100 R_g (e.g. Parfrey, Giannios, Beloborodov 2015)

Magnetic field lines may reconnect if:

$$t_{exp} \sim t_{rec}$$

$$\frac{Z_{diss}}{\Gamma_j c} \sim \frac{100 \Gamma_j R_g}{\varepsilon c}$$

$$z_{diss} \sim 100 \Gamma_j^2 R_g / \varepsilon \approx 1 \ pc \ M_8 \Gamma_{j,1}^2 \varepsilon_{-1}^{-1}$$

Relativistic magnetized shocks

(Sironi & Spitkovsky, 2009, MNRAS

Particle-in-Cell simulations

- No approximations; full plasma physics of ions and electrons
- Tiny length scales need to be resolved \rightarrow Large & expensive simulations
- Limited time coverage and spatial domains

Particles & fields in equipartition

* Results are model-dependent

Plasmoid acceleration

Large

$$\beta_{\rm co}\Gamma_{\rm co} \approx f\left(\frac{X'}{w''}\right) \equiv \sqrt{\sigma} \tanh\left(\frac{\beta_{\rm acc}}{\sqrt{\sigma}}\frac{X'-X'_0}{w''}\right)$$

Acceleration due to tension force of reconnected B-field

- Universal acceleration profile
- Acceleration depends on: size & location

Plasmoid distributions

Distribution of sizes

(MP, Christie + 2018, MNRAS)