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Abstract: We study the Kronrod extensions of Gaussian quadrature rules whose weight functions on [ - 1, l] consist of 
any one of the four Chebyshev weights divided by an arbitrary quadratic polynomial that remains positive on [ - 1, 11. 
We show that in almost all cases these extended “Gauss-Kronrod” quadrature rules have all the desirable properties: 
Kronrod nodes interlacing with Gauss nodes, all nodes contained in [ - 1, 11, and all weights positive and representable 
by semiexplicit formulas. Exceptions to these properties occur only for small values of n (the number of Gauss nodes), 
namely n < 3, and are carefully identified. The precise degree of exactness of each of these Gauss-Kronrod formulae 
is determined and shown to grow like 4n, rather than 3n, as is normally the case. Our findings are the result of a 
detailed analysis of the underlying orthogonal polynomials and “Stieltjes polynomials”. The paper concludes with a 
study of the limit case of a linear divisor polynomial in the weight function. 

Keywords: Gauss-Kronrod quadrature formulae, weight functions of Bernstein-&ego type, orthogonal polynomials, 
Stieltjes polynomials. 

1. Introduction 

The idea of embedding Gaussian quadrature formulae in higher-order quadrature rules to 
improve upon their accuracy, or estimating their errors, was advanced in 1964 by Kronrod [8]. 
Kronrod proposed to insert n + 1 nodes into an n-point Gauss-Legendre formula and to 
determine them, and the weights of the resulting (2n + 1)-point formula, in such a way as to 
achieve maximum degree of exactness. He showed that the nodes to be inserted are the zeros of a 
polynomial of degree n + l-now called the Stieltjes polynomial-that is orthogonal to all 
lower-degree polynomials with respect to a sign-changing weight function, the Legendre poly- 
nomial of degree n. He computed these zeros, and all weights involved, to 16 decimal digits for 
n = 1(1)40. Mysovskih [13] noted that the same kind of orthogonality has previously been studied 
by Szegij [14], independently of its application to quadrature. Szegij indeed followed up on an 
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idea already expressed in 1894 by Stieltjes in his last letter to Hermite [l, Vol. II, pp. 43994411. 
Szego proved that the zeros in question are all real, are contained in the interval ( - 1, l), and 
interlace with the zeros of the Legendre polynomial. He showed this to be true not only for the 
Legendre weight (constant weight function), but also for a subclass of Gegenbauer weights. For a 
further subclass of these, including, however, Legendre’s weight function, Monegato [lo] in 1978 
established positivity of all quadrature weights, a result that was suggested by Kronrod’s 
numerical tables. The interlacing and inclusion properties of the nodes, and positivity of all 
weights, for Gegenbauer and Jacobi weights are further studied in [3]. 

During the last ten years, interest in such quadrature rules has intensified, in part because of 
their potential use in automatic quadrature routines, but also, undoubtedly, because of the 
intriguing mathematical problems they pose. Recent surveys on the subject can be found in [ll] 
and [2]. Nevertheless, relatively little has been rigorously proved in this area. Apart from the 
early examples of Gauss-Kronrod quadratures for Chebyshev weights [13] and Gegenbauer 
weights [14,9,10], only one additional family of weight functions is presently known for which the 
existence of Gauss-Kronrod quadrature rules with the properties mentioned, and indeed 
semi-explicit formulae for them, have been established; these are the symmetric weight functions 
considered in [4] consisting of the Chebyshev weight of the second kind divided by an even 
quadratic polynomial. 

In the following, we substantially enlarge this class of weight functions by considering 
Chebyshev weight functions of any of the four kinds and dividing them by an arbitrary quadratic 
polynomial that remains positive on the interval [ - 1, 11. Such weight functions, even for divisor 
polynomials of arbitrary degree, have been studied by Bernstein and Szegij (see, e.g., [15, 52.61). 
We develop the Gauss-Kronrod formulae in these cases and provide semiexplicit formulae for 
them analogous to those obtained in [4]. We also prove that the desirable properties of the 
interlacing of nodes, their containment in the interval [ - 1, 11, and positivity of all quadrature 
weights, hold true in almost all cases, exceptions occurring only for small values of n. We begin 
in Section 2 with identifying explicitly the class of quadratic polynomials that are positive on the 
interval [ - 1, 11. We also compute the integrals of the weight functions they generate. In Section 
3 we develop the relevant orthogonal polynomials and establish some of their properties. The 
corresponding Stieltjes polynomials are derived in Section 4. The core of the paper is Section 5 
and 6. In Section 5 we study the respective Gauss-Kronrod formulae and establish the 
interlacing and inclusion properties of the nodes. We also determine the precise polynomial 
degree of exactness for each one of these quadrature formulae. Section 6 is devoted to explicit 
formulae for the quadrature weights and their positivity. Finally, in Section 7, we specialize the 
results to weight functions in which the divisor polynomial is linear, rather than quadratic. 

2. The weight functions 

We shall be interested in weight functions on ( - 1, 1) of the form 

W(*i’*)(f) = (1 - t*)*i’*/p(t) 

and 

W(*l/*.+l/*)(f) = (1 - q*l’$ + t)Tl’*/p(t), 

(2.1) 

(2.2) 
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where p(t) is a polynomial of exact degree 2 which remains positive on [ - 1, 11. Our first concern 
is to find the explicit form of the quadratic polynomial p having the stated positivity property. 

Proposition 2.1. A real polynomial p of exact degree 2 satisfies p(t) > 0 for - 1 < t < 1 if and only 
if it has the form 

p(t) = p(t; a, p, 8) = p(p - 2a)t2 + 26(/? - a)t + lY2 + a2 

with 

o<cu<p, p#2a, 161 <p-ff. 

Remark. Proposition 2.1 has previously been stated without proof in [12, p. 4971. 

(2.3) 

(2.4) 

Proof. Letting 

p(t)=at2+bt+c, a, b, CER, af0, (2.5) 

we have that p(cos 8) is a cosine polynomial of degree 2 with real coefficients which is positive 
for all real values of 8. By [15, Theorem 1.2.21 there then exists a unique polynomial h of exact 
degree 2, with real coefficients, satisfying 

h(z)#O in ]z] ~1, h(O)>O, (2.6) 

and such that 

p(cos 8) = I h(e”) ( 2. (2.7) 

Writing 

h(z)=pz2+qz+r, p, q, rE08, p+O, 

one finds by an elementary computation that 

I h(e”) I 2 = 4p rcos2B+2q(p+r) cos B+q2+(p-r)2, 

hence, by (2.7) and (2.5) 

(2.8) 

a = 4pr, b = 2q(p + r), c=q2+(p-r)*. (2.9) 

On the other hand, all zeros of h are outside the closed unit disc 1 z I < 1 (the first condition in 
(2.6)) if and only if 

(Th)(O) ’ 0, (T2h)(0) ’ 0, (2.10) 

where (Th)( .) is the Schur transform of h and ( T2h)( .) its first iterate (see, e.g., [7, Theorem 
6.8b]). One easily calculates (Th)( z) = q( r - p)z + r2 - p2, (T2h)(z) = (r -pj2[(r +p12 - q21. 
Therefore, (2.10), together with the last conditions in (2.6) and (2.8), is equivalent to 

r’IPI> r+P’ 141, p # 0. (2.11) 

Letting (Y = r-p, p = 2r, 8 = q, or equivalently, 

we obtainPfr~m~2~9~and (i.Ll;’ 

r=+ P? (2.12) 

a=D(p-2a), b=2S(P-a), c=lY2+S2 

with 

P’ IP-2al, P-n> 161, P#2cx. 

