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any one of the four Chebyshev weights divided by an arbitrary quadratic polynomial that remains positive on [—1, 1].
We show that in almost all cases these extended “Gauss—Kronrod” quadrature rules have all the desirable properties:
Kronrod nodes interlacing with Gauss nodes, all nodes contained in [ —1, 1], and all weights positive and representable
by semiexplicit formulas. Exceptions to these properties occur only for small values of n (the number of Gauss nodes),

namelv » < 1 and are carefully identified The nrecise deoree of exactness of each of thase Gaunss. Kronrod formulae
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is determined and shown to grow like 4, rather than 3n, as is normally the case. Our findings are the result of a
detailed analysis of the underlying orthogonal polynomials and “Stieltjes polynomials”. The paper concludes with a
study of the limit case of a linear divisor polynomial in the weight function.

Keywords: Gauss—Kronrod quadrature formulae, weight functions of Bernstein—Szegd type, orthogonal polynomials,
Stieltjes polynomials.

1. Introduction

The idea of embedding Gaussian quadrature formulae in higher-order quadrature rules to
improve upon their accuracy, or estimating their errors, was advanced in 1964 by Kronrod [8].
Kronrod proposed to insert n+ 1 nodes into an n-point Gauss—Legendre formula and to
determine them, and the weights of the resulting (2n + 1)-point formula, in such a way as to
£
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polynomial of degre n+ 1-—now called the Stieltjes polynomial—that i

lower-degree polynomials with respect to a sign-changing weight function,
nomial of degree n. He computed these zeros, and all weights involved, to 16 decimal digits for
n = 1(1)40. Mysovskih [13] noted that the same kind of orthogonality has previously been studied

by Szego [14], independently of its application to quadrature. Szeg6 indeed followed up on an
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idea already expressed in 1894 by Stieltjes in his last letter to Hermite [1, Vol. II, pp. 439-441].
Szegd proved that the zeros in question are all real, are contained in the interval (—1, 1), and
interlace with the zeros of the Legendre polynomial. He showed this to be true not only for the
Legendre weight (constant weight function), but also for a subclass of Gegenbauer weights. For a
further subclass of these, including, however, Legendre’s weight function, Monegato [10] in 1978
established positivity of all quadrature weights, a result that was suggested by Kronrod’s
numerical tables. The interlacing and inclusion properties of the nodes, and positivity of all
weights, for Gegenbauer and Jacobi weights are further studied in [3].

During the last ten years, interest in such quadrature rules has intensified, in part because of
their potential use in automatic quadrature routines, but also, undoubtedly, because of the
intriguing mathematical problems they pose. Recent surveys on the subject can be found in [11]
and [2]. Nevertheless, relatively little has been rigorously proved in this area. Apart from the
early examples of Gauss—Kronrod quadratures for Chebyshev weights [13] and Gegenbauer
weights [14,9,10], only one additional family of weight functions is presently known for which the
existence of Gauss—Kronrod quadrature rules with the properties mentioned, and indeed
semi-explicit formulae for them, have been established; these are the symmetric weight functions
considered in [4] consisting of the Chebyshev weight of the second kind divided by an even
quadratic polynomial.

In the following, we substantially enlarge this class of weight functions by considering
Chebyshev weight functions of any of the four kinds and dividing them by an arbitrary quadratic
polynomial that remains positive on the interval [ — 1, 1]. Such weight functions, even for divisor
polynomials of arbitrary degree, have been studied by Bernstein and Szegd (see, e.g., [15, §2.6]).

We develop the Gauss—Kronrod formulae in these cases and provide semiexplicit formulae for

them analogous to those obtained in [4]. We also prove that the desirable properties of the
interlacing of nodes, their containment in the interval [ -1, 1], and positivity of all quadrature
weights, hold true in almost all cases, exceptions occurring only for small values of n. We begin
in Section 2 with identifying explicitly the class of quadratic polynomials that are positive on the
interval [ —1, 1]. We also compute the integrals of the weight functions they generate. In Section
3 we develop the relevant orthogonal polynomials and establish some of their properties. The
corresponding Stieltjes polynomials are derived in Section 4. The core of the paper is Section 5
and 6. In Section 5 we study the respective Gauss—Kronrod formulae and establish the
interlacing and inclusion properties of the nodes. We also determine the precise polynomial
degree of exactness for each one of these quadrature formulae. Section 6 is devoted to explicit
formulae for the quaurature Weigulb and their pOSlu'v“xty rulau_y, in Section 7, we spec1auze the
results to weight functions in which the divisor polynomial is linear, rather than quadratic.

We shall be interested in weight functions on (—1, 1) of the form

wEYD (1) = (1-12)* /p(1) (2.1)
and

wEV2FD (Y = (1 = AEY21 + )TV /0(1)
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Proposition 2.1. A real polynomial p of exact degree 2 satisfies p(t) > 0 for —1 <t <1 if and only
if it has the form

(1) =p(t; @, B, 8) = B(B— 2a)1> +28(B — a)t + a® + §? (2.3)
with

O<a<pB, B#2a, |8 <B-a. (2.4)
Remark. Proposition 2.1 has previously been stated without proof in {12, p. 45
Proof. Letting

p(t)=at*+bt+c, a,b,ceR, a+0, (2.5)
we have that p(cos #) is a cosine poiynomial of degree 2 with real coefficients which is positive

for all real values of 8. By [15, Theorem 1.2.2] there then exists a unique polynomial / of exact

deoree ) ith ranl cnafficiante gaticfyine
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h(z)#0 in|z| <1, K(0)>0, (2.6)
and such that

p(cos 8) = | h(e'?)|>. (2.7)
Writing

h(z)=pz’+qgz+r, p,qg, reR, p=+0, (2.8)

one finds by an elementary computation that
[h(e'?)|%=4prcos®0+2g(p+r)cos b+q>+(p—r),
hence, by (2.7) and (2.5),

= = ) 2
a=4pr, b=2g(p+r), c=q*+(p—r) (2.9)
On the other hand, all zeros of 4 are ocutside the closed unit disc |z | <1 (the first condition in
(2.6)) if and only 1
s NN o { 2130 - { \
\T')\G)>0 (T°h){0) >0, 12.10)

6.8b]). One easily caiculates (Th)(z)=¢q(r—p)z+r*—p? (T ~n)(z)—(r—p) [(r+p)“ q°].
Therefore, (2.10), together with the last conditions in (2.6) and (2.8), is equivalent to

r>|pl, r+p>iql, p#0. (2.11)
Letting « =r — p, 8= 2r, 6 = g, or equivalently,

p=iB—a,  g=8, r=3p, (2.12)
we obtain from (2.9) and (2.11)

a=B(B-2a), b=28(B—a), c=a’+8*
with

B>|B—2«, B—a>|8], B#2a. (2.13)
it remains to observe that (2.13) i1s equivaient to (2.4). O
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We will call the parameters a, 8, 8 admissible, if they satisfy (2.4).
The discriminant of the polynomial (2.3) computes to 4a*(82— B2 + 2af), so that p has a
pair of conjugate complex zeros if 82 < 8(8 — 2a) (which implies 8 > 2a), and two real zeros if
2> B(B—2a). If B— 2a > 0, the real zeros are both negative (hence less than —1) if § > 0 and
both positive (hence larger than 1) if § <0 (8 =0 is not possible in this case); if 8 — 2« <0, they
are on opposite sides of [—1, 1].
We note from (2.7) that

—1 . .
p(Hu+u))=0, ueC, |u|>1 implies h(u)=0. (2.14)
Tndaad s Aannta tha zarnc Af L (hath largar than 1 3nm maoadnlag e (9 &N tham )Y T\ ~con ha
ALIVILAAG, 11 ul, uz UUCLIULL UL LO1VUD UL T \UULIA lals\'l Liiall 1 111 111U UiILo U.y \L.U}}, LIV 1) \L- I} vail Ue
written as

p(%(eia + e—is)) =p2(ei"" _ ul)(e_i"" _ al)(eia _ uz)(e_w _ az)’
an identity valid for all real §. By the Identity Theorem for holomorphic functions, the same
relation holds for complex # as well, which, letting u = e'? (§ complex), yields (2.14).

