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1. Introduction

One of us, jointly with CALIb and MARCHETTI (1986), considered the application of
Newton’s method (for large nonlinear systems of equations) in the context of computing
Gauss-Kronrod quadrature rules. With the equations set up in an appropriate manner, it was

found that, by careful choice of initial approximations and continued monitoring of the itera-

tion process, the method could be made to work for rules with up to 81 nodes (40 Gauss and
41 Kronrod nodes). This was documented for the Legendre weight on [—1,1] (where in fact

formulae with up to 161 nodes were computed) and for weight functions on [0,1] involving

logarithmic ‘and algebraic singularities. Further evidence of the feasibility of Newton’s
method, also for Kronrod extension of Gauss-Radau and Gauss-Lobatto formulae, is contained
in NOTARIS’s thesis (1988). If one attempts, however, to repeat Kronrod extension in the

manner of PATTERSON (1968), one discovers that Newton’s method quickly deteriorates and

* Work supported, in part, by the National Science Foundation under grant CCR-8704404.
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eventually fails to converge. The purpose of this note is to shed some light on the reasons for
this failure of Newton’s method. One of these is the excessive magnitude of the inverse Jaco-
bian of the nonlinear system (evaluated at the solution) which comes about because of a pecu-
liar behavior of a certain polynomial responsible for the magnitude of this inverse. Graphical

evidence is provided to underscore the phenomenon.

For simplicity we consider only integrals over a finite interval (standardized by [-1,1])

with constant weight function.

2. Extension of quadrature rules

Given an N-point quadrature rule Qy(f) of the form

N
ONf)= 3 oy fey), —l<ty<tyi< - <% <1, 2.1)

v=1

approximating the integral 7 (f),

Ov() =1() = [ | fwar , 2.2)

we call Kronrod extension of Qy, in notation

ON(f) c On(f), 2.3)

the quadrature rule Qn-(f) with N’ =N + (N+1) = 2N + 1 nodes, N of which being the given
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nodes T, in (2.1) and the additional N+1 (the ‘‘Kronrod nodes’’) and all 2N + 1 weights being
determined to achieve maximum algebraic degree of exactness for Qns(f). Hopefully, the
N+1 Kronrod nodes are all real and fit nicely into the N+1 spaces between the nodes T, and
between the extreme nodes T, Ty and the corresponding endpoints 1, —1 of the interval of

integration. Unfortunately, however, this is not guaranteed in general. Letting

N
iy () = l'I1 (t-1y) 2.4)

"denote the (given) node polynomial, it is known that the Kronrod nodes must be the zeros of

the (monic) polynomial Tx+; of degree N+1 (if it exists) satisfying the orthogonality property

[}t p@my(dr =0, all p e Py 2.5)

Since this is orthogonality with respect to a sign-changing ‘‘weight function’’, my, the usual

properties of classical orthogonal polynomials can no longer be expected to hold. Even the

ik=

* soos . 1 N
existence of Ty, is in doubt, unless the Hankel matrix Hy . (Tydt) = |: ,/: t‘*"n’N(t)dt:}

1

is known to be nonsingular.

By repeated Kronrod extension we mean a sequence of Kronrod extensions (all assumed

to exist),
On, () On, () CON, () -, (2.6)
where

No=n, Ny=2Ne +1, k=1,2,3,... . @7




Example 2.1: Gauss-Kronrod formula [KRONROD (1964)].

This is the Kronrod extension

0,(f) € Q2m1(f) 2.8)

of the n-point Gauss formula Q,(f) . It has all the desirable properties — interlacing of nodes

[SZEG('j (1935)] and positivity of weights [MONEGATO (1978)] —foreachn =1,2, 3, ... .
Example 2.2: Gauss-Kronrod-Patterson formulae.

These are the repeated Kronrod extensions (2.6), (2.7) for n =3 and Q3(f) the 3-point

Gauss formula,

03(f)c () cQisf)cOnf)c -+ . 2.9)

The chain of quadrature rules has been computed numerically by PATTERSON (1968), (1973)
through Q1s5(f). Remarkably, both the interlacing and positivity properties appear to hold for

each extension, although no proof of this has ever been given.

3. Extension by Newton’s method

Traditionally, the Kronrod extension (2.3) is computed by first obtaining n;,ﬂ in (2.5),
for example by expansion in Legendre or Chebyshev polynomials, then applying a rootfinding
procedure to compute the zeros of Ty4+y and finally (if the zeros are all real) computing the

weights of the Kronrod extension as those of an interpolatory quadrature rule. The first two
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steps can be combined into one by using eigenvalue techniques [see, e.g., ELHAY and KAUT-

SKY (1984), FREY, and WALDVOGEL and FREY].