It remains to observe that (2.13) is equivalent to (2.4). q 

(2.13) 
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We will call the parameters (Y, fi, 6 admissible, if they satisfy (2.4). 
The discriminant of the polynomial (2.3) computes to 4a2(a2 - p2 + 2@), so that p has a 

pair of conjugate complex zeros if a2 < /3( p - 2a) (which implies /I > 2a), and two real zeros if 
a2 2 /3(/I - 2a). If p - 2a > 0, the real zeros are both negative (hence less than - 1) if 8 > 0 and 
both positive (hence larger than 1) if 6 < 0 (8 = 0 is not possible in this case); if p - 2a < 0, they 
are on opposite sides of [ - 1, 11. 

We note from (2.7) that 

p(+(u+u-‘))=O, USC, 1241 >l impliesh(u)=O. (2.14) 

Indeed, if ul, u2 denote the zeros of h (both larger than 1 in modules by (2.6)), then (2.7) can be 
written as 

PM eie + epic)) =p2(eiB - uI)(e-ie - cl)(eie - u2)(epio - i2), 

an identity valid for all real 8. By the Identity Theorem for holomorphic functions, the same 
relation holds for complex t? as well, which, letting u = eie (8 complex), yields (2.14). 

The polynomial p and the weight functions (2.1), (2.2) become particularly simple when 8 = 0. 
In this case we write 

ff/P=$(y+l), -l<y<l, (2.15) 

and obtain by a simple computation 

Pk a, P, 0) = aZ[l - (4YAY + Q2)t2]. (2.16) 

Thus, apart from a constant factor, we are led to the weight functions 

Wb*“2)(f) = (1 - t2)*1’2/(1 - /lP), (2.1)O 

w~“/vw2yf) = 
(1 - t)+l/2(1 + p2 4Y 

l-/.lt2 ’ 
-*<P.= (y+1)2 cl. (2.2)O 

The Gauss-Kronrod quadrature rules for wL’/~) have been studied in [4]. 
It is of interest to compute the integrals of the weight functions (2.1), (2.2). We begin with 

w(-~/~). Letting a = p(p - 2a) and denoting the zeros of the polynomial p in (2.3) by zi, z2, we 
have 

2 -l/2 

pg1/2, = 

J 

l 

-1 

w(-‘/2)(t) dt= a(zl\z2) /,il(‘r’l’” dt-/1,“,‘! 
1 2 

dt}. 

(2.17) 

It is known (see, e.g., Gradshteyn and Ryzhik [6, Eq. 3.613.21) that 

/ 
1 T(t) _,%(l - t2)-1’2 dt = (2.18) 

where T, is the Chebyshev polynomial of degree n and 

z=$(u+l/u), ]u] >l. (2.19) 

The relationship between u and z represents a well-known conformal map which transforms the 
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exterior of the unit circle, 1 u ) > 1, into the whole z-plane cut along [ - 1, 11, concentric circles 
going into confocal ellipses. Letting 

Z,=~(ui+l/u;), ]U;( >l, i=l, 2, (2.20) 

one finds from (2.17), (2.18) (with n = 0) by a simple computation that 

/3-l/2) = $ ;I;: + l UlU2 

-1 (z+l)(z+l)’ 
a=p(p-k+ (2.21) 

Since, by (2.20) and (2.14), ui, u2 are zeros of h, the symmetric functions of ui, u2 in (2.21) can 
be expressed rationally in terms of the coefficients of h, hence by (2.12) in terms of (Y, p and S. 
One finds 

P 
UlU2 = p> u,u2+l=2~_--$, u,u2-1=&-. 

a 

(r+l)(z+l)=( UlU2 + 1)’ - (Ui + U2)2 = 
4[(8-+S’,a 

(P-2CX)2 . 

Substituted in (2.21), this yields 

pJ-1/2)_ p-ff 
a[(P-(u)2-S2]. 

We proceed to the weight function w(~/~) and the integral 

(2.22) 

(2.23) 

po(‘P) = 
/ 

’ w(“~)( t) dt. (2.24) 
-1 

A decomposition analogous to the one in (2.17), and using (cf. [6, Eq. 3.613.31) 

/ 
11+$1 - t2)1’2 dt = 5 

U 

in place of (2.18), yields 

p;1’2) = $ .,,,‘_ 1 3 

(2.25) 

(2.26) 

with ui defined as in (2.20), hence, by the third relation in (2.22), 

p$“2) = T/C$. 

Interestingly, the integral in (2.24) does not depend on the parameter 6. 
Finally, for the integral 

(2.27) 

@k-1/2) = 
J 

1 W(1/2v--1/2)(4 dt, (2.28) 
-1 

we use (cf. [5, 55.21, where the case (1 - t)-‘/2(1 + t) ‘I2 is treated, which is easily transformed to 
the present case) 

/ 

1 (1 - t)“‘(l + t)-1’2 dt = 27r 

-1 z--t u+l (2.29) 
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and find 

W2,-1’2) = 2 ( UIU* _ l)$i”r l)( U2 + I) ’ 

which by (2.22) and 

(U,+l)(u,+1)=2(p-a-a)/@-2a) 

becomes 
p;1/2,- i/2) = +Y( p - ff - 8). (2.30) 

For the remaining weight function, w(-~/~,~‘~), see (3.24) below. 
In the following, for ease of readability, we shall often drop the superscripts + l/2 in the 

notation for weight functions and related quantities, when there is no danger of ambiguity. 

3. The orthogonal polynomials 

In the limiting case p(t) = 1 (corresponding to (Y = 1, j? + 2, 6 = 0 in (2.3)), the orthogonal 
polynomials associated with (2.1) are the Chebyshev polynomials T,(t), U,(t) of the first and 
second kind (corresponding, respectively, to the minus and plus sign in (2.1)), whereas those 
associated with (2.2) are similarly the Chebyshev polynomials V,(t), W,(t) of the “third and 
fourth kind” (corresponding, again, to the minus and plus sign, respectively). These are 
characterized by the well-known formulae 

Tn(cos t9) = cos ne, UJCOS e) = 
sin(n + 1)0 

sin 8 
and 

V,(cos 0) = 
cos( n + i)e 

c0s+e ’ 
W,(cos e) 

They all satisfy the same recurrence relation, 

Yk+l=2fYk-Yk_-l, k=l,2,3,..., 
where 

y,=l, Yl = t for T,(t), 

yrJ=I, y, =2t for Q(f), 

y,= I, Y, = 2t- 1 for K(t), 

y,=l, y,=2t+l for W,(t). 

sin(n + ;)0 

sin@ 

(3.1) 

(3.2) 

(3 *3) 

(3 -4) 

It is natural to expect that the orthogonal polynomials for the more general weight functions 
(2.1), (2.2), with P as given in (2.3), can be expressed in a simple manner in terms of these same 
Chebyshev polynomials. This is indeed the case, and the respective expressions will be derived in 
this section. 

We will denote the (manic) orthogonal polynomials relative to the weight functions (2.1), (2.2) 
by 

,(*1/2)(f) _(t; ,W/2)), ,;*1/2W2)(t) _,&; ,W/2,T1/2)), 
n 

n=0,1,2 ‘...) (3.5) 
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and shall drop superscripts when their values are clear from the context. With h(z) the unique 
polynomial in (2.7), let h(e”) = c( 8) + is(e) where c(0), s( 0) are real. Then, by [15, Theorem 
2.61, we have, up to constant factors, 

a(-‘/2)(cos 8) = const . [ c( 8) cos nt9 + s( 0) sin no], ” 

7~(~‘~)(cos 0) = const . n 
I 
c( 6)) sin~n+ol)s - .s( 0) cos~~n+ol)e], 

~(‘/2~-‘/2)(cos &J) = const. c( 0) sin~~n~j’” ” 
I 

- 0) 
cos(n + +)e 

2 1 sin+3 . 
(3.6) 

From (2.8) and (2.12) we find that 

c(e) = (p - 2a) cos2e + 6 cos e + a, s(e)=sine[(p-2a)~~~ e+6]. (3.7) 

Writing cos e = t in (3.7), we get in view of (3.1), 

7r-1/2)(t)=const. {[(p-2a)tZ+&+,]T,(r)+(1-t2)[(j3-2a)t+6]U,_l(t)} n 

=const.{[l(p-2a)+6][tT,(t)+(l-r2)U,_i(t)] -tar,(t)}. 