The polynomial p and the weight functions (2.1), (2.2) become particularly simple when 8 = 0.
In this case we write

a/B=3(y+1), —-1<y<l, (2.15)
and obtain by a simple computation
p(t; a, B, 0)=a2[1—(4y/(y+1)2)12]. (2.16)
Thus, apart from a constant factor, we are led to the weight functions
w D (1) = (1 - 2)*2 /(1 - pr?), (2.1)°
Y YOS Ol L) i ek S . SUY (2.2)°
B (y+1)

The Gauss—Kronrod quadrature rules for w{/? have been studied in [4].

It is of interest to compute the integrals of the weight functions (2.1), (2.2). We begin with
w(~1/D Letting a = B(B — 2a) and denoting the zeros of the polynomial p in (2.3) by z,, z,, we
have

1 \
(-1/2) _ (=172 (4 - u— dr— | —L— dt}.
Ao j e (1) d a(zl—zz) i./ 1tz ./_1 t—z, }
7

It is known (see, e.g., Gradshteyn and Ryzhik [6, Eq. 3.613.2]) that

/-1 T(t)( 1)1 gy = __2‘”___ (2.18)

L z—t —1\,.n"°
Y1 \u—u ju

where T, is the Chebyshev polynomial of degree n and
1/u) lu] > 1. (2.19)

Th A
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exterior of the unit circle, |u| > 1, into the whole z-plane cut along [—1, 1], concentric circles
going into confocal ellipses. Letting

Zi=%(ui+1/ui)’ [u;} >1, i=1,2, (2'20)
one finds from (2.17), (2.18) (with n = 0) by a simple computation that
+1
pe-1n = Am i thity . a=pB(8-2a). (2.21)

@ i =1 (uf ~1)(u3-1)

Since, by (2.20) and (2.14), u,, u, are zeros of A, the symmetric functions of u;, u, in (2.21) can
be expressed rationally in terms of the coefficients of 4, hence by (2.12) in terms of «, 8 and 8.
One finds

2(B—a) 2a
u1u2=IB—_2—a—, u1u2+l=m, u1u2—1=B_2a,
2.22)
4l(B - a)* — 82 (
(u? = 1)(u2 = 1) = (uguy +1)* = (uy + u,) = [ 3 ]
(B—2a)
Substituted in (2.21), this yields
_ B—a
BV = ) (2.23)
° a[(,B—a)z—-Szl
We proceed to the weight function w'/? and the integral
1
B/ =f w2 () dr. (2.24)
-1
A decomposition analogous to the one in (2.17), and using (cf. [6, Eq. 3.613.3])
L G,(1) 2712
f_l S (=) di = = (2.25)
in place of (2.18), yields
B/ = 2n_ 1 (2.26)

a wu,—1’
with u, defined as in (2.20), hence, by the third relation in (2.22),

B{? =m/aB. (2.27)

Interestingly, the integral in (2.24) does not depend on the parameter 8.
Finally, for the integral

Boa/z,_l/z)=j‘1 w2712 (1) dy, (2.28)
1

we use (cf. [5, §5.2], where the case (1 — 1) ~1/%(1 + ¢)1/? is treated, which is easily transformed to
the present case)

fl 1- t)1/2(1 + t)VI/2 2
—1

— dr= "% (2.29)
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and find

BO/21/D = 4n ot L
0

a (wuy—D(u;+1)(u,+1)’

which by (2.22) and

(uy + W, +1) =2(B—a~8)/(B~2a)
becomes

B2V — (B — o — ). (2.30)
For the remaining weight function, w(~1/21/2 see (3.24) below.

In the following, for ease of readability, we shall often drop the superscripts +1/2 in the
notation for weight functions and related quantities, when there is no danger of ambiguity.

3. The orthogonal polynomials

In the limiting case p(¢) =1 (corresponding to a =1, 8—2, § =0 in (2.3)), the orthogonal
polynomials associated with (2.1) are the Chebyshev polynomials 7,(#), U,(¢) of the first and
second kind (corresponding, respectively, to the minus and plus sign in (2.1)), whereas those
associated with (2.2) are similarly the Chebyshev polynomials V,(¢), W, (¢) of the “third and
fourth kind” (corresponding, again, to the minus and plus sign, respectively). These are
characterized by the well-known formulae

_sin(n+1)6

T,(cos 8) = cos nb, U,(cos ) = 5o 0 (3.1)

and
+1)6 i +3)6
V. (cos 0)=E§(Ll—2)—, W, (cos 0)=213QTL)— (3.2)
cosz8 sin3 @

They all satisfy the same recurrence relation,

Y1 =20 =V, k=1,2,3,..., (3.3)
where

Yo=1 »n=t for T,(1),

=1, =2t for U (¢),
yO yl o n( ) (3.4)

Yo=1, y,=2t—1 forV,(1),
Yo=1, y,=2t+1 for W, ().

It is natural to expect that the orthogonal polynomials for the more general weight functions
(2.1), (2.2), with p as given in (2.3), can be expressed in a simple manner in terms of these same
Chebyshev polynomials. This is indeed the case, and the respective expressions will be derived in
this section.

We will denote the (monic) orthogonal polynomials relative to the weight functions (2.1), (2.2)
by

7 V() =g (1 wEVD), g(EV2FUD (1) = g (17 w(E1/2F1/D)

n=0,1,2,..., (3.5)
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and shall drop superscripts when their values are clear from the context. With 4(z) the unique
polynomial in (2.7), let h(e'?) = c(8) + is(8) where c(8), s(8) are real. Then, by [15, Theorem
2.6], we have, up to constant factors,

7! "P(cos @) = const - [¢(8) cos nf + s(8) sin nd],

sin(n+1)8 _ 5(8) cos(n + 1)0}’

sin 8 sin 8

in(n+%)0 +1)0

sm(? 1 1) _s(a)cos(.n 1 1) .
sin;8 sin#

7/?(cos 8) = const - [c(b’) (3.6)

7{1/271/D(cos 8) = const - [6(9)

From (2.8) and (2.12) we find that
c(8)=(B~-2a) cos*d+ 8 cos 6 + a, s(8) =sin 8{(B — 2a) cos 6 + §]. (3.7)
Writing cos § = ¢ in (3.7), we get in view of (3.1),
m{"V2(t) = const - {[(B—2a)t2 + 8t + o] T, (1) + (1 — 2)[(B — 2a)t + 8] U,_,(1))
= const - {[#(B—2a) +8][1T, (1) + (1 = t)U,_,(2)] + aT,,(1)}.
Since 1T, + (1 — t*)U,_, = T,_,, as follows easily from (3.1), this yields, if n > 2,
7 "VD(t) =const- [(B—2a)tT,_,(¢) + 8T,_,(t) + T, (1)]
= const- {(B—2a) - 3[T, (1) + T,_,(1)] +8T,_,(1) + aT, (1)}
= const - [}BT,, (1) +8T,_(¢) + 3(B—2a)T,_,(1)].

