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An Algebraic Study of Gauss-Kronrod Quadrature

Formulae for Jacobi Weight Functions*

By Walter Gautschi and Sotirios E. Notaris

Abstract. We study Gauss-Kronrod quadrature formulae for the Jacobi weight function

«/"'"'(t) = (l-i)Q(l + t)'3 and its special case a = ß = X- ^ of the Gegenbauer weight

function. We are interested in delineating regions in the (a, /3)-plane, resp. intervals in

A, for which the quadrature rule has (a) the interlacing property, i.e., the Gauss nodes

and the Kronrod nodes interlace; (b) all nodes contained in (—1,1); (c) all weights

positive; (d) only real nodes (not necessarily satisfying (a) and/or (b)). We determine

the respective regions numerically for n = 1(1)20(4)40 in the Gegenbauer case, and for

n = 1(1)10 in the Jacobi case, where n is the number of Gauss nodes. Algebraic criteria,

in particular the vanishing of appropriate resultants and discriminants, are used to

determine the boundaries of the regions identifying properties (a) and (d). The regions

for properties (b) and (c) are found more directly. A number of conjectures are suggested

by the numerical results. Finally, the Gauss-Kronrod formula for the weight w^a'll2^ is

obtained from the one for the weight u/a'Q), and similarly, the Gauss-Kronrod formula

with an odd number of Gauss nodes for the weight function w(t) = |t|7(l — t2)tt is

derived from the Gauss-Kronrod formula for the weight vj(a,(1+1''2\

1. Introduction. A Gauss-Kronrod quadrature formula for the (nonnegative)

weight function w on [a, b] is a quadrature formula of the form

/b n w + 1
f(t)w(t) dt = y avf(rv) + y a;f(r;) + Rn(f),

v=l m=1

where r„ = t„ are the Gaussian nodes (i.e., the zeros of 7rn(-; w dt), the nth degree

(monic) orthogonal polynomial relative to the measure do(t) = w(t) dt on [a, b]) and

the nodes r* = r¿n)* (the "Kronrod nodes") and weights <r„ = tr¿. , cr*p = a}? are

determined such that (1.1) has maximum degree of exactness 2>n + 1, i.e.,

(1.2) Rn(f)=0,    all/€P3„+i.

It is well known that r* must be the zeros of the (monic) polynomial 7r*+1 of degree

n+1 orthogonal to all polynomials of degree n with respect to the "weight function"

(1.3) w*(t) =irn(t;wdt)w{t)    on [a,b].

Even though 7rn, and hence w*, changes sign on [o, b], it is known that 7r* + 1 exists

uniquely (see, e.g., Gautschi [3, Section 3.1.2]). There is no guarantee, however,

that the zeros r* of 7r* + 1 are inside the interval \a,b], or real, for that matter.
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232 WALTER GAUTSCHI AND SOTIRIOS E. NOTARIS

Our interest here is indeed in obtaining precise information about the reality and

location of these zeros, as well as the positivity of all weights. We are studying

these questions in the case where w is the Jacobi weight function,

(1.4) w{a'ß](t) = {l-t)a(l + t)0,        -Kt<l,a>-I,ß>-1,

or its special case, the Gegenbauer weight

(1.5) wA(i) = w(A"1/2'A"1/2)(i),        -Kí<l,A>-¿.

We say that the nodes of (1.1) interlace if they are all real and, when ordered

decreasingly, satisfy

(1.6) -co < r*+1 < rn < r* < • • • < r2* < r, < r{ < oo.

Our objective is, for each fixed n = 1,2,3,..., to determine domains of the param-

eters a, ß and A, respectively, in which either of the following properties holds:

(a) The nodes tv, t* interlace.

(b) All nodes r„, r*, in addition to satisfying (1.6), are contained in (-1,1),

i.e., -1 < r*+1 and t{ < 1.

(c) The nodes interlace and each weight av is positive. (The positivity of a^

is equivalent to the interlacing property; see Monegato [5, Theorem 1].)

(d) All nodes, without necessarily satisfying (a) and/or (b), are real.

To answer these questions, we start from the known fact (see, e.g., Gautschi

[3, Section 2.1.2]) that all properties (a)-(d) hold for the Gegenbauer weight (1.5),

or the Jacobi weight (1.4) with a = ß = A - |, when 0 < A < 1. Moving the

parameters a, ß, or A, continuously away from this segment induces a continuous

motion of the nodes r„, r* which, initially, are constrained to move on the real

line. The interlacing property breaks down the first time a node r* collides with

a node r„. The polynomials Ttn and 7r* + 1 then have a common zero, a fact that

can be detected by determining when the resultant i2(7r„,7r* + 1) of 7r„ and 7r* + 1

vanishes (for the first time). When a collision occurs, the nodes r„, r* involved most

likely cross each other, so that there are now two Kronrod nodes captured between

two Gauss nodes. Only now is it possible that two Kronrod nodes may collide,

giving rise to a pair of complex Kronrod nodes. The occurrence of this event can

be detected by determining the appropriate zero of the resultant Ä(7r* + 1,7r*'+1).