Since tT, + (1 - t2)U,_l = Tn_l, as follows easily from (3.1), this yields, if n > 2, 

~(-~/~)(f) = const . [(/3 - 2~u)tT,_,(t) + &T,_,(t) + &,,(f)] n 

=const.{(p-2~).t[T,(t)+T,_2(t)] +ST,_,(t)+aT,(t)} 

=const.[iPT,,(1)+ST,_,(t)+%(/3-2a)T,_,(t)]. 

As the leading coefficient of the expression in brackets is 2”-’ . $p, we obtain 

,(-1’2Yd = $+~ + ++m + (1- $)YY_2(l)], n n > 2. (3.8) 

When n = 1, one finds 

71 (-1’2yt) = t + S/(P - a). 

In a similar way one computes 

(3.8)’ 

T(1’2yt) = &[,(t, + $ y_,(r) + (1- $+n_2(1)], n n> 1, (3.9) 

where U_,(t) = 0 when n = 1. 
To obtain 7rJ1/2,-1/2), we use (3.2) and (3.7) in the last equation of (3.6) and find 

72(1/2.--1/2)(t) = ” const.{[(p-2a)t+&][tW,(t)-(l+t)V,(t)] +aw,(t)}. 

Noting that tIV,, - (1 + t)V, = W,_, and, for n > 2, by (3.3), tw,_l = $(w, + Wn_2), we obtain 

&l/2.- l/2)(t) = R const.[+Pw,(t)+6W,_l(t)+ +(P-2a)W,_,(t)]. 

Since W, has leading coefficient 2” (cf. (3.3), (3.4)), this yields 

~~1’2*-“2~(t,=f[w.(t)+~~_l(t)f(l-~)W._2(I)], n n >, 2. (3.10) 



206 W. Gautschi, S.E. Notaris / Gauss-Kronrod quadrature formulae 

For n = 1 one finds, by virtue of (3.4), 

VI (1’*,-1’*)( t) = t + ((Y + S)/P. (3.10)’ 

Denoting the polynomials (3.5) more precisely by TJ *‘/*)( t; (Y, p, 6), and v,! *1/2,f1/2)( t; (Y, p, 
S), if we want to stress their dependence on the parameters (Y, /3, 6, then a simple argument will 
show that 

&i/*J/*)(f; (y, p, 8) = (-l)nQ/*.-i/*)( -t; (y, p, -6). n (3.11) 

There is an alternative derivation of (3.8) (3.9) and (3.10) which explains why the coefficients 
on the right are the same in all three formulae, and in fact equal to - (ui + u2)/( u1u2) and 
l/( u1u2), respectively (cf. (2.20)). We explain the method for the case of (3.8). Expand T:-~/*) in 
Chebyshev polynomials of the first kind, 2n-1~,(-1/2)( t) = C~=,c,T,( t), c, = 1. It is easily seen 
that ck = 0 for k < n - 2. To obtain the desired orthogonality 

J 
1 

,r(-i12)(t)$-$(l - t*)-I’* dt = 0, 
-1 n 

all p E Pn_l, 

write 

p(t) = p(t)q(t) + r(t), 4E pn-37 Y E P, 

to see that it suffices to make 7~,(-l/~) orthogonal (with respect to ,(-l/*)) to linear functions. 
Choosing in P, the basis functions zi - t and z2 - t (where zi are the zeros of p, assumed 
distinct), one arrives at the system of equations 

C n-l J ’ T,-‘(d (1 _ t*)-1/2 dt + cn_2/;1 ‘1;‘:’ (1 _ t*)-“* dt 

-1 z,-t I 

1 T (t) =- J _,k(l - t2)-l’* dt, i = 1, 2, 
1 

which, by virtue of (2.18), reduces to 

uic,_i + u:c,_* = - 1, u*c,_, + u;c,_* = - 1, 

and has the solution c,,_i = - (ui + u2)/( uiu2), c,_ 2 = l/(u,u,), as claimed. If p has a double 
root, the result follows by continuity. The same argument goes through for the other weight 
functions. 

Proposition 3.1. We have, for n 2 1, 

7ry”‘(t)7&:‘*‘(t) = n,(t/:l(t) + (s/j?)?Ty’(t) + a(1 - 2a/p)T;;/2;(t). (3.12) 

Proof. We first note from (3.1) that 

i 

tp,+,w+ u,_,(t)], m<n, 
wNL(t) = 4u*,+,w> m=n+l, 

4PL+, (t) - u,_,-,(t)], m > n + 1. 

(3.13) 
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From (3.9) and (3.8) we thus obtain for the product in (3.12), if n > 1, 

which, by (3.9), is precisely the right-hand side of (3.12). q 

Proposition 3.2. We have, for n 2 2, 

,(1’2,--‘2)(t)7T,(-“2,1’2)(t) = @J(t) + (s/P)@;(t) + a(1 n 2qY+7;~~~ (t )- 
(3.14) 

Proof. From (3.2) and elementary trigonometric identities one gets 

i 

CT,+,(t) + u,-,-*(t), m <n, 

v,(WW) = v,,(t), m =n, 

U,+,(t) - K_,-,(t), m > n. 

Furthermore, replacing 8 by 8 + T in (3.2) gives 

w,(-t) = (-l)“v,(t). 

(3.15) 

(3.16) 

Using (3.10) and (3.11), the product in (3.14) is then computed similarly as in the proof of 
Proposition 3.1 to be equal to the right-hand side of (3.14). 0 

The formulae (3.8), (3.9) and (3.10), in conjunction with (3.3), (3.4), immediately yield the 
recurrence relation 

~~+,(t)=(t-(Yk)~~Tk(f)-Pk~~--((f), k=O,l,2,..., 

for the respective orthogonal polynomials. One finds for w(-~/~): 

(3.17) 

(-l/2) = _ - 
% D:ay al 

(--1/Q) = CX~-‘/~)=O for ka2; 

(p-u)2-82 
(3.18) 

p,‘- l/2) = (y 

P(P-a)2 ’ 

p!-‘/2) = 4 for ka 3; 

for w (‘12): 

(3.19) 

O/2) = _ s 
a0 

P’ 
(YF/~) = 0 for k > 1; 

pp = LT_ 
2py & 

c1j2) = i for k > 2; 
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and for w(l/2,-1/2): 

,y-l/2) = _ !y ) ,r/2,-1/2) = 0 for k >, 2; 

(3.20) 
@/2.--1/l) = a(/3 - a - S) p2 , &0/2.--1/z) = i for k > 2. 

Accordingly, for the norms 

llrn II 2 = J_;, v;(+(t) dt = P,,P, . . . P,,, 

with /3,, given in (2.23), (2.27), and (2.30), one obtains 

]]7T:-1’2)]]2= p(BT_u), ]I~T,(-~‘~)](~= 22”TXB2 for na2; 

]I 7rL1’2)]] 2 = 22nTlB2 for n > 1; 

1) ~~1’2*-1’2) I] 2 = 22ny282 for n > 1. 