As the leading coefficient of the expression in brackets is 2”7 !- 18, we obtain

R0 = S 0+ 210+ 1 G R (3:8)
zn—l B B
When n =1, one finds
7 V(1) =1+ 8/(B - a). (3.8)’
In a similar way one computes
w0 = ka0 + 20 0 (1 2 Junw] e, 6.9)

where U_,(t) =0 when n=1.
To obtain 71/%>71/D we use (3.2) and (3.7) in the last equation of (3.6) and find

7 /27D (1) = const - {[(B = 2a)t + 8][1W, (1) — (1 + )V, (1)] + oW, (1)).

Noting that tW, — (1 + )V, = W, _, and, for n>2, by (3.3), tW,_, = (W, + W,_,), we obtain
727D (1) = const - [3BW, (1) + 8W, _1(1) + H(B — 2a) W, _,(1)].

Since W, has leading coefficient 2" (cf. (3.3), (3.4)), this yields

28
B

Wtfl/2,—l/2)(t)=in w.(1) + W;.—1(t)+(1_ 2?"‘)I/Vn_z(t)], n>2. (3.10)

2
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For n =1 one finds, by virtue of (3.4),
a2V =t+ (a+8)/B. (3.10)'

Denoting the polynomials (3.5) more precisely by w{*/2(¢; a, B, §), and #{ =27V (¢, o, B,
8), if we want to stress their dependence on the parameters «, 8, 8, then a simple argument will
show that

mTVR(1 4, B, 8) = (=1) 02T (<1 a, B, —6). (3.11)

There is an alternative derivation of (3.8), (3.9) and (3.10), which explains why the coefficients
on the right are the same in all three formulae, and in fact equal to —(u; + u;)/(uu,) and
1/(u,u,), respectively (cf. (2.20)). We explain the method for the case of (3.8). Expand 7{~'/? in
Chebyshev polynomials of the first kind, 2"~ 'z~ V2(¢) =7 _ ¢, T, (1), ¢,=1. It is easily seen
that ¢, =0 for kK <n — 2. To obtain the desired orthogonality

1
It )p&( 1-2)""?dr=0, all pep, ,,
-1

write
p(ty=p(t)q(t)+r(t), q€P, 5, rep

to see that it suffices to make 7{~1/? orthogonal (with respect to w(=1/?) to linear functions.
Choosing in P, the basis functions z; —¢ and z, — ¢ (where z, are the zeros of p, assumed
distinct), one arrives at the system of equations

1 T t - 1 T t _
c,,_lf L) )(1—t2) 12 dt+c,,_2f_1——~—"‘2( )(1—12) 2 ds

-1 Z-—t Z’-—t

1 T,(¢ -
= / EHO) -7 de, i=1,2,

1 Z - t
which, by virtue of (2.18), reduces to
e,y FUiC, = —1, Uyl U3c, 5= —1,

and has the solution ¢, _, = —(u; + u,)/(uu,), ¢,_, =1/(uu,), as claimed. If p has a double
root, the result follows by continuity. The same argument goes through for the other weight
functions.

Proposition 3.1. We have, for n>1,
m0() VD) = A + (8/B)nfl/(0) + 51 = 2a/B) a3 (). (3.12)

Proof. We first note from (3.1) that
2[ m+n(t)+Un—~m(t)]’ msn,
Tm(t)Un(t)= 5U2n+l(t) m=n+1’ (313)

HUpsu(t) = U,_a(8)], m>n+1.
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From (3.9) and (3.8) we thus obtain for the product in (3.12), if n >

1 26 2a) H 28 ( 2a) }
U+—ZU_+(1~-—UL|To+—5T,+|1-|T,_
22"[ B ( B B B !
1 268 2«a
= 22,,4_1 {U2n+1 + —IB_U2n+ (]‘ - ?)U2n—l

28 28 2a
+ _E[:Uln + FUlnAl + (1 - ?)U2n—2:l

+(l - 2?(I)[Uz,, 1+ 2188 U,_,+ (1 - %)UZ"_3}},

which, by (3.9), is precisely the right-hand side of (3.12). O

Proposition 3.2. We have, for n »
a1 (1)l 1/“/%)—w“ﬂ)(r)+<a/3>w2<3/3{(t>+ 11— 20/8) 7/2(1).

(3.14)
Proof. From (3.2) and elementary trigonometric identities one gets
Upin(t) + U, q(2), m<n,
V()W (1) = U, (1), m=n, (3.15)
Upin(t) = Uy a(8), m>n.
Furthermore, replacing 8 by 6 + = in (3.2) gives
W, (=) =(-1)"V,(1). (3.16)

Using (3.10) and (3.11), the product in (3.14) is then computed similarly as in the proof of
Proposition 3.1 to be equal to the right-hand side of (3.14). O

The formulae (3.8), (3.9) and (3.10), in conjunction with (3.3), (3.4), immediately yield the
recurrence relation

Tewa(t) = (t—a)m (1) = Bym_ (1), k=0,1,2,..., (3.17)
for the respective orthogonal polynomials. One finds for w'=1/2:
“5‘1/2)=*Bfa, a§"1/2)=ﬁﬂﬁ(i7), af VP =0 for k> 2;
B{—l/z)_ Ug(—)_L)éi, (- 1/2) _ %ﬁ’ B}g—uz) =1 fork>3: (3.18)
-«
for w/2;
a((,lﬂ):ﬂ%, a?=0 fork>1;

3.19
12— = /2y 1 . ( )
1 ZB k 4 fOI' k 2 2,
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and for w1/~ 1/2).

Q721D = a ; & ’ all/2=1/2) = ————20‘2; B , a2V D =0 for k> 2;
3.20)
_ a(B—a—38 _ (
BT = —B—) BOATVI L for k> 2.
Accordingly, for the norms
1
w12 = [ mH (e w(e) di = Bopy -+ B,
with B, given in (2.23), (2.27), and (2.30), one obtains
T ™
| V) 2= VPP = ——> forn>2; 3.21
1 | B(B_a) ” ‘ 22"_332 ( )
I 77,'51/2) I 2 _ 22"7_7132 forn=1; (322)
| w321/ 2 = 22,:7—72'32 for n>1. (3.23)

None of these norms, remarkably enough, depends on 8.
The analogous results for the remaining weight function, w'~1/21/2 can be obtained from
those for w'/271/2 by means of (3.11), giving

a2-1/2,1/2)(a B 8) — _ail/Z,—l/Z)(a B —8)

s e 3.24
B/E—]/z'l/z)(a, ,Ba 8) =,8/£1/2’_1/2)(0" ,B,—S), k=0, 1, 2’.”; ( )
(Rl RN K A LR S (3.25)

The recursion coefficients in (3.18)-(3.20) allow us to compute the zeros of the orthogonal
polynomials (3.5), as well as the zeros of the corresponding Stieltjes polynomials (except for the
first few, cf. (4.2), (4.5) and (4.8)) efficiently as eigenvalues of symmetric tridiagonal matrices.