This allows us to settle property (d). Properties (b) and (c) are easily dealt with

by examining when (for the first time) (r¿+1 + l)(r* - 1) = 0, and av = 0 for some

v, respectively.

In Section 2 we carry out this program for the Gegenbauer weight (1.5). The

success of the calculations, particularly when n is large, depends crucially on the

resultants involved being computed in a stable manner. This is discussed in Section

3. In Section 4 we report on limited explorations for the case of the Jacobi weight

(1.4). Section 5 presents analytic treatments of Gauss-Kronrod formulae for Jacobi

weights with parameter ß = \ and for the weight function w(t) = \tp(l — t2)a,

a > -1, 7 > -1, on (-1,1).

2. Gegenbauer Weights.  We consider here the weight function (1.5), that is,

(2.1) wx(t) = (í-t2)x~1/2,        -Ki<l,A>-±.
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GAUSS-KRONROD QUADRATURE FORMULAE FOR JACOBI WEIGHT FUNCTIONS      233

Using

f t2m(\-t2)x-xl2dt= f x^^^-xf-^dx
7-1 Jo

n(    j.1   XJ.M      r(m+^)r(A + i)
= 5(m+2'A+2J=     Fim + A + l)     '        «» = 0,1,2,...,

it is straightforward (though tedious, at times) to compute irn, 7r*+1 explicitly for

the first few values of n. One obtains, for n = 1,2,3 and 4,

(2.2i) *i(t)=t. ^(0=¿2~2(A3+2),

(2.22) ^) = ^2-^l)-        «SW-«"-^

(2.23) «*(*) = Í3 - =77^«,        <W = Í4 - 7^ + 7^2(A + 2) ' 4W A + 4        4(A + 4)2(A + 5)'

,r4(t) = r4 _    3   f2 +
A + 3        4(A + 2)(A + 3)'

1      j 5_      15      3     15        A+ 20

^{t)-t      2(A + 5)'  + 4 (A + S^A + e)'-

Likewise, using the formula (Monegato [5, Eq. (2.5)])

II        112
(2.3) a™ = A«,"' +-' 7r"IL    . ,  ,

<+A¿n))<{rln))

where AÍ,   are the Christoffel numbers (i.e., the weights in the Gaussian quadrature

rule) and || • \\w the L2-norm for the weight function (2.1), one obtains

(2 4,)     j(i)     2^r(A + 3/2)
{¿Al)     °l    -    3     T(A + 2)  '

Í2 4,)     ¿V-J*)-3^      r(A + l)(A + l)2
(¿A2)     oi    -a2    -    2   r(A + 1)(A + 2)(5A + 3).

Î2 4Ï        W=   (3)_50F r(A + i)(A + 2)4(2A + 3)
1 ' 3j     ai       "z     '    3   r(A + 2)(A + 3)(26A3 + 153A2 + 336A + 160)'

(3) _ 8y^Fr(A + 5/2)(40 + 7A - 2A2)

15 T(A + 4)(16-A)

(2.44)
(r(4)=<T(4) = 5^x

_r(A + 3/2)(A + 2)(A -I- 3)4[(A + 5)(A + 6)(2A + 3) + oj(A + 2)(A2 - 15)]_

T(A + 5)w(w + 3)(2A - w + 3)[5A4 + 11A3 - 109A2 - 465A - 450 + w(A + 2)(A + 5)(A + 6)(3A + 5)] '

°2        a3        same expression with ui replaced by  — w,

where w = [3(2A + 3)/(A + 2)]1/2 in (2.44).

For n — 1, the Gauss-Kronrod rule is the 3-point Gauss rule and therefore

satisfies properties (a)-(d) for all A > -\. If n = 2, Eq. (2.22) shows that (a)

[hence also (d)] holds for all A > -\ and (b) for all A > 0, while Eq. (2.42) shows

that (c) holds for all A > —\. We now discuss in detail the two cases n = 3 and
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234 WALTER GAUTSCHI AND SOTIRIOS E. NOTARIS

n = 4 for which we have analytic expressions for all the quantities of interest. They

are representative for the cases n odd and n even, respectively, to be discussed

subsequently.

If n = 3, the polynomials 7r3 and Tt*A have common zeros if and only if either

71-4(0) = 0 (in which case 0 is a common zero) or the polynomials

1     1 r\ 37ï7r3(^) = x"2(ÂT2) =-P3(X)

TT%(\/x) = X2 -
X

:X+ -
16-A

4(A + 4)2(A + 5)
=:pl(x)

have a common zero. The former, by (2.23), is true exactly for A = 16, whereas the

latter is true precisely if the resultant of p3 and p\ vanishes,

(2.5) R{P3,PÏ) =

2(A + 2)

0 1

0

1

2(A + 2)

5 5        16 - A

= 0.