(3.21) 

(3.22) 

(3.23) 

None of these norms, remarkably enough, depends on S. 
The analogous results for the remaining weight function, w(-~/~,~/~), can be obtained from 

those for w (1/2,-11/2) by means of (3.11), giving 

ak 
ww2)(a, p, 6) = _ay2~-v2)((y, p,_ a>, 

p~-l/W2) (a, p, S) = p:‘2,--‘2)((Y, p,- S), k=O, 1, 2,...; 
(3.24) 

]I ,X;-‘/W2) I) 2 = I] 7T,(i/2.--/2) I] 2, n >, 1. (3.25) 

The recursion coefficients in (3.18)-(3.20) allow us to compute the zeros of the orthogonal 
polynomials (3.5), as well as the zeros of the corresponding Stieltjes polynomials (except for the 
first few, cf. (4.2), (4.5) and (4.8)) efficiently as eigenvalues of symmetric tridiagonal matrices. 

4. The Stieltjes polynomials 

Given an orthogonal polynomial v,, ( .) = r,, (. ; w) of degree n with respect to a weight 
function w on [ - 1, 11, there is associated with it a unique (manic) polynomial 7~,*+,( a) = 
~z+l(-; w) of degree n + 1, called Stieltjes polynomial, which satisfies the orthogonality relation 
(see, e.g., [2, 811) 

/ 
1 

~~+~(t)7~,(t)p(t)w(f) dt= 0, all p E Pn. (4.1) 
-1 

In this section we express the Stieltjes polynomials ~Jz(f’~)*( .) = T,,?+~( - ; w( *1/2)), 
+;/231/2)*( .) = 7T,*+1( .; w(f’/2’Tw ) for the weight functions (2.1), (2.2) in terms of the 
orthogonal polynomials of Section 3 and determine the respective products ?~,,*+i( .)r,,( .) appear- 
ing in the integrand of (4.1). 
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Proposition 4.1. We have 

7&y2)*(t) = (6 1)7qy’(t), n > 4, 

and 

7rJ;;“‘*(t)7T;-““(t) 

(4.2) 

= 

Furthermore, for n = 1, 2, and 3, 

(-1/2)*(f)?T:-1/2)(f)= 4-1/2qt)+ 6 
572 ~?$‘2)( t); 

n>,4. (4.3) 

(4.2)’ 

(4.3)’ 

973 
(-'/2)'(t)=t3+ zt2-; 3+ ZE t_ 2s 

P i i P 4P’ 
(4.2)2 

“3 
(-V2)‘(t)*$-1/2)(t) = q/22 (t) + $714(-1/2)(t) + $( 1 - $)+(Q: (4.3)2 

7T4 
(-1/2)*(+t4+ St3_ 1+ A_ t2_ !$+ & 1+ !!!5 ) 

P i i 2P P i i P 

(4.2)3 

“4 
(-1/2)*(t)1TJ-1/2yf) _-l/2) (t) + $Tp2yt) - $+/2yt, - +-l/2+). 

(4.3)3 

Proof. Define qn+ 1 (t) = (t2 - l)ni”_/:‘(t). Clearly, qn+l is manic of degree n + 1, and using 
Proposition 3.1 (with n replaced by n - l), we find (for n 2 2) 

q,+l(t)?T;-‘-l’yt) = (P- 1)77,‘yyt)?T,(-1/2)(t) 

= (t2- l+?‘(t) + +?j(t) + $(l - ~)T~~L~~(t,]. (4.4) 

Consequently, if n > 4, using ( t2 - 1) kv(-1/2)( t) = - PV(~/~)( t), we get 

/ 

1 

qn+l(t)?T,-1’2)(t)p(t)w(-1’2)(t) dt 
-1 

+ $(l - ~)~~:~~(t)]p(t)~“/2’(f) dt = 0, all p E iJDn,, 

by the orthogonality of the 7rzj2), since 2n - 3 > n for n > 4. Thus, qn+l has the orthogonality 
property (4.1) required for ~T,‘T:/~)*, and by uniqueness, qn+l = 1~,(;:/~)*. This proves (4.2), and 
(4.3) follows from (4.4). 
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To prove the special cases n = 1, 2 and 3, first write the polynomials 7~,(;:/~)* in (4.2)” in 
terms of the U’s and then verify (4.3)” by expressing the product 1~i(r:/~)*7~n(-~/~) in terms of the 
U’s, using (3.8) and (3.13), and finally simplify by making use of the relations obtained by 
multiplying (3.8) by U, (thereby expressing q-112) in terms of the U’s). The computations are 
elementary, but tedious, and will not be reproduced here. 0 

Proposition 4.2. We have 

T,‘:/:‘*(t) = 77,‘;yy t), n > 2, 

and 

(4.5) 

7T,‘y;‘*(t)77y2yt) =7$?](t) + ;#yt) + $(l- ++P#,, n >, 2. 

Furthermore, for n = 1, 

P-6) 

@‘2’*(t) = t2 + @/@)t - a<1 + 2a//?), (4.5)’ 

77y2’*(t)72y2yt) =Ty2yt) + (s/j+r2’1’2yt). (4.6)’ 

Proof. Let qn+l( t) = 7~:;:‘~) (t). Then by Proposition 3.1, for n 2 1, 

q,+l(t)7pyt) =T;p(t)7ryyt) 

=7r2’g(t) + (s/p)7rp2) (t) + a<1 - 2Cy/P)7TJy?](t), 

from which there follows, if n > 2, 

J 

1 
q,+l(t)n,‘1’2’(t)p(t)w”‘2’(t) dt =O, all p E lPn,, 

-1 

(4.7) 

by virtue of 2n - 1 > n. Hence, qn+l = T$““*, which together with (4.7) proves (4.5) and (4.6). 
The case n = 1 can be verified directly. •I 

Proposition 4.3. We have 

?Tn+l 
(1/2,-1/2)*(f) = (t + 1)1T,-l/2J/2yt), n > 3, (4.8) 

and 

Furthermore, for n = 1 and 2, 

7Ty/W/2)*( t) = t2+ +j1+ + i(l- ,,,,a), 

“2 
(l/2,-11/2)*(f)1ry2.--/2yf) = p-l/2yt) + !+~l,2.-l,2)(t); 

(4.8)’ 

(4.9)’ 

r3 
(l/2,- l/2)*( t ) = t3+ ;(l+ +- +(l - y)t- +(l + ,,,“), (4.8)2 



W. Gautschi, S.E. Notaris / Gauss-Kronrod quadrature formulae 

75, 
wdP)*( t)4’/2’-1/2)( Q = 7Ty2,-1/2) (t) + +[I + y)7idi/2.-1/2y1) 

+$1-t 

i 

26 -2a 

P i 
“3 

W.4/yf). 

Proof. Let 4,+l(t) = (t + 1)7ri-1/2,1/2) (I). Then, by Proposition 3.2, for n 2 2, 

4,+l(t)“,‘1/2’-1/2’(t) = (t + 1)~~-1/2.1/2)(t)7T,(1/2,-1/2)(t) 

l- 

211 

(4.9)2 

(4.10) 

Using (t + l)~(~‘~,-~‘~)(f) = ~(‘/~)(t), one thus gets, if n 2 3, 

J 

1 

_14”+l(t)nn(1’2,-1’2)(1)~(t)~(1’2,-1/2)(t) dt 

since 2n - 2 > n. This proves (4.Q and (4.9) follows from (4.10). 
To verify the special cases n = 1 and 2, it is convenient to first express 7~,‘:/:‘-~/~)* in (4.8)” in 

terms of the T’s, then compute the products in (4.9)” as linear combinations of the W’s, using 

i 

+[Wm+, 0) + K-,(t)1 9 m <n, 
TnwKw = w-znw + %(~)I~ m=n, (4.11) 

SC+, 0) - w,-,-,(t)], m ’ n, 

and finally simplify the results by using (3.10). The details of the computations are left to the 
reader. 0 