Here we try to obtain all quantities of interest at once, by applying Newton’s method to

an appropriate system of nonlinear equations. If we write (2.3) as

N NEl '
ON() € Qo (f) = X ovf(t) + X ouf(ty), (GB.1)
p=1

v=1

where the 1, are prescribed and oy, c;, 1; are unknowns, the system of equations is taken to

be

Owu@)=m, k=0,1,2,..., 3N +1, (3.2)

where py is the normalized Legendre polynomial of degree k and my = | | py(d)dt =2 8o

with 8g9=1, 80=0 for k>0. Lewing xT=[0;,..., Oni ©f,..., ON4i}
1:; i iy ‘t,f,ﬂ] e R3¥*2 denote the vector of unknowns, we write (3.2) in the form

gx)=0, g:R¥N2 _, RWN+Z, (3.3)
where g has as kth component Qoy+1 (@) =Mk, £ =0, 1,..., 3N + 1. We assume here that

the extension (3.1) exists and has real nodes t;.

Newton’s method for (3.3) can then be written in the form

X=X -8, A=[g@) gk, i=0,1,2,..., (3.4)

where xo € R3¥*2 is a suitable initial approximation and g’ denotes the Jacobian matrix of g.
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If symmetry is present, as in Examples 2.1 and 2.2, the system (3.3) can be reduced to
essentially half its size, and in practice Newton’s method need only be applied to this reduced
system. For our qualitative study we shall ignore this simplification since Newton’s method
applied to the full system produces the same approximations as Newton’s method applied to
the reduced system, if the initial approximation of the former is the symmetric extension of
that of the latter. Neither shall we concern ourselves here with other practical matters, such as

the choice of initial approximations, for which we refer to CALIb et al. (1986).

As to convergence of Newton’s method (3.4), suppose that
l1g”(xo)l 1z Mg on Ug={xe R¥Z |Ix—xqll 2114911}, (3.5)

where |1g”11% is the sum of the squares of all second partial derivatives of all components of
g, and vector norms are Euclidean norms. A sufficient condition for convergence then is

[OSTROWSKI (1966, p. 187)]

B <1, Bg:=2MgllAgll- 11[g’xe)I M I, (3.6)

where now | |1 |z denotes the Frobenius matrix norm.

If we denote by 2 e R¥*2 the exact solution of (3.3) and assume that 3; #0,
w=1,2,..., N+ 1, then a straightforward adaptation of an argument in GAUTSCHI (1982,

Thm. 3.1) yields
1 a
@1 g = { [ ¢N(:)dz} : 3.7)

where




(3.8)

is a polynomial of degree 6N + 2 expressed in terms of elementary Hermite interpolation poly-
nomials o, By, ¥y defined by §
@) =8n, a®D=0, a®)=0;

BB =0, Bu®0)=8u, B.R0)=0; (3.9)
W@ =0, 1®)=0, ¥R =8..

From the definition (3.8) of ¢y, and (3.9), it readily follows that

on() >0, alte R,
ow®)=1, v=12,..., N, (3.10)
ovED=1, oy®n=0, p=1,2,..., N+1.

We emphasize that (3.7) is an equality, not an inequality, and that it holds for any Kron-

rod extension with real distinct nodes and 3; # 0, including those that may arise as links in a

It chain of repeated Kronrod extensions.

4. Numerical behavior of Newton’s method

Since notable differences were observed in the performance of Newton’s method for one-
time and repeated application of the Kronrod extension process, we carried out controlled
experiments for the Gauss-Kronrod extension (2.8) and the Gauss-Kronrod-Patterson exten-
sions (2.9) in order to (i) observe to what extent the sufficient condition of convergence (3.6)

was satisfied (approximately) for various initial approximations at preassigned accuracy levels;
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(ii) see how satisfaction or violation of (3.6) correlates with actual convergence or divergence
of Newton’s method; (iii) understand the principal factors responsible for convergence or
divergence. All computations were carried out in double precision on the DEC VAX 11/780

computer (machine precision = 2.78x10717).

Since accurate answers for the solutions £ are available in the literature, it was easy to
select initial approximations x having preassigned accuracy, say |lxq —%!! =¢. In reporting
A
our results, we approximate Mg in (3.5) by M = | Ig”(Q)l IF and T = 1 1[g"(xo)] I Iz by
I/l= I1[g’ (,/t\)]‘1 ||z as given in (3.7). The resulting approximation for 6p in (3.6) is denoted

A A A A
by 6; thus, 8 =2MT 1 1Ag | 1.
In our first experiment we applied Newton’s method to compute the Gauss-Kronrod
extension (2.8) for n =3, 7, 15, 31, starting with initial approximations x( at accuracy levels

—10-14 o_ 10-10 — 106 s NAA
e=10"",e=10"", and €= 10™. In each case we computed the quantities | 1Ay |, M, T, 8.

Table I. Convergence study of Newton’s method applied to (2.8) withn =3, 7, 15, 31

A A A

n £ 1Ag! | M r )
3 10 97(-15) 2.8(2) 1.6(00) 8.7(-12)
{0r0  1.3(-10) 1.2(=7)
107%  1.1(-6) 9.9(—4)
7 10" 21(-14) 24(3) 140) 1.4(-10)
10719 1.7(-10) 1.1(=6)
107 1.8(-6) 1.2(-2)
15 107 22(-14) 2.04) 1.400) 1.2(-9)
10710 1.8(-10) 1.0(=5)
107%  1.6(-6) 9.0(-2)
31 107% 21(-14)  1.6(5) 1.3(0) 8.7(=9)
100 1810 7.9(=5)

1078 2.4(-6) 1.0 0)
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The results are displayed in Table I. (Integers in parentheses denote decimal exponents.) It
can be seen that the sufficient condition (3.6) is amply satisfied at all accuracy levels shown,
except for 6-digit initial approximation when n = 31, in which case it is just barely satisfied.
Actually, Newton’s method did in fact converge in all cases.