A+ 4       4(A + 4)2(A + 5)

An easy calculation shows that

(2.63)  R(p3,p*4) = -|(A + 2)"2(A + 4)"2(A + 5)"1(26A3 + 153A2 + 336A + 160).

The cubic polynomial on the right has one real zero at -.6447375... and a pair of

conjugate complex zeros, hence is positive for all A > -4. Therefore, R(p3,p\) < 0

for all A > —\. It follows that (a) is true precisely for — \ < A < 16, there

occurring a collision of nodes at the origin when A = 16, but no other collisions.

Since the zeros of ir\ are symmetric with respect to the origin, tr\ has a double zero

at the origin when A = 16, which splits into a pair of conjugate complex zeros as

A increases beyond 16. Indeed, the constant term of p\, hence at least one of the

zeros of P4, becomes (and remains) negative, giving rise to a pair of complex zeros

of 7t|. Therefore, (d) is true exactly for — | < A < 16. Property (b) is discussed

most easily by noting that it is equivalent to 71-4(1) > 0. Indeed, t{ < 1 clearly

implies 7^(1) > 0, while, conversely, 714(1) > 0 implies r{ < 1 since otherwise, by

the interlacing property, T\ < 1 < rj*, meaning that 714(1) < 0. Since, by (2.23),

(2.73) tt*(1) = 4A(A + 4)"2(A + 5)"1(2A + 3)(2A + 13),

we have property (b) precisely if A > 0. The cubic polynomial in the denominator

of a\ ' [cf. (2.43)] being the same as the one in (2.63), hence positive for all A > —¿,

it follows that cr\ ' > 0 for all A > -|. Assuming -| < A < 16, we have, on the

other hand, 43) > 0 if and only if 40 + 7A-2A2 > 0, i.e., -± < A < i(7 + 3v/4Î) =

6.552343_This settles property (c).

Now consider n = 4. Since 714(0) ^ 0, the origin is never a common zero of

7T4 and 7T5, and 714, 7^ have a common zero if and only if the same is true for

the polynomials 714(^/1) =: p^(x) and (y/x)~lTxl(y/x) =: pl(x).   Using (2.24), a
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somewhat lengthy computation gives

R(.PA,Pl) = -UX + 2)"2(A + 3)"2(A + 5)"4(A + 6)"2

(2.64) x [29A6 + 1273A5 + 11904A4 + 48385A3

+ 91925A2 + 78000A + 22500].

The polynomial in brackets has two real zeros at -.580667... and —32.863977...

and two pairs of conjugate complex zeros. Consequently, R(p4,pl) < 0 for all

A > — 4, and property (a) [hence also (d)] holds for all A > -|. From (2.24) we

find

(2.74) tt*(1) = ¿(A + 5)"2(A + 6)"1A(4A2 + 34A + 25),

where the quadratic has the two negative zeros —.813068... and -7.686931...,

hence remains positive for A > —4. Property (b), i.e., 7r*(l) > 0, therefore holds

precisely for A > 0. Another lengthy (but elementary) computation, based on

(2.44), shows that o\ is positive for all A > —|, but a2 > 0 only if A <

51.7868606883..., the unique positive root of A3 - 47A2 - 245A - 150 = 0. Thus,

property (c) holds precisely if this last condition is satisfied.

The results for 1 < n < 4 are summarized in Table 2.1, which shows the interval

A£ < A < A£ in which property (p) holds, p = a,b,c,d. An extended table for

n = 5(1)20(4)40 is given as Table A.l in the appendix.** The reasonings used to

compute Table A.l were similar to the ones explained in the cases n = 3 and n = 4,

and are now briefly described.

Table 2.1

Property (p) (p = a, b, c, d) for 1 < n < 4.

00

00

16

cxi

0

0

0

oc

00

16

OO

00

00

(7 + 3i/4Î)/4

51.786...

AÎ

00

00

16

00

It is convenient to distinguish between n = 2m even, in which case we write

(2.8e

T2m(\/î) = xm + a2m,ixm     + ■■■+ a2m>m =: p2m(x),

1
-7=^2m+l(Vx) = Xr' + b2m+i,ix

and n = 2m - 1 odd, in which case we write

m — l
H-1" b2m+l,m —• P2m+l(X)'

(2.80dd)

1

sß.'
-4=7T2m-i(\/z) =xm  1+a2m-i,i:rTn  2 + • • • + a2m-i,r

=: P2m-l(z),

^2m(Vx) -Xm + b2m,lXm~l + ■■■ + ¿>2m,m " P*2m{x)-

"Professor I. P. Mysovskih informed the first-named author by letter of October 28, 1987, that

L. N. Puolokaïnen [7], in a 1964 diploma paper prepared under his guidance, obtained A£ = -|

for n = 1(1)7 and the same values of A£, n = 1(1)4, as shown in Table 2.1. She furthermore

calculated 6D values of A°, n = 5(1)7, which agree with ours in Table A.l to 4-5 significant

digits.
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236 WALTER GAUTSCHI AND SOTIRIOS E. NOTARIS

(Computational details for generating the coefficients in (2.8) and for the procedures

to be described will be discussed in Section 3.)