4. The Stieltjes polynomials

Given an orthogonal polynomial «,(-)=a,(-; w) of degree n with respect to a weight
function w on [—1, 1], there is associated with it a unique (monic) polynomial 7% ,(-)=
¥ (-3 w) of degree n + 1, called Stieltjes polynomial, which satisfies the orthogonality relation
(see, e.g., [2, §1])

1
[ mra)m () p()w(t) de=0, all peB,. (4.1)
In this section we express the Stieltjes polynomials m{Ff1/2%(-) = mX (-; w(E/?),
gl FV2FUDN Yy =g * (- wE/2FD) for the weight functions (2.1),(2.2) in terms of the
orthogonal polynomials of Section 3 and determine the respective products #.* ()7, () appear-

ing in the integrand of (4.1).
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Pronncition 41 Wo hane
a lvl’va.l PR, “We s C i C

TP () = (2= 1)7P(1), n>4, (4.2)
and

(—1/2)* (=12
Ty () mTV2(e)

(=m0 + 2aean + - 22 am)] s (43)
L B 4y B ]
Furthermore, for n=1, 2, and 3,
x 8 1
7V () =12+ i i(l + %)’ (4.2)'
- _ _ ) _
T = A 4 ), (43
st oo ) 1
(1D N (1 Dy e —1imen s O 1 1 \ o2
773‘_”"U)?Tz‘_”"(f)='”s‘—”"(t)+E”f”"(t‘Vfﬂ —7‘1} a2 (1); (4.3)
(~1/2)%(4) = ¢4 @ )a2_ 8 1(, b« 3
m TN =1+ 5 B (1+ 2B)t i 16(1+ 3 ) (4.2)
12y _ _ 8 8
w0l (0) = () + G ) = St (0 — ).

(4.3)°

Proof. Define g, ()= (t*—1)n~/?(¢). Clearly, g¢,,, is monic of degree n+ 1, and using
Proposition 3.1 (with n replaced by n — 1), we find (for n > 2)
daas 70 = (2= D000

~

~ (- )[AW + A0 + 1 [1- B3] @

Consequently, if n > 4, using (12 — Dw™D (1) = —wlD(¢), we get
1
—-1/2 1/2
[ (D20 p (1w V2(1) d

[

Pl ) .
-J ["fz‘f/‘{(t)“L =73,/ 3(1)
“1 B

.
+ 2(1- 2w pwe) =0, an e,
by the orthogonality of the #/?, since 2n — 3> n for n > 4. Thus, g,,, has the orthogonality
property (4.1) required for 77,,( TV D , and by uniqueness, g, ,, = 7{71/?". This proves (4.2), and
(4.3) follows from (4.4).
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To prove the special cases n =1, 2 and 3, first write the polynomials #{;{/?" in (4.2)" in
terms of the U’s and then verify (4.3)" by expressing the product #{;1/?"7(~1/2 in terms of the
U’s, using (3.8) and (3.13), and finally simplify by making use of the relations obtained by
multiplying (3.8) by U, (thereby expressing #{~'/? in terms of the U’s). The computations are
elementary, but tedious, and will not be reproduced here. O

Proposition 4.2. We have

mD(1) =7 P(1), n>2, (4.5)

and
BP0 = A + G20+ (1= AR, nz2 (@46)
B A\ B

Furthermore, for n=1,

m{/2(1) = 1>+ (8/B)1 — 5(1 + 2a/B), (45)'

m$ () w0 (1) = w0 (0) + (8/8)m (1) (46)
Proof. Let g, ,(¢) =7 1/?(¢). Then by Proposition 3.1, for n> 1,

Gr (D77 (1) = P ()80

=,/ A(t) + (8/B)n/ (1) + (1 = 2a/B) mf, 2 (1), (4.7)

a yarifiad dirastly (]
C Yoiill \,u Ull\r\/l,l.y —

by virtue of 2n — 1 > n. Hence, ¢, ,, = 7/?", which together with (4.7) proves (4.5) and (4.6).
y n+1 n+1 g

Proposition 4.3. We have

n0T V(1) = (14 1)mTVAD(1), ns3, (4.8)

)

_(t+1)[ a2 () + 2 77;}/2;(1)+ ( 2a ) <1/2>(t)] n>3. (4.9)

,u

(1 a2 @8

(1/2—1/2) (t)wa/z—l/z)(t) ___77(1/2 1/2)(1‘) L ato a+ 6

Furthermore, for n=1 and 2,

A1 (r) = £ 4 5

202D (1), (4.9)'

) - + 48
s —ps Mia B)as Lo 8oa) 1y, 2ta8)
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W3(1/2,——1/2)*(t)W2(1/2,*1/2)(t) =775(l/2,——1/2)(t) + %(1 + 238) 1/2,— 1/2)(t)
+ %(1 + —29;—2‘1)7;;1/2’-1/%). (4.9)°

Proof. Let g, (1) = (¢ + 1)7(~/21/3(s). Then, by Proposition 3.2, for n > 2,
Guer ()72 (1) = (14 )7V (1) w127 (1)
/2y J (1/2) 1 2a (1/2)
=(r+ )| 7,/ 2 (1) + B'”zn (1) + 2 1- 'F i 5 (1))
(4.10)

Using (¢ + 1)w1/27 VD) = w/2(1), one thus gets, if n > 3,

1
[ a7 0272(0) p (1) w2712 (1) de
-1

1 ) 1 2a

= [0+ Se0+ 5 (1 2200 powe 0 ar-o,
~1

all pe P,

since 2n — 2 > n. This proves (4.8), and (4.9) follows from (4.10).
To verify the special cases n =1 and 2, it is convenient to first express 7%/2~1/2* in (4.8)" in
terms of the 7’s, then compute the products in (4.9)" as linear combinations of the W’s, using

2[ m+n(t +W (t)], m<n,
T ()W, (1) = 3[ W3, (1 +Wot)] m=n, (4.11)

W) =W, ()], m>n,

and finally simplify the results by using (3.10). The details of the computations are left to the
reader. O

Proposition 4.4. We have
V2D (g o B 8) = (—1)" a2 VD (s a, B, —8), n>1. (4.12)

Proof. We verify that the polynomial on the right has the required orthogonality property (4.1).
Using p(—1; a, B, 8) =p(t; a, B, —8), we find by the substitution of variables 7 +— —1,

1 *
(-0 [ 782D (=15 @, B, =8)mTAY(s; «, B, 8)p(1)

-1
x w2 (15 a, B, 8) di

n+1 1 _ * —
= ()" [ AR, B, = 8)m (15 a, B, 8)p(—1)

X w2~V (45 a, B, —8) dr,
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since w"V2VD(—¢: o, B, 8) = w2 VI (¢, @, B, —8§), which by (3.11) is equal to
1 . ~ ,
[ B8 a, B -8) a1, B ~8)pi 1)
-1

X w72V (¢ o, B, —8) dr.

This is zero for each p € P, by definition of /712", O

Proposition 4.5. Let 1, be the zeros of m,(-; w). Then

Toa(ms w) =375 (15 w), »=1,2,....n, (4.13)
foralln>2 ifw=w?, foralln>4ifw=w'""?, andforalln>3 if w=w(=/2F1/2

Proof. Consider first w = w1/, By (3.9) we have

w0 = 2 00+ 22U 0+ (1- 2 u ) (414)

Here, U,_,(7,) # 0. In fact, if we had U,_,(7,) = 0, then, by (4.14), since 7, is a zero of 71’2, we
would obtain

G (5)+ (1= 25 U a(z) -0,

and by the recurrence relation (3.3), Qa/B)U,_,(7,) =0, i.e., U,_,(7,) =0, since a > 0. This is
impossible, since two consecutive orthogonal polynomials cannot vanish at the same point. We
therefore obtain

8 _al.s(n) 10(5)+7, (1)
B BU_ i) 2 U,-1(7)
Letting 7, = cos §,, 0 < §, < 7, this yields, in view of (3.1),

8 asin(n—1)8,

(4.15)

Setting ¢ = cos 6, in (4.14), after replacing » by n + 1, and then substituting for § /8 from (4.15),
one obtains, after some elementary computation,

a sin g,

7D (1) = 4.

n+1 (T) nB Sin no M ( 16)
A similar substitution in (4.5), if n > 2, using (3.8) (with n replaced by n + 1), gives

2A/D* ___a sin 8,

a1 (Ty) 2"—1B Sin noy' (4'17)
Comparing (4.16) with (4.17) immediately yields (4.13).