Proposition 4.4. We have 

7+“2q”2)*(f; a, p, 6) = (-l)“+‘*~:/:,-‘/2’*(_t; a, p, _q, n+l 

n ~ 1* (4.12) 

Proof. We verify that the polynomial on the right has the required orthogonality property (4.1). 
Using p( - t; a, /I, 8) = p( t; a, /3, -S), we find by the substitution of variables t ++ - t, 

(-l)n+lJ1 7~,(:/:~-~‘~)*(-f; a, p, -S)1~i(-r’~,~‘~)(f; a, p, 6)p(l) 
-1 

X w~(-~‘~*~‘~)(f; a, j3, 8) dt 

= (-1)“+l/l 7~n(:/:*-l’~)*(f; a, /3, -S)7~n(-~'~~~'~)(-f; a, /I, 6)p(-t) 
-1 

X w(~/~*-~~~)(z; a, p, -6) dt, 
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since w(-~/~v~/~)( _ t; (y, p, 6) = wU/~,-~/~) (t; (Y, @, -a), which by (3.11) is equal to 

/ 

1 
- w2,-1/2)* 

Tfl+l (t; a, p, -+7n(1’2’-1’2yt; a, p, -6)p(-t) 

-1 

x ~(~‘~*-~‘~)(t; a, jI, -8) dt. 

This is zero for each p E Pn by definition of 7~$‘:-~/~)*. •I 

Proposition 4.5. Let r, be the zeros of v,,(. ; w). Then 

TTl+l (G 4 = :n,*+1(7,; w), v=l, 2 ,..., n, (4.13) 

for all n > 2 if w = w(~/~), for all n > 4 if w = w(-~/~), and for all n > 3 if w = w( *1/2,‘1/2) 

Proof. Consider first w = ~(~1~). By (3.9) we have 

+2Yf) = ~[,,t, + $QJ_,(t) + (1- $+02,t,]. n (4.14) 

Here, U,_,( 7,) # 0. In fact, if we had U,_,( T,) = 0, then, by (4.14), since 2 is a zero of c/r,(1/2), we 
would obtain 

U,(T”) + 1 - y 
i 1 

u,_,(T”> = 0, 

and by the recurrence relation (3.3), (20~//3)U,_~(7,) = 0, i.e., U,_2(7v) = 0, since (Y > 0. This is 
impossible, since two consecutive orthogonal polynomials cannot vanish at the same point. We 
therefore obtain 

a u-2(7,) 1 u,w + Lm-2bJ -- 

; - P j,_l(T”) 

-- 

2 u,-lh) . 

Letting 7, = cos S,, 0 < 0, < r, this yields, in view of (3.1), 

(Y sin(n - l)& $=B 
- sin no, 

cos 8,. (4.15) 

Setting t = cos tl,, in (4.14), after replacing n by n + 1, and then substituting for S/p from (4.15), 
one obtains, after some elementary computation, 

A similar substitution in (4.5), if n >, 2, using (3.8) (with n replaced by n + l), gives 

Comparing (4.16) with (4.17) immediately yields (4.13). 
For w = w(-l/*) and n > 4, one obtains in the same manner 

7r;;y2y T”) = - &- cosfyl)e = $qp’*( 7,) 
Y 

(4.16) 

(4.17) 

(4.18) 

(7p’2)(7) =o Y 
7 =cos 8 ) 

7 Y Y 7 
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and for w = w(1/2.-i/2), n a 3, 

7w2,- l/2)( r,) = - & sin’B :;;;; _ ‘> B n+l 
= 4.+y/y/2)*( r”) 

2 Y 2 Y (4.19) 

( 77y-1’2y r,) = 0, 7” = cos 6”). 

The analogous result for w (-1’2~1/20 follows easily from (3.11) and (4.12). 0 

5. Interlacing, inclusion, and exactness properties 

If 7, = 7,,(n) denote the zeros of the orthogonal polynomial r,,( +) = v~( .; w), and T,* = 7:“‘. 
those of the polynomial VT,*,~( 0) = r,,*+t(. ; w) satisfying (4.1), then, if they are distinct among 
themselves and between one another, one calls the (interpolatory) quadrature rule 

J 1 f(dw(t> dt = k uvfbv) + ‘%;fb;) + k(f) 
-1 v=l p=l 

(5.1) 

the (2n + 1)-point Gauss-Kronrod quadrature rule, or the Kronrod extension of the n-point Gauss 
rule, relative to the weight function w. The formula (5.1) is known to have precise degree of 
exactness d = 2n + k, where k is the unique integer satisfying 

(5 4 

(see, e.g., [2, $21). By (4.1) clearly k > n + 1, hence d 2 3n + 1. 
We say that (5.1) has the interlacing property if all nodes 7,, 7,* are real and satisfy, when 

ordered decreasingly, 

7 ,*+ i < 7, < r,* < f . . < r2* < r1 < rl* . (5.3) 

We say that (5.1) has the inclusion property if all nodes r,, rP* are contained in the closed 
interval [ - 1, 11, i.e., 

-1 < r,*tl and rl*<l, (5 -4) 

if (5.3) holds. 
In this section we show that, with a few exceptions for small n, the Gauss-Kronrod formula 

(5.1) enjoys the interlacing property when w(t) = w(*~/~)( t; a, /3, 6) and w(t) = 
w( +v2.w2)( t; a, /?, 8) and the parameters (Y, p, 8 are admissible. In addition, we state condi- 
tions under which the inclusion property holds, and we determine the precise degree of exactness 
for all Gauss-Kronrod quadrature formulae in this class. As mentioned at the end of Section 2, 
superscripts f 5 will be deleted when there is no danger of confusion. 

Theorem 5.1. Consider the weight function w(t) = ~(-l’~)(t; (Y, p, S), with II, p, 6 admissible. 
(a) The Gauss-Kronrod rule (5.1) has the interlacing property for all n > 1, except when n = 3 

and p > 2cz, in which case (5.3) holds if 

62<tg, o 

6z _ 1 (3P - 2~4~(P + 64 
32 p+2a * 

(5 -5) 
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(b) The inclusion property holds for all n >, 4. For n = 3 (assuming interlacing; cf. (a)), it holds 
precisely if p > 2cw; for n = 2 precisely if f3 > 2a and 16 1 < p - 2a; and for n = 1 precisely if 

16 I < +<p - a). 
(c) The precise degree of exactness d of (5.1) is equal to 4n - 3 if n > 4. If n = 3, then d = 10 

unless6=0, inwhichcased=ll. Ifn=2, thend=lifp#44a, d=8ifj3=4aand6#0, and 

d=9ifp=4aandS=O. Ifn=l, thend=4if6#Oand5otherwise. 

Proof. (a) If n = 1, we have by (3.8)’ that 71 = -S/( p - a), hence by (4.2)‘, 

r2* ( 71) = 
1 

2P(P - a)’ 
[2&-(~+P)(/_?-a)2] 

<;_KL@L+(;-I)<& 

by virtue of (2.4). This proves (5.3) for n = 1. 
If n = 2, we have by (3.8) and (4.2)2 

7r2(t)=t2+ $1- $, 

?T3*(f)=f3+ $- f + 3+ 2ac t- 3:. 
P i i P 4P 

(5 06) 

The interlacing property holds when S = 0, since then rt2 = a/P and r3* has a zero at t = 0 and 
two other zeros r1*3 with r1T32 = a(3 + 2a/@) > a//3. Up on varying (6 1 from 0 to /3 - ix, 
interlacing can only break down when n2 and 7r3* have a common zero, t,, for some 6 in that 
range. If that is the case, then by (5.6) 

t,2+ -to= 2 
; P’ to*;-; 

i i 
3+2cu t _36=0 p 0 4p 9 

which, upon eliminating to, yields 

a2 = $(3/3 - 2a)2. 