To examine property (a), note that in the case n = 2m, since a2m,m ^ 0, the

polynomials 7T2m and 7r*m+1 have a common zero if and only if p2rn and P2m+i do,

i.e., precisely if the resultant R(p2m,P2m+i) vanishes. This resultant, of course,

has a constant sign on the interval 0 < A < 1; in all cases computed, it was found

that the sign on -4 < A < 0 remained the same. Consequently, A£ = —\. The

quantity A£ is the first value of A for which the resultant vanishes. This value

was determined by a preliminary search, followed by the bisection method. The

case n = 2m — 1 is handled similarly, except for the additional possibility that the

origin is a common zero of ir2m-i and 7r2m. This was detected (if the case indeed

occurs) by the coefficient b2m,m changing its sign. Our numerical work suggests

the following

CONJECTURE 2.1. The Kronrod nodes tp* and Gauss nodes Tv for the weight

function w\ in (2.1) interlace if — ̂  < X < A®, where A® are certain constants > 1.

(For numerical values of A£, n = 1(1)20(4)40, see Tables 2.1 and A.l.)

Property (b), as in the cases n = 3,4, is settled by determining the subinterval of

(-\, A°) in which 7T*+1(1) > 0, and property (c) by determining the subinterval of

(-^, A£) in which o" > 0 for all v = 1,2,..., n. The results can be summarized

as

CONJECTURE 2.2. The Kronrod nodes Tjjf1'* and Gauss nodes r¿n' for the weight

function w\ in (2.1), in addition to interlacing, are all contained in (—1,1) if0<

X < A£, where A° are the constants in Conjecture 2.1; some Kronrod nodes are

outside of [—1,1] if X < 0.

CONJECTURE 2.3. The Kronrod nodes and Gauss nodes for the weight function

u>\ in (2.1) interlace, and all weights 0™ are positive, if — \ < X < kcn, where kcn

are certain constants 1 < A£ < A£. (For numerical values of Acn, n = 1(1)20(4)40,

see Tables 2.1 and A.l.)

Property (d), finally, needs to be considered only for A > A£ and requires the

examination of discriminants. Complex zeros (of 7r* + 1) indeed can only arise from

multiple zeros, i.e., after Ä(7r* + 1,7r*'+1) has vanished. The discussion of this again

depends, in part, on the parity of n. If n = 2m, we write

—p^lm+A^) = Xm + b2m+l,lXm~    H-h fc2m+i,m =: P2m+l(X)>

(2.9eVen) *2m+l(^ = (2™ + l)*"* + (2™ " l)hm+l,l¡^n~1 + " ' ' + &2m+l.m

=-n2m+Áx),

and if n = 2m - 1,

TJm(Vx) = xm + b2m,ixm-1 + ■■■ + b2m<m =: p2m{x),

(2.9odd)        4=7râm(v^) = 2mim-1 + (2m - 2)b2mAxm-2 + ■■■ + 262m,m_1
\/X

= ■ °2m{x)-

There are two possibilities: Either the common zero of 7r*+1 and 7r*'+1 is also

a zero of 7r„, or it is not. The first case can only occur if two Kronrod nodes

collide with one another and simultaneously with a Gauss node. If n is even, this
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is unlikely to occur and, in fact, was never observed. It is also unlikely, and was

not observed, when n is odd, unless the collision takes place at the origin,

(2.10) t«(0)=<+1(0) = 7#+1(0)       (« = 2m - 1 odd),

in which case, since A > A£, we must have A = A°. The event (2.10) indeed seems to

occur whenever m in (2.10) is even; then, moreover, fe2m,m in (2.90dd) was observed

to change sign from positive to negative (cf. the discussion of property (a) above).

This means that for A immediately beyond A£, the polynomial p2m has at least

one negative zero (since m is even!), hence 7r2m a pair of conjugate complex zeros.

Consequently, Ad = A£ in this case.

If the common zero of 7r*+1 and 7r*'+1 is not a zero of 7rn, then necessarily

Ad > A°. It was found, then, that b2m+i,m and b2m¡m in (2.9) do not vanish, so

that the zero in question cannot be the origin. It then follows that 7r*+1 and 7r*'+1

have a common zero if and only if p* + 1 and <7*+1 do, i.e., if R(Pr\+i,Qn+i) = 0- This

event again can be determined by a search and bisection procedure. It transpired

that the resultant R{Pn+nQn+i) not on^ vanishes for some A = A* > A", but also

changes sign there. Since

R(Pn+l,qn+l) = ï[Pn-rl(Çl*)>

where Ç^ are the zeros of g* + 1 (cf. [10, Section 5.9]), a pair of positive zeros of p* + 1

(and hence a pair of real zeros of 7r*+1) coalesce and then disappear as A passes

through A*, i.e., p*j+1 (and hence 7r* + 1) has a pair of conjugate complex zeros for

A immediately beyond A*. There follows A* = Ad. Thus we form the

CONJECTURE 2.4. All Kronrod nodes t¡?'* for the weight function w\ in (2.1)

are real if — \ < X < Ad, where Ad (n ^ 1,2,4) are certain constants either slightly

larger than A£, or equal to A°, the latter precisely if n = 4r — 1, r — 1,2,3,_

(For numerical values of A*, n = 1(1)20(4)40, see Tables 2.1 and A.l.)