For w= w12 and n > 4, one obtains in the same manner
sin’6,
( 1/2) _ = 1g(=1/D*
('T) an— 1B COS(n—1)0 2Tn 1 ( ) (4.18)

(r/(5) =0, n=cosa),
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and for w=wl/2"1/2 5> 3

)
sin“d .
v = 1,0/2-1/2) ("'»)

2B sinld, sin(n— 1), * ! (4.19)
(77,,(1/2’_1/2)(7,,) =0, 7 =cos 0,,).

The analogous result for w(~1/21720 follows easily from (3.11) and (4.12). O

— [44
mO7 P (n) = -

5. Interlacing, inclusion, and exactness properties

If 7,=1{" denote the zeros of the orthogonal polynomial 7,(-)=m,(-; w), and 7% =7(""
those of the polynomial #* ,(-) ==X ,(-; w) satisfying (4.1), then, if they are distinct among
themselves and between one another, one calls the (interpolatory) quadrature rule

n+1

[ 7w ai= T 01(5)+ T o21(5)+ R() (5.1)

the (2n + 1)-point Gauss—Kronrod quadrature rule, or the Kronrod extension of the n-point Gauss
rule, relative to the weight function w. The formula (5.1) is known to have precise degree of
exactness d = 2n + k, where k is the unique integer satisfying

/1 '”,,*+1(t)'”n(t)P(t)w(t) dt{ =0 foral peP,_,,

5.2
- #0 forsome p € P, (5.2)

(see, e.g., [2, §2]). By (4.1) clearly k> n+ 1, hence d > 3n+ 1.
We say that (5.1) has the interlacing property if all nodes 7,, 7.,* are real and satisfy, when
ordered decreasingly,

* * * *
X, <T, <TX< <7 <7 <7 (5.3)

We say that (5.1) has the inclusion property if all nodes 7,, 7.* are contained in the closed
interval [—1, 1], i.e.,

—-1<7*, and 7*<1, (5.4)

if (5.3) holds.

In this section we show that, with a few exceptions for small n, the Gauss—Kronrod formula
(5.1) enjoys the interlacing property when w(z) =wE/D(s; a, B, 8) and w(z) =
w(t172¥1/D( o B, §) and the parameters a, 8, 8 are admissible. In addition, we state condi-
tions under which the inclusion property holds, and we determine the precise degree of exactness
for all Gauss—Kronrod quadrature formulae in this class. As mentioned at the end of Section 2,

superscripts + 3 will be deleted when there is no danger of confusion.

Theorem 5.1. Consider the weight function w(t) =w"V2(¢; a, B, 8), with a, B, 8 admissible.
(a) The Gauss—Kronrod rule (5.1) has the interlacing property for all n > 1, except when n =3
and B > 2a, in which case (5.3) holds if

1 (38-20)"(B+6a)

82<8l, 8= TE (5.5)
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(b) The inclusion property holds for all n = 4. For n = 3 (assuming interlacing; cf. (a)), it holds
precisely if B> 2a; for n=2 precisely if B>2a and |8| < B —2a; and for n=1 precisely if
18] < 3(B—a).
(c) The precise degree of exactness d of (5.1) is equal to 4n—3 ifn>4. If n=3, then d =10
unless 8 = 0, in which case d=11. If n=2, thend="Tif B#4a, d=8 if B=4a and 8§ # 0, and
d=9ifB=4aand 6=0. Ifn=1, then d=4 if § # 0 and 5 otherwise.

Proof. (a) If n =1, we have by (3.8)! that 7, = —§ /(8 — a), hence by (4.2)’,

1 2
(T = ——|[2a8% - a+B)B—a
(m) 2B(B_a)2[ (a+B)(B~a)]
a a+,8_l a
<32 ~3lpy=<o

by virtue of (2.4). This proves (5.3) for n = 1.
If n =2, we have by (3.8) and (4.2)>

_2. 8 @
7, (1) t+Bt B’ o
'rr*(t)=t3+§t2—l+(3+2—a)t—~3—§ .
? B 4 B 48

The interlacing property holds when 8 = 0, since then 7%, = a/B and =;* has a zero at t =0 and

two other zeros 7% with 7%’ = (3 +2a/B)>a/B. Upon varying |8| from 0 to B —«,

interlacing can only break down when 7, and #;* have a common zero, ¢,, for some & in that

range. If that is the case, then by (5.6)

a a 1 2a 38
(“ f)’o‘ ag ="

)
o+ - - —

BB BT
which, upon eliminating ¢,, yields
82=1(3-2a)’.

It is elementary to see that the right-hand side is larger than (8 — a)? for admissible «, 8.
Consequently, the interlacing property holds for all admissible «, B, 8.

We now discuss the case n = 3. One shows, similarly as in the case n = 2, that (5.3) is true
when 8 =0. As in the previous case, we determine the first value of |&8| for which the
polynomials

_ppda 1 @y, _ 138
773(t)-t+IBt 2(1+’8)t 2B

- (el §)

(cf. (3.8) and (4.2)*) have a common zero t,. Writing

7 (1) =t[t3+ %tz— %(1+ %)t] — 12— %t+ 11_6(1 + %")

(5.7)
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Ql’lf‘ NCINg
and using

7’3(10) = O’ (58)
the fact that #*(¢;) = 0 yields

, & 1(. 6a) _

Iy + —,Elo_ §kl+ ?—} =u,
“’l ‘;Ch uf\f\“ fﬂl‘(“'f\" {R Q\ C;mn];F;QC tn
Y Jia 9 YVLI l\iuollls \J.Ul’ 01111111111\40 w

that is, to
= 48/(2a —38).

Incprhn thic into (S.8) one fi a
Inserting thus 1nto {2.8) one n a

i o
Hence, for all values of |§| smaller than |§,| we are as
elementary computation shows that

2> (B—a)’ iff40r°—2872—42r+23S0, r=a/p. (5.9)

Since 0 < r <1 by (2.4), and the cubic in (5.9) has a zero at r =} and two other zeros outside,

and on either side, of [0, 1], we have |§;| > B — a (for admissible «, B) precisely if 3 <r <1, ie,
B < 2a, where equality is excluded by (2.4). Therefore, if 8 < 2a, the interlacing property holds,
if B> 2a, it holds when 82 < 8§ as claimed.
Finally, for n > 4, the assertion follows immediately from 7{~1? (1) = #01/2%(¢) (cf. (4.5)) and
a7 VD% (t) = (12 — 1)7{/P(1) (cf. (4.2)), and the fact that the interlacing property holds for the

weight function w'/? (cf. Theorem 5.2(a) below).