It is elementary to see that the right-hand side is larger than (p - a)2 for admissible (Y, /?. 
Consequently, the interlacing property holds for all admissible (Y, p, 6. 

We now discuss the case n = 3. One shows, similarly as in the case n = 2, that (5.3) is true 
when 6 = 0. As in the previous case, we determine the first value of 1 S I for which the 
polynomials 

r3(+t3+ !p- + 1+ cy t- LS 
P i 1 P 2P’ 

7r,*(t) = t4+ s3- 1+ YE t2 
P i i v 

-St+& 1+6” 
P i i P 

(cf. (3.8) and (4.2)3) have a common zero to. Writing 

(5 -7) 

r,*(t) = t t3 + s2 
[ P 

-+ 1+Y t +dt+& 1+6” 
i )I P P ( i P 
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and using 

the fact that TV* ( to) = 0 yields 

(5 -8) 

t;+So-f 1+6” =o, 
P i i P 

which, upon reusing (5.8) simplifies to 

that is, to 

t, = 4S/(2a - 3/3). 

Inserting this into (5.8) one finds, after a little computation, a2 = 6: with 6: as given in (5.5). 
Hence, for all values of 16 ( smaller than 18, ( we are assured of the interlacing property. An 
elementary computation shows that 

8; >< (P - LyJ2 iff 40r3 - 28r2 - 42r + 23 >< 0, r = a//3. (5.9) 

Since 0 -C r c 1 by (2.4), and the cubic in (5.9) has a zero at r = i and two other zeros outside, 
and on either side, of [0, 11, we have I a,, I > /3 - a (for admissible (Y, p) precisely if i < r -C 1, i.e., 
j3 < 2a, where equality is excluded by (2.4). Therefore, if /? -C ~CX, the interlacing property holds; 
if p > 2a, it holds when S2 -C 6,’ as claimed. 

Finally, for n > 4, the assertion follows immediately from 1~n(-l/~)( t) = 7~,“/~)*( t) (cf. (4.5)) and 
~;i;‘*‘*( t) = ( t2 - 1)7~,“_/:‘( t) (cf. (4.2)) and the fact that the interlacing property holds for the 
weight function ~(l/~) (cf. Theorem 5.2(a) below). 

(b) For n 2 4, the inclusion property (5.4) follows immediately 
assuming interlacing, (5.4) is equivalent to 7~~*( + 1) > 0, hence, by 
j? # 2a, we have inclusion precisely for j3 > ~CX. If n = 2, we have (5.4) 
and?T3*(-l)~O.By(4.2)2,thisisthesameas6~22cr-PandS~P- 
incompatible when p -C 2a, and equivalent to I S I < p - 2a when p > 

from (4.2). For n = 3, 
(4.2)3, to j3 2 2a. Since 
if and only if r3* (1) 2 0 
2a. These conditions are 
2 CL Finally, when n = 1, 

using (4.2)‘, we have by a similar argument as before that (5.4) holds precisely when 6 2 - $( p 
-a) and &<;(/?--a), i.e., (61 G i(P-CX). 

(c) We have d = 2n + k, with k determined as in (5.2). If n 2 4, then (4.3), in view of 
(1 - ++LQ)(f) = r&/2) (t), yields k = 2n - 3, since p # 2a, hence d = 4n - 3. The remaining 
assertions follow similarly from (4.3)“, n = 3, 2, and 1. 17 

Theorem 5.2. Consider the weight function w(t) = w(*j2)( t; a, p, S), with a, p, 6 admissible. 
(a) The Gauss-Kronrod rule (5.1) has the interlacing property for all n > 1. 
(b) The inclusion property hoUs for all n > 1, except when n = 1 and p > 2a, in which case (5.4) 

holds precisely when I 6 ) < : (3p - 2a). 
(c) The precise degree of exactness d of (5.1) is equal to 4n - 1 if n >, 2; if n = 1, then d = 4 if 

6~0 andd=5 ifS=O. 

Proof. (a) We first note that interlacing holds when S = 0. Indeed, we are then in the case of the 
weight function w0 (lY2) of (2.1)’ for which the interlacing property (5.3), including (5.4), is known 
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from the work in [4]. Moving 6 away from 0, either to the left or to the right, within the 
allowable range 18 1 < J3 - a, the interlacing property ceases to hold only if for some 6, in this 
range the polynomials n,, and ?~,*+i have a common zero, t,. Proposition 4.5, if n >, 2, would 
then imply 7rn+i(t0) = ~~(1~) = 0, which is impossible, and (3.9) (4.5)‘, if n = 1, would imply 
p + ~CX = 0, contradicting (2.4). Hence, interlacing prevails for all admissible, (Y, p, 6. 

(b) The inclusion property (5.4) follows immediately from (4.5) when n 2 2. If n = 1, we have 
(5.4) precisely when 7~~* ( f 1) > 0, which, on using (4.5)’ is equivalent to 16 1 < a( 3fi - 2a). Here, 
the bound is larger than p - (Y if p c 2a, so that the constraint is active only if p > 2a. (The case 
/? = 2a is excluded by (2.4).) 

(c) If n 2 2, then (4.6) shows, since p # 2a, that (5.2) holds with k = 2n - 1, so that 
d = 2n + k = 4n - 1. The assertion for n = 1 follows from (4.6)’ by a similar argument. q 

Theorem 5.3. Consider the weight function w(t) = w(‘/~,-~/~)( t; a, /3, S), with (Y, /3, 6 admissible. 
(a) The Gauss-Kronrod rule (5.1) has the interlacing property for all n > 1, except when n = 2 

and p > 2a, in which case (5.3) holds if 

(5.10) 

(b) The inclusion property holds for all n > 3. For n = 2 (assuming interlacing; cf. (a)), it holds 
precisely if 

(5.11) 

and for n = 1 if both inequalities 

66+5p-2a>O and 26+2a-P<O 

are satisfied. 

(5.12) 

(c) The precise degree of exactness d of (5.1) is equal to 4n - 2 if n > 3. If n = 2, then d = 7, 
unless 26 - 2a + fz? = 0, in which case d = 8. If n = 1, then d = 4 if a + 6 + 0 and d = 5 otherwise. 

Proof. (a) It is elementary to show, using (3.10)’ and (4.8)‘, that 7~$( ri) -C 0, which implies (5.3) 
for n = 1. For n = 2, an argument similar to the one in the proof of Theorem 5.1(a) will show 
that the interlacing property holds if /3 < 2a, and if /3 > 2a provided that (5.10) is satisfied. If 
n 2 3, the assertion follows from Proposition 4.5, which, since the zeros of v,, interlace with those 

of 7T,+1, implies that sign ~~+i( rV; w) = ( - 1)’ = sign 7~,*+i( TV; w), Y = 1, 2,. . . , n, which in turn 
implies (5.3). 

(b) For n 2 3, the inclusion property follows trivially from (4.8). For n = 2 and n = 1, the 
conditions stated in (5.11) and (5.12) express am* 2 0, 7r3*( - 1) G 0 and r2*( + 1) >, 0, respec- 
tively. 