3. Computational Considerations. All computations were performed on the

CDC 6500 computer in single or double precision (machine precision 3.55 x 10~15

and 1.26 x 10-29, respectively).

Two different methods were used to compute the various resultants involved. One

is an obvious extension of the method exemplified in Section 2. The coefficients

a„:fc of the polynomial pn (cf. (2.8)) are first computed by a recurrence relation

that results from the linear relation connecting three consecutive wk of the same

parity. The coefficients bn,k of p*¡+1 (cf. (2.8)) then satisfy a system of linear

algebraic equations expressing orthogonality of 7r*+1 (with respect to the weight

function w* = w\TTn) to the first [(n + l)/2] odd powers. This system has been

solved using the LINPACK [2] routines SGECO, SGESL (and their double-precision

companions), whereupon the resultants of pn and p*+1 and of p*+1 and <7*+1 can

be computed in determinant form (cf. [10, Section 5.8, Eq. (5.20)]), using again the

factoring routine SGECO and its double-precision version. The major weakness

of this approach is the severe ill-conditioning of the determinants involved. Their

condition numbers (as estimated by SGECO) range from about 105 for n = 6 to

about 1016 for n = 20, precluding the safe use of our procedure in single precision,

and also its use in double precision much beyond n = 20.
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238 WALTER GAUTSCHI AND SOTIRIOS E. NOTARIS

To avoid (or at least alleviate) this problem of ill-conditioning, we express the

polynomial 7r* +, in terms of Gegenbauer polynomials and compute the expansion

coefficients from a triangular system of equations as described in [1, Section 4],

using Gauss-Jacobi quadrature to generate the matrix elements. If n = 2m is even,

we then have [10, Section 5.9]

m m    r .

(3-leven) R{P2m,P2m+i) = Y[ Plm-rl^p) =  IT     —*2m+l(Tli)
p.= l p=l L  **

and, if n — 2m — 1,

m—l m— 1

(3.1odd) R{P2m-l,P*2m) =   JJ P2m(Tp) =   Ü ^wOm)'
p=l p=l

where r„ = t¿    are the zeros of 7r„ in decreasing order, Ti > t2 > ■ ■ ■ > rn. Each

factor in (3.1) is evaluated by Clenshaw's algorithm.

Similarly, the resultant of p„+i and <?*, + 1, required to analyze property (d), is

computed for even n = 2m by

m m    r

(3.2even) R{P*2m + l,Q*2m + l) =  ]J P*2m + l{r'2) =  \ ~j'K2m-rl\ru)

u=l p=l  L   »

and for odd n = 2m - 1 by

m—1 m—l

(3.2odd) R(p*2m,q*2J = I] p*2m(r'2) = \{ 7r2*m(r;),
ß=i p=i

where r[ > r2 > ■ • ■ > r'n are the zeros of 7r*'+1. To compute these zeros, we

used, for the initial value A % A° of A, a simple search procedure followed by

Newton's method. Then, as A was incremented by small amounts, and during the

bisection procedure for determining A^, the zeros found for one A were used as

initial approximations for computing the zeros for the next A by Newton's method.

The factors in (3.2) again were evaluated by Clenshaw's algorithm.

The computations based on (3.1), (3.2) appear to produce rather accurate re-

sults, even for relatively large values of n. For example, when n = 40, we still

obtained 10 correct decimal digits in single precision, as was confirmed by recom-

putation in double precision.

4. Jacobi Weights. We now consider property (p), p = a,b,c, for the general

Jacobi weight w^a'0^ in (1.4). (Property (d) was not investigated, except for n = 1,

since the effort involved seemed to us excessive, given the chance that the curve d

could be indistinguishable from the curve a; cf. Table A.l and Figure 4.1.) Noting

that w(a^(-t) = w(/?-a)(i) and recalling the well-known fact that ir{n0'a)(t) =

(-1)"7T„      (-i), it is easy to show that

(4.1) <(^a)w=(-i)n+i<ir)(-<)

and

_(/?,«) _ _(«./?) .,-12 n
°v — an+l-L>, 1/ — l,¿,. .. ,n,

(4.2)
"H — an + 2-p, p, — l,¿,...,n+ I.
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Interchanging a and /?, therefore, has no effect on the validity of property (p),

p = a,b,c. It thus suffices to consider ß > a.