(b) For n> 4, the 1nclu51on property (5.4) follows immediately from (4.2). For n=3,
assuming interlacing, (5.4) is equivalent to 7*(+1)> 0, hence, by (4.2)°, to 8> 2a. qm_“
B # 2a, we have inclusion precisely for 8> 2a. If n =2, we have (5.4) if and only if m*(1) =
and 7*(—1) < 0. By (4.2)?, this is the same as § > 2a — 8 and 8 < 8 — 2a. These conditions are
incompatible when S < 2a, and equivalent to |8 | < 8 — 2« when 8> 2a. Finally, when n =1,
using (4.2)", we have by a similar argument as before that (5.4) holds precisely when 8 > — (8
—a)and §< H(B—a),ie, |8] <3(B— ).

(c) We have d=2n+ k, with k determined as in (5.2). If n > 4, then (4.3), in view of
A = tHwVD () = wl/D(y), yields k =2n — 3, since 8 # 2a, hence d = 4n — 3. The remaining
assertions follow similarly from (4.3)", n=3,2,and 1. O

1 n S —RZ with 82 as oiven in

o 5.5)
on with §; given in (5.5).
s

LR

(
s v
ssured of the interlacing property. An

Theorem 5.2. Consider the weight function w(t) =wV?(t; a, B, 8), with a, B, 8 admissible.

(a\ The Gauss—Kronrod rule (5. 1\ has the interlacine property fnr all n>1.

Gauss rule (5 nterlacing property |
(b) The inclusion property holds for all n > 1, except when n =1 and B> 2a, in which case (5.4)
holds precisely when |8| < (38 — 2a).
(c) The precise degree of exactness d of (5.1) is equal to 4n—1ifn>2; ifn=1, thend=4 if
80 andd=5if §=0.

Proof. (a) We first note that interlacing holds when § = 0. Indeed, we are then in the case of the
weight function w{/? of (2.1)° for which the interlacing property (5.3), including (5.4), is known
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from the work in [4]. Moving § away from O, either to the left or to the right, within the
allowable range || < B — a, the interlacing property ceases to hold only if for some &, in this
range the polynomials #, and =%, have a common zero, t,. Proposition 4.5, if n > 2, would
then imply 7, ,(#,) = 7,(2,) = 0, which is impossible, and (3.9), (4.5)}, if n=1, would imply
B+ 2a =0, contradicting (2.4). Hence, interlacing prevails for all admissible, a, B, 8.

(b) The inclusion property (5.4) follows immediately from (4.5) when n > 2. If n = 1, we have
(5.4) precisely when 7,*(+1) > 0, which, on using (4.5)" is equivalent to |8 | < +(38 — 2a). Here,
the bound is larger than 8 — « if B < 2a, so that the constraint is active only if 8 > 2a. (The case
B =2a is excluded by (2.4).)

(¢) If n>2, then (4.6) shows, since B+ 2a, that (5.2) holds with k=2n—1, so that
d=12n+k =4n—1. The assertion for n =1 follows from (4.6)! by a similar argument. O

Theorem 5.3. Consider the weight function w(t) = w21V, a, B, 8), with a, B, 8 admissible.
(a) The Gauss—Kronrod rule (5.1) has the interlacing property for all n > 1, except when n =2
and B> 2a, in which case (5.3) holds if

_ B+ 8af — 4a?
N 8a + 48

—(B—a)<b8<§,, § (5.10)

(b) The inclusion property holds for all n > 3. For n =2 (assuming interlacing; cf. (a)), it holds
precisely if

B - 6a

B>2a and —T<8<B—a, (5.11)
and for n =1 if both inequalities
66+58—2a>0 and 28+2a—-B<0 (5.12)

are satisfied.
(¢) The precise degree of exactness d of (5.1) is equal to 4n—2 ifn=3. If n=2, thend=1,
unless 26 — 2a+ B =0, in whichcased=8. Ifn=1, thend=4 if a + 8 # 0 and d = S otherwise.

Proof. (a) It is elementary to show, using (3.10)! and (4.8), that m,*(r,) < 0, which implies (5.3)
for n=1. For n= 2, an argument similar to the one in the proof of Theorem 5.1(a) will show
that the interlacing property holds if 8 <2a, and if B> 2« provided that (5.10) is satisfied. If
n > 3, the assertion follows from Proposition 4.5, which, since the zeros of #, interlace with those
of m, ,,, implies that sign =, ,(7,; w) =(—1)" =sign 7. (7,; w), »=1, 2,..., n, which in turn
implies (5.3).

(b) For n > 3, the inclusion property follows trivially from (4.8). For n=2 and n =1, the
conditions stated in (5.11) and (5.12) express 7;*(1) > 0, 7,*(—1) <0 and #,*(+1) > 0, respec-
tively.

(c) The formulae for the precise degree of exactness follow in the usual way from (4.9), when
n > 3, and from (4.9)%, (4.9)! when n =2 and 1, noting, in the case of (4.9)2, that the coefficients
of m; and 7, in (4.9) cannot vanish simultaneously because of a > 0. O

The discussion for the remaining weight function w{~1/%1/2 can be reduced, with the help of
(3.11) and (4.12), to the one just completed for w(1/2-1/2),
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6. Quadrature weights, positivity, and explicit formulae

In terms of the polynomials 7, (-) =7 (-; w) and 7* ,(-) =7* ,(-; w), the weights o, = 0"
and o = o#(")* in the Gauss—Kronrod formula (5.1) admit the following representations
(Monegato [9]),

kAR
o, =A,+ ——m 1,2, ,n, (6.1)
n+l( )W( )
kA
o* = , p=1,2,...,n+1, (6.2)
. Wn(T*)Wn+l T*)

where A, = A{") are the Christoffel numbers—the weights of the Gaussian quadrature rule—rela-
tive to the weight function w. These in turn can be represented in the form (see, e.g., [15, Eq.
(3.4.7))
KAk
A, = 'rr,,“('r,,)vrn'('r,,)’ v=1,2,...,n, (6.3)

and are known to be positive. We show in this section that also the weights 6" and ¢, with a
few exceptions for small n, are all positive when w(z)=w*2(¢; o, B, 8) and w(?)=
w(EV2FUD (1 a, B, 8), for arbitrary admissible parameters «, B, 8. The positivity of ¢* actu-
ally follows from the interlacing property (Monegato [9]). Moreover, we give explicit formulae
for the o, and o,*.

If the interlacing property holds, the second term in (6.1) is always negative, whereas the first
is positive. Thus, in view of (6.3), we have o, > 0 if and only if |7* (7,)| > |7, ,,(7,)], or, since
the zeros of =, interlace with those of =, _,,

0,>0 iff 7%,(5) S 7,0 i() for »= {044 (6.4)

(assuming the interlacing property).
We begin with the case w =w/?, which is simpler and appears to be more fundamental.