Our second experiment is an analogous study of the first four Gauss-Kronrod-Patterson
extensions in (2.9), i.e., (3.1) with N =3, 7, 15 and 31, and the nodes T, on the right of (3.1)
being those of the N-point Gauss-Kronrod-Patterson formula (the Gauss formula, when N = 3).
The results obtained are shown in Table II. (The case N =3 in Table II is identical with the

case n =3 in Table L.)

Tabel II. Convergence study of Newton’s method applied to (2.9)

A A A

N £ [1Ag!] M T A
3107 97(-15) 28(Q2) 1600 8.7(-12)
10710 1.3(-10) 1.26-7)
1076 1.1(=6) 9.9(—4)
7 10°%  19(-14) 233) 1.50) 1.3(-10)
10719 1.6(-10) 1.1(=6)
107 2.1(-6) 1.4(=2)
15 1074 22(-14) 1.7(4) 79(00) 5.9(-9)
10719 2.0(-10) 5.4(-5)
1078 2.3(-6) 6.2(-1)
31 107 1.4(-10) 1.3(5) 9.6(5) 3.5(+1)
10719 2.6(-10) 6.5(+1)
10  9.5(=5) 2.4(+7)

A
What is most notable in Table II is the large jump of I' going from N =15 to N =31.
The value of f for N =31 is about 10° times as large as the corresponding value in Table L
A
This leads to values of the convergence index 6 considerably larger than 1. (For € = 10714, the

A
relatively large value of |1Ag!l, and hence the large value of 8, is in part due to double-

LR
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precision rounding effects.) It was observed that Newton’s method with initial approximations

at the accuracy levels € shown converges only when N = 3, 7 and 15, but not for N = 31.

In order. to appreciate and to understand the well-behaved and ill-behaved nature of f' in
the contexts of (2.8) and (2.9), respectively, we display in Figures 1 and 2 the polynomial ¢y
of (3.8) [which determines f' according to (3.7)] in the case (2.8) for n =3, 7, 15, 31 and in
the respective cases of (2.9). [For n = 3, the graphs are identical.] Only half of the graphs are

shown, since they are symmetric with respect to the origin.
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Fig. 1. The behavior of ¢y in the case of (2.8),n =3,17, 15, 31
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Fig. 2. The behavior of ¢y in the first four extensions of (2.9)
It can be seen that for one-time Kronrod extension, ¢y is less than 1 over most of the interval

[~1,1], the exceptions occurring very close to the endpoints + 1. For repeated Kronrod exten-

sion, the story is quite different!

Department of Computer Science
Purdue University

West Lafayette, IN 47907

US.A.




74

References

Calio, F., Gautschi, W. and Marchetti, E. (1986): On computing Gauss-Kronrod quadrature
formulae, Math. Comp. 47, 639—-650.

Elhay, S. and Kautsky, J. (1984): A method for computing quadratures of the Kronrod Patter-
son type, Austral. Comput. Sci. Comm. 6, no. I, 15.1-15.9. Department of Com-
puter Science, University of Adelaide, Adelaide, South Australia.

Frey, L.: Extension of quadrature formulas — Theory and numerical methods, Ph.D. Thesis,
Federal Institute of Technology (ETH), Ziirich, in preparation.

Gautschi, W. (1982): On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3,
289-317.

Kronrod, A.S. (1964): Nodes and Weights for Quadrature Formulae. Sixteen-place Tables
(Russian). Izdat. ‘‘Nauka’’, Moscow. [English translation: Consultants Bureau, New
York (1965).]

Monegato, G. (1978): Positivity of the weights of extended Gauss-Legendre quadrature rules,
Math. Comp. 32, 243-245.

Notaris, S.E. (1988): An algebraic and numerical study of Gauss-Kronrod quadrature formu-
lae, Ph.D. Thesis, Purdue University, 1988.

Ostrowski, A.M. (1966): Solution of Equations and Systems of Equations, 2nd ed., Academic
Press, New York.

Patterson, T.N.L. (1968): The optimum addition of points to quadrature formulae, Math.
Comp. 22, 847-856. Loose microfiche suppl. C1-C11. [Errata, ibid. 23 (1969),
892.]

Patterson, T.N.L. (1973): Algorithm 468 — Algorithm for automatic numerical iﬁtegrazion over
a finite interval, Comm. ACM 16, 694-699.

Szego, G. (1935): Uber gewisse orthogonale Polynome, die zu einer oszillierenden Belegungs-
funktion gehoren, Math. Ann. 110, 501-513. [Collected Papers (R. Askey, ed.),
Vol. 2, 545-557.]

Waldvogel, J. and Frey, L: Repeated extension of Gaussian quadrature formulas by means of
eigenvalue techniques, in preparation.