The case n = 1 can be handled analytically. One finds

(AV   R{w   ^ 4        f (a+ 1)03+1)    2(a + 2)(ß + 2)(a + ß + 2)}
(4.3)   Ä(,1,,2) = -___|  {a + ß + 2)2  +   {a + ß + 4)2{a + ß + 5)   }<0,

so that property (a), hence also property (d), holds for all a > — 1, /? > — 1. The

same is true for property (c), since

_ 2a+i3+1r(a + 2)T(ß + 2)
ffl~ T(a + ß + 2)

(4.4)
1 1

(a+D(ß+D  (Q+i)(/?+i) + 2yx^a++5f
>0.

For property (b) we must show 7r2(l) > 0 and ir2( — l) > 0. A simple calculation

gives

4(Q + 2)(a2 + q/? + 7a-/? + 4)

(4'5) 'a(1)=        (a + /? + 4)2(Q + /? + 5)       '

which is positive (for a > —1, /? > -1) precisely if

/?(«*-1) >-(a2 + 7a + 4).

For a > 1, this inequality is true (since /? > -1), while for —1 < a < 1 it is true

when

t*»i a      Q2 + 7tv + 4
(4.6) ß< -;-,        -1 < a < 1.

1 — a

This defines a curve in the (a,/?)-plane that starts at the point (—1,-1) and in-

creases monotonically until it reaches a vertical asymptote at a = 1. By (4.1),

one has the same expression as in (4.5) for 7r2(—1), except that a and ß are inter-

changed.

We summarize as follows: For n = 1, the Gauss-Kronrod formula (1.1) for the

Jacobi weight w^a'^ satisfies properties (a), (c) and (d) for all a > —1, ß > — 1,

arid property (b) precisely in the region

(4.7) a</?<Q2 + 7Q + 4,        _1<Q<1)
1 — Q

and m ¿is symmetric image with respect to the diagonal a = ß. (In particular,

property (b) holds for all a > 1, /? > 1.)

In order to delineate the regions of validity of property (p) for values of n larger

than 1, we used procedures similar to those described in Section 2. Letting a move

through the interval ( —1, A£ - |), for each a we started with ß = a and increased

ß in fixed (sufficiently small!) steps to determine the first change in the truth

value of property (p). Thereupon, the bisection method was used to narrow down

the changeover point more accurately. The procedure had to be slightly modified

for property (b), when n is even, since there are two critical values of ß to be

determined for a near and > -\- The smaller of the two was determined as before,

the other by starting with ß = 0 (instead of ß = a).
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The validity of property (a) depends on the sign of the resultant fi(7rn,7r*+1),

which was computed as in (3.1), except that symmetry could no longer be assumed;

thus,
n

(4-8) Ä(*n,<+i) = n<+l(T«')-
v=l

Property (b) holds exactly if both of the inequalities

(4.9) <+i(l)>0,        (-1)"+1<+1(-1)>0

hold, while property (c) amounts to the positivity of all a»' in (2.3).

The results of our calculations are depicted graphically in Figure 4.1 for n =

2(1)10. The region of validity for property (p) is always located below the curve

labeled p, except for the case p = b, n even, —1 < a < 0, where property (b) holds

above (or to the right) of curve b.

Figure 4.1 suggests the validity of the following conjectures.

CONJECTURE 4.1. If n is even, property (a) implies property (b) whenever a >

an, where —^ < an < —.470, an —> —4 as n —* oo.

CONJECTURE 4.2. If n is odd, property (b) is false for -1 < a < -|.

The fact that property (b) is false for n even, a — -\, -\ < ß <\, and for n

odd, a = -5, \ < ß < |, is proved by Rabinowitz in [8, p. 75].***

Verification of properties (a) and (c), when a > 0, was found to be delicate at

times, because of the resultant (for fixed a and varying ß) exhibiting near double

zeros, i.e., changing sign for two ß-values very close together. For example, when

n = 5 and a = 3.75, a first change of sign of the resultant (4.8) from negative to

positive was observed between ß = 7.520 and ß = 7.521, which was followed by a

change from positive to negative between ß = 7.540 and ß = 7.541. The increment

in ß, therefore, had to be chosen sufficiently small to detect this change of sign.

Such difficulties were observed typically near points where the slope of the curve a

or c undergoes a rapid change (the "kinks" in the graphs for a and c of Figure 4.1).

5. Special Weights. Simple transformations allow us to reduce special Jacobi

weights with ß = | to Gegenbauer weights and Gegenbauer weights multiplied by

a power of |£| to Jacobi weights. Some consequences of this for Gauss-Kronrod

formulae will now be explored.

5.1. The Jacobi weight w^'1^2^. It is well known (see, e.g., [9, Eq. (4.1.5)]), and

easily verified, that

(5.1) t^l2\2t2 - 1) = 2n4ïï\(t),        a > -1.

We depart from the Gauss-Kronrod formula (assumed to exist)

/l 2n+l 2n+2

f(t)w^(t) dt=y ävf(T„) + y ä*,/(r;),    all / G P6n+4

_1 v=l u=l

with 2n + 1 Gauss nodes fu = T¿,a'a' and 2n + 2 Kronrod nodes r*, ordered

decreasingly as in (1.6); in particular,

(5.3) 0 < 7*n+l < fn < ■ ■ ■ < t 1 < r* < 1.