Theorem 6.1. Consider the weight function w(t) = w2 (t; a, B, 8), with a, B, 8 admissible. Then

all weights o, =0\, o* =0("" in (5.1) are positive for each n > 1. Specifically, when n =1,

w_ T m*_ T wm_ T
% a(a+B)’ 7 w(lw+8)’ %2 w(lw—28)" (6.5)

where w=\/82+,8(2a+,8). For n>2, letting 7' =cos 6, and fr(”) =cos ., one has for
v=1,2,...,n

n) aT sin2n0, (6.:6)
K 2a? sin n6, cos(n—1)8, B ., |
n— sin 0 + o né,
and for p=1,2,...,n+1,
oy - cos’nf*
oM = 6.7
¥ 2a? sin(n —1)* cos nf* g (6.7)
n+ . + =cos’nf*
sin 6.* a M
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Remark. Alternative forms of (6.6), (6.7), assuming 6, # tm, §.* # 3, are

.
sin“né
R — T ———. (66
* n- {sin 2n0, + fsin né, cos(n — 1)0V}/{sin 20, + Fsin 0,,}
e T cos’nf*
% T 28 /i 90> 23.( 1o 0+ ) i ngr + 28 g gl
n+{(sin 2n + —sin(#n — cos n sin + —sIn
(sin 2n67 + 7 i cos nb )/ sin 267+ “grsin 67
(£ 772\
\U.I }

These, as § — 0, reduce in view of (2.16) to the formulae (3.9), (3.11) obtained in [4]. We note,
however, that (6.6) remains valid as § — 0 also in the case n (odd) > 3, » = $(n + 1), and reduces
to [4, Eq. (3.9")]. Likewise, (6.7) in the limit 8 = 0 reduces to [4, Eq. (3.11")] when #n (even) > 2
and p= 3(n+2).
Proof. The for

imnlv the

Proof. Th lae (6.5) fnr n=1, why‘ clearlv ir pl nositivity of all weichts. are easilv
i € ac B2y 20 ch clearly imply the positivity of all weights, are casily
obtained from( ) (6.2), and (6.3), using expressions (3.9) for o, and ,, (4.5)! for 7,*, and

(3.22) for |\ | 2.

Thus assume n > 2. Substituting =% ,(7,) from (4.13) into (6.1), we get g, = 3\, which proves
positivity of a,. Positivity of o.*, as already mentioned, follows from the interlacing property,
which holds according to Theorem 5.2 (a).

We proceed to derive the explicit expressions in (6.6) and (6.7). First note that, by what has
just been shown,

o,= 3\, = — 7,11 */m%(7,) 7/ (7). (6.8)

Putting ¢ = cos 0 in (3.9) and differentiating gives

A e O (ome B il _/ ol
L lL«UD 17 /n\bUD v) DIV U, v) j
28 2
=(n+1)cos(n+1)6+ B cos né + (1 — Fa)(n —1) cos(n—1)8.

Now put § =6, and substitute 8 /8 from (4.15); then, after a short calculation, one finds
sin nd, cos(n—1)8, pB
7,(7,) =

— — 1 2
in nf {n sin 8 + oS na"}'
Muluplymg this by +1(1-) from (4.17), inserting the result in (6.8), and recalling (3.22)

= ln sin é)y

1 1o, | S o, @ /
Y O A

lInIIIC(lldlCly lelGS the desired Lormum (0.0).

To derive (6.7), we let 7* = cos .* (which is possible by virtue of (4.5)) and find from (4.5)

18
and (3'8) similarly as in ﬂ'\p nroof of Pr npoglflou A S (r\f (4 15\ that

S1ii1CAE 1y I WIS pPROUv .0 \Terl )y, aad

v-vn:

cos(n—1)6*
2 = g————(n nz £ —cos 47, (6.9)
b b cos nb,

and from (3.9) that
7, (7.*) =

« 1
27~ cos nf* "
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3]
—
O

: _ * *
a1\ 3 rR S — F—cos“nfX ),
27-18 cos ng* | sin 6, a |
from which as be ore, using (6.2 and (3.22)., one obtains (6. 7

\FLLyy UGS (v

n w 2) ar

The alternative formulae (6.6") and (6.7") follow from those just derived by expressing 8/«
(under the assumptions made on 6, and 6*) in terms of §/8 by means of (4.15) and (6.9),
respectively, and using elementary trigonometric identities. O

Theorem 6.2. Consider the weight function w(t) =w'"V2(¢; a, B, 8), with a, B, 8 admissible.
Then all weights o, = o!™, ot = 0(") in (5.1) are positive for each n > 1, except when n =3 and
B > 2a, in which case poszthty holds if 82 < B(B+2a)/8.

If {7, :_11, {7*}7_, denote the Gauss and Kronrod nodes, respectively, of the (2n — 1)-point
Gauss— Kronrod formula for the weight function w = wD and ap, 0* the respective weights, then

for n > 4 one has

6*

14 n)* -1
o,f")=1_72, v=1,2,...,n; a" ZT{F, w=2,3,...,n, (6.10)

while

"= AB-a+8)[(B—a+8)n+2a—B—38]"

™

(6.11)

o’ =

T a(B-a—8)(B-a-8)n+2a-p+s]’

Remark. Explicit formulae could easily be obtained for ¢V, 62 and o"", but we refrain from

writino them down here
Liuitig willil UUVviIL b,

Proof. We begin with the cases n=1, 2, 3, which require special treatment. We veri
conditions in (6.4).

For n = 1, the condition in (6.4) is immediate from (4.2)! and (5.6), since a < 8. For n = 2, the
two inequalities in (6.4), by (4.2)? and (5.7), amount to 7, > —8/8, 7, < —8/8, which are true
since m,(—8/B) = —a/B <0 by (5.6). When n = 3, the three inequalities in (6.4), by (5.7) and

(3.8), are equivalent to

el {1y 2%)  ,_(land3 (6.12)
A R E N 12,
whara -~ ne a 7ara Af -~ caticfioc f~f (8 TN
YWIiIwL ‘V QAd A LUlyv vl I3 DAULDLIVDY \\/1. \J- I}}
5 1 18
’Ty_("l’y2+ ‘TTV\_T{1+’2\'\7;,_TT=O. (6.13)
\ B¥ 2V " B)*T 2B

Consider first the case § = 0. Then, by symmetry, 7, <1, =0 < 7, and (6.12) is trivially true for
v = 2 and easily seen true for » = 1, 3 in view of (6.13) (for § = 0). Now moving | 8| continuously
away from zero, positivity ceases to hold the first time we have equality in (6.12) for some ».
Combining this equality with (6.13) then yields 7, = —28/8 for some », which, reinserted in
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), yields 82= B(B + 2a)/8 =:82. Thus, positivity holds for all § with 8% <8;. Since
82 > (B — a)? precisely for 8 < 2a (assuming a, 8 admissible), positivity holds for all admissible
a, B, 8 when B <2a, since then the interlacing property holds by Theorem 5.1(a). In the
remaining case, 8 > 2a, we have positivity if §% < 82, which can be verified to be a subregion of
the region 82 < 82 (cf. (5.5)) in which interlacing holds.
Assume now n > 4. It follows from (4.2) and Theorem 5.1(c) that the Gauss—Kronrod formula
under study has the form

[ SO0 ar= T af(n) o/ + T a2f(30) o S(-1)

v=1

all feP,,_,.

n a4 1 s Y o S, | A2\ FAIY 1 . 1. 4 £~ A NN 3 A N
Putting here f(r) = (1 — 1°)g(¢), and taking note of (4.2) and (4.5), this yields

(
1 n
[ A )wV(ydt= Yo (1—=7e(r)+ Y a*(1 —7*2)g(1*)
J [& AN 7 N/ VAL"2AN 7 = \ /U\

-1 Hl v v v ” i3 I W/
= p=
n_:-l n
= 2 ofa(1-78)8(n) + Lo (1—17)g(rn*),
pn=1 v=1

all geP,,_s,
which is precisely the (2n — 1)-point Gauss—Kronrod formula for w = w2, By uniqueness,
(6.10) follows immediately.
To prove (6.11), it suffices to apply (6.2) for p = 1 and p = n + 1, noting that 7, 1 TX -1,
making use of (3.8) to evaluate #,(+1), and of (4.2) to obtain 7*/,(£1) = +27 /“'(+ 1), and
finally using (3.9) to evaluate 7%/ 2’( + 1) and recalling (3.21). The fact that both 6* and o,* , are

n—1

mncitiva FAallace Frame |8 ~ A Ffrenmn

PUDILIVC IUIIUWD 110111 IUI \I.)ibl' allu 11UL11
n(B—a+8)+2a—BFé>4B—a+d)+2a—BFS
=38—2a+38>3(B—a+8)>0. m