(c) The formulae for the precise degree of exactness follow in the usual way from (4.9), when 
n > 3, and from (4.9)2, (4.9)’ when n = 2 and 1, noting, in the case of (4.9)2, that the coefficients 
of 7r3 and 7rd in (4.9)2 cannot vanish simultaneously because of (Y > 0. •I 

The discussion for the remaining weight function w(-1/2*1/2) can be reduced, with the help of 
(3.11) and (4.12), to the one just completed for w(~/~*-‘~~). 
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6. Quadrature weights, positivity, and explicit formulae 

In terms of the polynomials v~( 0) = r,,( 0; w) and r,,?+i( .) = r$+i( .; w), the weights 0, = o,(~) 
and a,* = a:“‘* in the Gauss-Kronrod formula (5.1) admit the following representations 
(Monegato [9]), 

(6.1) 

(6.2) 

where X = Al”’ are the Christoffel numbers-the weights of the Gaussian quadrature rule-rela- 
tive to the weight function w. These in turn can be represented in the form (see, e.g., [15, Eq. 
(3.4.7)1) 

A,= - 
II T” II 2 

7rn+1(T”)7T;(Tv) ’ v= ly 2y*.., nT (6.3) 

and are known to be positive. We show in this section that also the weights a,‘“’ and a~“‘*, with a 
few exceptions for small n, are all positive when w(t) = w(“‘*)( t; (Y, p, 8) and w(t) = 
w( k1/Z*F1/2)( t; (Y, j3, S), for arbitrary admissible parameters (Y, /3, 6. The positivity of a,* actu- 
ally follows from the interlacing property (Monegato [9]). Moreover, we give explicit formulae 
for the a,, and a,*. 

If the interlacing property holds, the second term in (6.1) is always negative, whereas the first 
is positive. Thus, in view of (6.3) we have u, > 0 if and only if ( VT~*+ 1( 7,) 1 > ( n,, + 1 ( T,) 1, or, since 
the zeros of 7” interlace with those of r,,+i, 

u,> 0 iff 7rn*+i(7”) )<7~,+i(7,) for V= ever; 
i 

odd 
(6.4) 

(assuming the interlacing property). 

We begin with the case w = w(l’*), which is simpler and appears to be more fundamental. 

Theorem 6.1. Consider the weight function w(t) = w(l’*)( t; cx, /?, S), with a, p, 6 admissible. Then 
all weights u, = u,‘“), a,* = ai”) * in (5.1) are positive for each n > 1. Specifically, when n = 1, 

(1) = ?r (1)’ = 71 (1). = 7l 
01 a(2a+j?)’ u1 w(w+6)’ u2 b+-8)’ (6.5) 

where o = 6* + p(2a + j?) . For n > 2, letting 7:“) = cos 6, and 7:“‘* = cos 6’P*, one has for 
v= 1,2,. ..> n, 

,(a) = z_- sin*n 8, 
P 

2a2 sin ni9, cos(n - 1)0, 
+ Psin2n0 ’ 

(6.6) 
n- 

sin 0, ff Y 

andforp=1,2 ,..., n+l, 

(n)’ = 71 
cos*n$,* 

% 2a2 
n+ 

sin(n - 1)8,* cos no,* p 

sin BP* 
+ - cos*nO,* 

(Y 

(6.7) 
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Remark. Alternative forms of (6.6), (6.7), assuming 0, f $IT, op* # +a, are 

.(n) = --z_ sin2 n 6, 
Y 

2a2 26 
n - sin 2n0, + -sin nl3, cos(n - l)O, / sin 2e, + 26sin e, 

1 

3 (6.6’) 

P )i P 1 

(n)’ = 71 
cos2nOp* 

9 2a2 
n + sin 2n9,* + 26sin(n - l)ep* cos nep* / sin 2ep* + 26sin ep* 

i P H P 1 
(6.7’) 

These, as 6 + 0, reduce in view of (2.16) to the formulae (3.9), (3.11) obtained in [4]. We note, 
however, that (6.6) remains valid as S -+ 0 also in the case n (odd) > 3, v = $( n + l), and reduces 
to [4, Eq. (3.9’)]. Likewise, (6.7) in the limit S = 0 reduces to [4, Eq. (3.11’)] when n (even) > 2 
and p = +(n + 2). 

Proof. The formulae (6.5) for n = 1, which clearly imply the positivity of all weights, are easily 
obtained from (6.1), (6.2), and (6.3), using the expressions (3.9) for rrl and 7~~, (4.5)’ for n2*, and 
(3.22) for 1) 7~~ )I 2. 

Thus assume n 2 2. Substituting 7~,,+r (T,) from (4.13) into (6.1), we get u, = $A,, which proves 
positivity of a,. Positivity of a,*, as already mentioned, follows from the interlacing property, 
which holds according to Theorem 5.2 (a). 

We proceed to derive the explicit expressions in (6.6) and (6.7). First note that, by what has 
just been shown, 

0” = th” = - II Tn II 2/7T,*t1b”)~;,1(d. (6.8) 
Putting t = cos 8 in (3.9) and differentiating gives 

2” [COS eOnn(~O~ e) - sin28. T;(COS e)] 

=(n+i)cOs(n+i)e+ $L COSTS+ 1-y (~1)~0+1-i)e. 

i i 
Now put 8 = f?, and substitute S/p from (4.15); then, after a short calculation, one finds 

?7,1(7”) = -!?- 
1 sin neV COS(FI - i)e, 

2n-lp sin e, sin no, * - i sin e, 
+ Psin2n8 

(Y 1 
Y . 

Multiplying this by 7r,*t1 (7,) from (4.17), inserting the result in (6.8), and recalling (3.22) 
immediately yields the desired formula (6.6). 

To derive (6.7), we let T,* = cos ep* (which is possible by virtue of (4.5)) and find from (4.5) 
and (3.8), similarly as in the proof of Proposition 4.5 (cf. (4.15)), that 

COS( n - 1) ep* 
-- ;-; 

- cos nt3,* 
cos ep*, (6.9) 

and from (3.9) that 

7r&*) = -% 
1 

2n-rp cos no*' 
P 
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Furthermore, 

T$gT,*) = -& cosye* in + sinb -,ty*cos ne; f + - cos*nep* 
P CL 

), 

from which as before, using (6.2) and (3.22), one obtains (6.7). 
The alternative formulae (6.6’) and (6.7’) follow from those just derived by expressing P/(Y 

(under the assumptions made on 0, and 0:) in terms of S/p by means of (4.15) and (6.9), 
respectively, and using elementary trigonometric identities. !II 

Theorem 6.2. Consider the weight function w(t) = w(-~/~)( t; a, /I, S), with a, p, 6 admissible. 
Then all weights a, = a,‘“‘, a,* = ai”’ * in (5.1) are positive for each n > 1, except when n = 3 and 
/? > 2q in which case positivity holds if a2 < /3( p + 2cx)/8. 

If { ijj}F:i, {F,,* }:+ denote the Gauss and Kronrod nodes, respectively, of the (2n - 1)-point 
Gauss-Kronrod formula for the weight function w = w(“*), and i$, ii,,* the respective weights, then 
for n 2 4 one has 

a* 
&“) = Y 

a,-1 
Y 

1 - 7,’ ’ 
v=l,2 Ye*., n; 0(“)* = 

I* l-rP**’ 
~=2,3 n, ,..*, 

while 

(6.10) 

(6.11) 

Remark. Explicit formulae could easily be obtained for a,“), u,‘*) and a,(‘)*, but we refrain from 
writing them down here. 

Proof. We begin with the cases n = 1, 2, 3, which require special treatment. We verify the 
conditions in (6.4). 