***The superscript ft + & in Eq. (68) of [8] should read ß - \ (twice). The same change is

required in the discussion immediately following Eq. (69).
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Figure 4.1

Property (p), p = a,b,c, for the Jacobi weight w^a'^.
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By (5.1), the Gauss nodes r„ = r¿a' '     for itn'       are given by

(5.4) 7v = 2r2-l,        i/=l,2,...,n.

Now (5.2) implies (but is not necessarily implied by)

/_

1 2n+l 2n+2

t2g(t2)w^a\t) dt=y ôvllg(ll) + y w;r2g(rß2),    all g G P3n+i,
1 i/=i p=i

from which, by symmetry,

-1 n n+1

(5.5)   /   t2g(t2)w^aHt)dt = yöX9(rl) + yrtlf;2g(r2),    allff€P3„+i.

Changing variables, t  -  [(r + l)/2}1/2, so that dt  =  |[(r + l)/2]-l'2dT and

w{a'a){t) = 2"Q(l-r)a, yields

• i

g(T)w{a'1/2)(r)dTI
(5.6)

i
(   n n + 1

= 2"+5/2   y 0^(211 - 1) + £ ä;r;2,(2r;2 - 1)   ,

U=l M = l J

all jeP3„+1.

Since, by (5.4), 2f2 - 1 = r„ are the Gauss nodes of w^a'l/2\ Eq. (5.6) is precisely

the (unique) Gauss-Kronrod formula for u/0'1/2) with n Gauss and n + 1 Kronrod

nodes. We have shown:

THEOREM   5.1.   The  Gauss-Kronrod formula (1.1) for the weight function

w(a.l/2)   ls g{ven by

(5.7) r„ = 2f2-l,     ov = 2Q+5/2f2rj„ j/ = 1, 2,..., n;

(5.8) r;=2r;2-l,     ^ = 2a+5/2T*i2fT*1, p = 1, 2,... ,n + 1,

w/iere f^, F* are </ie positive nodes in the Gauss-Kronrod formula (5.2) for the

weight function w/Q'a' andcr„, <?* ¿/ie corresponding weights.

Clearly, if the formula (5.2) has property (p), p = a,b,c,d, so does formula (5.6).

(For property (a), this has previously been observed by Monegato [6, p. 147].) From

the discussion in Section 2, we expect this to be true for

(5-9) Xp2n+i - i < a < Ap2n+1 - i,

so that the Gauss-Kronrod formula (5.6) for the weight w^a,1l2\ and hence, by

the remark at the beginning of Section 4, also the one for the weight w^l^2'a\ has

property (p) if (5.9) holds. This means, in particular, that the point

(5.10) QS = (iA2„+i-è)

must lie on or below the curve labeled p in Figure 4.1(n). More precisely, it was

observed that for p = o the point Q^ lies strictly below the curve if n is odd, and

on the curve if n is even. The reason for this is the phenomenon (2.10) (where m is

to be replaced by m + 1) which was observed to hold precisely if m + 1 (our current
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n) is odd. Property (a) for (5.2) then ceases to hold because of the collision of a

Kronrod node with the Gauss node fn+i = 0 at the origin. Since the latter node has

no equivalent in the formula (5.6), property (a) continues to hold for (5.6) beyond

the critical value a = A2n+1 — |. If n is even, on the other hand, the collision in

(5.2) is between a Kronrod node and a nonzero Gauss node, which gives rise to a

collision also in (5.6). For the same reason, the point Qbn in (5.10) for property (b)

is on the curve labeled b in Figure 4.1(n), when n is odd, because of the Kronrod

node r*+1 becoming equal to —1, and on the curve labeled a, b, when n is even, by

virtue of property (a) ceasing to hold. For property (c), Qcn was observed to lie on

the curve labeled c in Figure 4.1(n) when n is even, and below the curve otherwise.

5.2. The weight |i|7(l - t2)a. We now construct the Gauss-Kronrod formula

with 2n + 1 Gauss nodes and 2n + 2 Kronrod nodes for the weight function

(5.11) 1w{a>(t) = \tp(l-t 2\Q on 1 < t < 1,q > -1, 7 > -1.

It is known that the associated (monic) orthogonal polynomials are expressible in

terms of Jacobi polynomials [4, p. 173]. In particular,

2B-^S+1(í) = íír^+1)/a)(2ta-l).

Therefore, if fu, v = 1,2,... ,n, are the zeros of the Jacobi polynomial 7Tn ,

the nodes in the (2n + l)-point Gauss formula for the weight (5.11) are

(5.12)
Tu =

r„ + l
i/ = l,2,...,n;    rn+i=0;

-T2n+2-v,        v = n + 2, ...,2n + l.