Theorem 6.3. Consider the motoht funr'nnn w(t\ = /2= 1/2)(1 o, R tS\ with «, B, 8 admissible.

a2 23T Cnan W ~ © (IARY 2SS

Then all weights 6,= 0", o* = o‘f")* in (5.1) are positive for each n>1, except when n=2 and
B > 2a, in which case they are positive if —(B—a) <8 <a.
Specifically, for n > 3, letting '™ = cos 8, and 'TF(") = cos 8, one has for v=1,2,...,n,

(n) _ T 1R
- k)

202 [ 1 sin 18 cos(n—2)6 ]
(1+cos8){n— = — ( 2)." A( 2)"+'Bsm2(n—l)0
| 2 sin 6,
(6.14)
forp=1,2,...,n
cos’(n—1)6*
0(”)'= ™ \ 2V
M 2 3 1 * ’
2o (1 4 mme O3], l | Sln( 72)0“* cﬁ(,n 72)0“ a4 Er\r\bzlm_l\n*-‘
\lTbUb U'L }l" 2 he 51110* T a\.«uo \ 7 ZIVP'J
n
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and for p=n+ 1,

(n)al _ T

1 = (B-—a—8)2n(B—a—8)+3a—B+8]"

(6.16)

Remark. It is possible to obtain explicit formulae for 6", ¢”, and ¢("", but we will not bother
writing them down here.

Proof. For n =1, 2, we verify the conditions in (6.4). When n = 1, the inequality in (6.4) follows
readily from (4.8)' and (3.10). When n = 2, we must discuss

75 (7,) Sm(r,), »v= {; (6.17)
where 7, satisfies #,(7,) = 0 with (cf. (3.10))

7 (t)=t*+3(1+28/B)t+ 3(8 —a)/B. (6.18)
The top inequality in (6.17), by (4.8)% and (3.10), turns out to be equivalent to

n > —3(1+28/B), (6.19)
which, by virtue of

m(=3(1+28/B)) = (8 —«)/28, (6.20)

is certainly true if 8§ = 0. Assume first 8 < 2«, in which case interlacing holds by Theorem 5.3(a).
Since the value of o, in (6.20) is negative when § < a, and a > 8 — a, we have (6.19), hence
o{® > 0, for all admissible a, B, 8. The discussion of the lower inequality in (6.17) (for » = 2) is
analogous and leads to the same conclusion. If 8 > 2a, one needs to distinguish the cases 6 > «
and 8 < «. In the former case, since § > 0, both zeros 7, and T, of 7, are negative and sum up to
— 11 +28/B), by (6.18). Therefore, (6.19) holds for both 7, and ,, hence a{® > 0, but ¢{* < 0.
If 8 <a, then (6.20) implies as before that ¢ > 0, ¢{? > 0. Thus we have positivity of both
weights if —(8 — a) < 8 < a, which is easily seen to be a subinterval of the interval in (5.10) in
which the interlacing property holds.

Positivity for n = 3 follows as in the proof of Theorem 6.1, and the explicit formulae (6.14),
(6.15) are obtained by a procedure entirely analogous to the one used to derive (6.6), (6.7), using
the appropriate polynomials =% ,, =, in (4.8) and (3.10), respectively, and such properties as
(3.11), (3.2) and (3.16). The expression (6.16) for o,* ;, and its positivity, follow similarly as in the
proof of (6.11). O

7. Linear divisors

Up until now, we assumed that the divisor p in (2.1), (2.2) is a polynomial of exact degree 2.
We now relax this condition and allow the case of linear divisors. Formally, this case is obtained
in the limit as 8 — 2«, which yields

p(t)=p(t; a, 2a, 8) =a?(2ut + p2+ 1),
p=8/a, a>0, |p|<I. (7.1)
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(1=u)p (1=u)y o< pue [=u G=u)(E—2)ye+(E+1)q-1)
Tgw)yup (g2u)1—uyp 7<u 1€u @TZu) @y grpe(1—1) L= + g wrvi-)l
(1=uw)yp (1=u)p 0> pue [=u (a=w) (Z+ )i+ (2-1)a+»
(z2u)uy (T<uy1—uyp T2u 1€u T2 U) gyrpire(1+1) R+ @i—n?
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Apart from a constant factor, we are thus led to the weight functions
(1 _ t2)i1/2
(E1/D( ) = ((£1Df . Y= A2 T -
\ij=v VR 2
2ut +pt+ (7.2)
Q-0’1 +)7” '
P EVEFUD () = 12T UD (40 ) = -
2ut+p+1

The case p = 0 corresponds to the classical Chebyshev weight functions.

The results of the previous sections, and their proofs, are easily specialized to the case 8 = 2a.
The resulting orthogonal polynomials, Stieltjes polynomials, interlacing and inclusion properties,
and (sharp) degrees of exactness are summarized in Table 1, in this order.

All weights o‘f’”' are positive, without exceptions, because of the interlacing property holding
for all n > 1. The same turns out to be true for the weights o/™. The explicit formulae given in
Section 6 simplify somewhat (note that they are to be multiplied by a® on account of (7.1)); for
w =012 and n > 2 one obtains

2
o sin’nd
Ty . v=1,2,...,n, (7.3)
n— “cos(n +1)8,
sin 8
coclg 0k
= 2 —_k 1,2 +1 (7.4)
o\ =~ - po= e R .
* 2 sin(n+1)6* ’ T ’
7 —————"cos n8*
sin 8* #
i
b e (1/2-1/2) 1 - 1
WICICAd 10T W = U~ coana n 2 o,
2, 1
T . i G | v=1,2,....n, (7.5
. s R L) .
A 2 1+ 0)[ 1  sin(n—1)8, (n+ 1)0]
cos n— = — . cos(n+ 3
g 2 sin 8 2/
L v d
2(. _ 1\p*
gt _ T cos’(n — )6, p=1,2,...,n
. s y Ly s Ity
. 2 . [ 1 sin(n+1)0* . *]
(1+cos 8*)/n— 5t g cos(n — 3)8,
L b 1
* bty
o = (7.6)

Q-0 -p)n+ 1+ u]’

where 6,, 0* are as defined in Theorems 6.1 and 6.3, respectively. For w =v‘"1/? and n > 4, the
weights are obtained as in Theorem 6.2 in terms of the weights 0"~ ", 0"~ D" in (7.3), (7.4).
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Erratum

To: Gauss—Kronrod quadrature formulae for weight functions of Bernstein—Szegd type

W. GAUTSCHI and S.E. NOTARIS
Journal of Computational and Applied Mathematics 25 (2) (1989) 199-224

The publishers sincerely apologize for the typographical errors, which appear in the above-
s td e nd o e

paper.

The first name of the second author is “Sotirios™, not “Sotorios”.
On p.202, line 9, read “modulus”, not “modules”.

On p.208, delete “x” in (3.25).

On p.213, line 4, read “w("1/21/2>,

On p.214, in the second relation of (5.6), the second “+” sign, between “1 /4 and “(”, should
be deleted.

On p.216, line 5, no comma after “admissible”.

On p.218, line 7, read “p = 3(n + 1)” instead of “u= 3(n + 2)”.
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