We now start from the Gauss-Kronrod formula (assumed to exist) for the Jacobi

weight »Min-1)/2),

(5.13)    f f(t)w{a^l)l2\t)dt = yöuf(Tv) + nJ2rßf(rß),    all/
J~l u=l u=l

Substituting t = 2r2 — 1 in the integral on the left yields

• i

€P 3n+l-

IJa
f(2r2 l)r2-r- 1-T 2\a dr

_ 2-a-(i+5)/2
n + 1

y^f(Tu) + yrßf(r;)
Ll/=1 p=l

Letting f(u) = {(u + l)/2]fc, k = 0,1,... ,3n + 1, gives

all/eP3„+i.

/Jo
T2k + 2 ■ t"- \1-T

2\a dr

_ 2-a-(Tr+5)/2

(5.14)
:1 (Tu + l)/2

V + l\
2k+2

I
n+1

+ y_-t_
7Ï+Î\2k+2

Jfc = 0,l,...,3n+1.
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Defining, in analogy to (5.12),

, _    /?* + 1
(5.12*)    TiJL ~ V     2     '        P — 1,2,... ,n+1;    rß — -T2n+3_ß,

p = n + 2,...,2n + 2;

and letting

(5i5) ^.r-^^,       ,= U,...,„;    ,„+1=A;

0V = cr2n+2-u,        v = n + 2, ...,2n + 1;

. =     a_(7+5)/a       *» p=l,2,...,n+l;
(5.15*) " (^ + l)/2

°*u=a2n+3-ß,        p = n + 2,...,2n + 2,

where A will be determined shortly, we can write (5.14) equivalently in the form

/l 2n+l 2n+2
tl-^a\t)dt= X>„r¿+ yo;r;1,        / = l,2,...,6n + 4,

_1 f=i p=i

(5

where both sides are zero if I is odd.  If we require (5.16) to hold also for / = 0

(with r°+1 = 0° = 1), i.e., if A is chosen so that

n n+1 -i

(5.17) 2^ct„ + A + 2J]ct;=/     iw{a\t)dt,
v=l u=l J~1

then

/l -¿n + 1 -¿n+l

f(tyw^(t)dt = y ouf(Tu) + y o-;f(T;),  an / g p6n+4
_1 u=l u=l

is the desired Gauss-Kronrod formula for the weight 1w(-a\ We have shown:

THEOREM 5.2. The Gauss-Kronrod formula for the weight "W^f) =

|t|7(l-£2)a on ( — 1,1), with 2n + 1 Gauss nodes and 2n + 2 Kronrod nodes, is

given by (5.18), where the nodes t„, r* are expressible in terms of the nodes r„, r*

in the Gauss-Kronrod formula (5.13) for the Jacobi weight w^a^1+1^2^ by means

o/(5.12), (5.12*), and similarly, the weights au, ct* are expressible in terms of the

weights 5v, ct* in (5.13) by means of (5.15), (5.15*), rjn+i = A being determined

by (5.17).

Clearly, if property (p), p = a,b,d, holds for the Gauss-Jacobi-Kronrod formula

(5.13), it also holds for formula (5.18). Property (c) for (5.13), on the other hand,

does not necessarily imply property (c) for (5.18), since the positivity of fJ„, <x*,

while implying the positivity of all ov, a* other than (x„+i, may or may not imply

an+i > 0, depending on whether A, as obtained from (5.17), is positive or not.
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Appendix. Property (p) (p = a,b,c,d) for n = 5(1)20(4)40.

TABLE A.l

Property (p) for the Gegenbauer weight w/A_1/2A-i/2) (A > — ¿)

holds if A£  < A < A£.    This table shows A", Acn and Ad, as

computed by the methods of Section 2.   By Conjectures 2.1-2.4,

AS = Xc„ = A^ =: -4, Xbn = 0, A* = A£ /or a//n > 5, and Ad = Aann *n n

whenever n — 4r l,r = 1,2,3,.

n -1« AU

5 8.1494082801

6 13.1085950564

7 5.8401376887

8 8.7386889750

9 5.2935342610

10 7.3992715320

11 4.8531386151

12 6.1920646523

13 4.6542480033

14 5.6700664070

15 4.4686100363

16 5.3822674428

17 4.3630476637

18 5.1865732169

19 4.2595630405

20 4.9631599397

24 4.7114083943

28 4.5422887809

32 4.4137444535

36 4.3224901583

40 4.2417789470

5.2388459015

7.6571453588

4.4759114573

5.9524378395

4.2497937619

5.3753659922

4.0481558230

5.0379559112

3.9519324055

4.6801034243

3.8582584626

4.4807122988

3.8036436813

4.3552498234

3.7488473165

4.2700177278

4.1057723823

4.0009291994

3.9286038916

3.8624938923

3.8175327957

8.1830000561

13.1107896727

A?
8.7555343902

5.2945466651

7.4237962746

Afi
6.1934889120

4.6543912620

5.6700700822

A15

5.3826940246

4.3630833901

5.1873227488

A19

4.9632639191

4.7114508725

4.5423182352

4.4137495863

4.3225046157

4.2417792595
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