For n = 1, the condition in (6.4) is immediate from (4.2)’ and (5.6), since CY < /?. For n = 2, the 
two inequalities in (6.4), by (4.2)* and (5.7), amount to r1 > -S/p, r2 < -S/p, which are true 
since 7r2( -S/p) = -(Y/P < 0 by (5.6). When n = 3, the three inequalities in (6.4), by (5.7) and 
(3.8), are equivalent to 

where 7, as a zero of 7~~ satisfies (cf. (5.7)) 

(6.12) 

(6.13) 

Consider first the case S = 0. Then, by symmetry, r3 < r2 = 0 < rl, and (6.12) is trivially true for 
v = 2 and easily seen true for v = 1, 3 in view of (6.13) (for 6 = 0). Now moving 1 S 1 continuously 
away from zero, positivity ceases to hold the first time we have equality in (6.12) for some v. 
Combining this equality with (6.13) then yields 7, = - 2S/fi for some v, which, reinserted in 
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(6.13), yields a2 = /3(p + 2a)/8 =: 8;. Thus, positivity holds for all 6 with a2 -C 8:. Since 
8: 2 ( p - a)2 precisely for /? < 2a (assuming (Y, /? admissible), positivity holds for all admissible 
01, p, 6 when p -C 2a, since then the interlacing property holds by Theorem 5.1(a). In the 
remaining case, /3 > 2~x, we have positivity if S2 -C 822, which can be verified to be a subregion of 
the region a2 < 6: (cf. (5.5)) in which interlacing holds. 

Assume now n >, 4. It follows from (4.2) and Theorem 5.1(c) that the Gauss-Kronrod formula 
under study has the form 

J l f(t)ww2) (t) dt= 5 uvf(d +u:fO> + Ti qf(Tp*) + %LfW>, 
-1 v=l p=2 

all f E P4n--3. 

Putting here f(t) = (1 - t2)g( t), and taking note of (4.2) and (4.5), this yields 

J 
* g( t)lP2) 

-1 
(t) dt = t uv(l - T,?)g(d + p~2u:[~ - T;2)g(T;) 

u=l 

all g E Pdnm5, 

p=l v=l 

which is precisely the (2n - l)-point Gauss-Kronrod formula for w = ~(~1~). By uniqueness, 
(6.10) follows immediately. 

To prove (6.11), it suffices to apply (6.2) for p = 1 and p = n + 1, noting that 7: = 1, r,,?+i = - 1, 
making use of (3.8) to evaluate 7~,( f l), and of (4.2) to obtain 7~,*+li( f 1) = + 27r,“_/:‘( f l), and 
finally using (3.9) to evaluate v,(?:)( + 1) and recalling (3.21). The fact that both a: and a,*,, are 
positive follows from 16 1 < /I - a and from 

n(p-~~f6)+2a-pT6~4(p-a~S)+2a-pf6 

=3/&2a+36>3(/3-af6)>0. 0 

Theorem 6.3. Consider the weight function w(t) = w(‘/~,-~/~)( t; cq /3, S), with a, p, 8 admissible. 
Then all weights a, = a,‘“‘, a,* = uj”’ * in (5.1) are positive for each n > 1, except when n = 2 and 
/I > 201, in which case they are positive if -(/I - cx) < 8 < CL 

Specifically, for n >, 3, letting T,(“) = cos 0, and $“)* = cos eP*, one has for v = 1, 2,. . . , n, 

,(n) = ._T_ sin2( n - +)OV 
Y 

2a2 (1 +cosev) + 
[ 

sin(n- +)e, cos(n- t)e, p 

1 

3 

sin e, + zsin2(n - +)e, 

(6.14) 

for p = 1, 2,. . . , n, 

@)* = 71 
cos2(n - +)O,* 

P 2cx2 
(1 + cos ep* ) n - + + 

[ 

sin(n - +)8,* cos(n - $)e,* p 

sin ep* + ;cos2(n - t)O,* 
I’ 

(6.15) 
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and for p = n + 1, 

0,‘:‘; = 
(p-,-S),Zn(P-~-S)+3~-p+S,. 

(6.16) 

Remark. It is possible to obtain explicit formulae for a,“‘, CJ,‘~‘, and u(l)*, but we will not bother p 
writing them down here. 

Proof. For n = 1, 2, we verify the conditions in (6.4). When n = 1, the inequality in (6.4) follows 
readily from (4.8)’ and (3.10). When n = 2, we must discuss 

where 7, satisfies v~( 7,) = 0 with (cf. (3.10)) 

7r2(f) = t2 + g1+ 2S/P)t + +(s - a>/p. 

The top inequality in (6.17), by (4.S)2 and (3.10), turns 

71 Z=- - 4(1+ 26/P), 

which, by virtue of 

(6.18) 

out to be equivalent to 

(6.19) 

7T2( - $0 + 2&V)) = (6 - a)/2P, (6.20) 

(6.17) 

is certainly true if 6 = 0. Assume first p c 2a, in which case interlacing holds by Theorem 5.3(a). 
Since the value of r2 in (6.20) is negative when 6 -C (Y, and (Y > /? - (Y, we have (6.19), hence 
u,(~) > 0, for all admissible (Y, p, 6. The discussion of the lower inequality in (6.17) (for Y = 2) is 
analogous and leads to the same conclusion. If p > 2cu, one needs to distinguish the cases 6 > (Y 
and 6 c (Y. In the former case, since S > 0, both zeros ri and r2 of r2 are negative and sum up to 
- $(l + 26/p), by (6.18). Therefore, (6.19) holds for both ri and r2, hence ui2) > 0, but ai” < 0. 
If 6 -C (Y, then (6.20) implies as before that u,(~) > 0, 04~’ > 0. Thus we have positivity of both 
weightsif -(P-cx)<S < 01, which is easily seen to be a subinterval of the interval in (5.10) in 
which the interlacing property holds. 

Positivity for n > 3 follows as in the proof of Theorem 6.1, and the explicit formulae (6.14), 
(6.15) are obtained by a procedure entirely analogous to the one used to derive (6.6), (6.7), using 
the appropriate polynomials 7rn!+ i, r,, in (4.8) and (3.10), respectively, and such properties as 
(3.11), (3.2) and (3.16). The expression (6.16) for a,,?+,, and its positivity, follow similarly as in the 
proof of (6.11). •I 

7. Linear divisors 

Up until now, we assumed that the divisor p in (2.1), (2.2) is a polynomial of exact degree 2. 
We now relax this condition and allow the case of linear divisors. Formally, this case is obtained 
in the limit as ,& --+ 2a, which yields 

p(t) = p(t; a, 2ff, 6) = a2(2pt + p2 + l), 

/J=C?/(Y, a>o, (/.LI (1. (7.1) 
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Apart from a constant factor, we are thus led to the weight functions 

(7.2) 

The case p = 0 corresponds to the classical Chebyshev weight functions. 
The results of the previous sections, and their proofs, are easily specialized to the case p = 2a. 

The resulting orthogonal polynomials, Stieltjes polynomials, interlacing and inclusion properties, 
and (sharp) degrees of exactness are summarized in Table 1, in this order. 

All weights a:“)* are positive, without exceptions, because of the interlacing property holding 
for all n 2 1. The same turns out to be true for the weights a, (n). The explicit formulae given in 
Section 6 simplify somewhat (note that they are to be multiplied by a2 on account of (7.1)); for 
W = UW2) and n > 2 one obtains 

,(n) = TT sin2n 0, 
Y 2 sin n8 

n - Y--&cos(n + 1)0” ’ 

v=l, 2 )...) n, 

Y 

,(n)’ = TT 
cos2n8p* 

P 2 sin( n + 1) oP* ’ 
/.l=1,2 ,*..,n+l, 

n+ 
sin ep* 

cos nBp* 

(7.3) 

(7.4) 

whereas for w = #‘2,-l/2) and n 2 3, 

,(n) = TT sin2( n - +)0, 
Y 2 

(l+cos8,) n-i- 
[ 

sin( n - :)e, 
sin e, 

cos(n + $)ev 
I 

, v=l, 2 )...) n, (7.5) 

&n)* = E 
CO?( n - +)e,* 

B 

2( 
I 

sin( n + +) $* I 
9 /.l=l,2 ,*--, n, 

i+cOse;) n-i+ 
sin 8@* 

cos( n - +)e,* 

(J,‘:)l* = 
(1 - ~)[2(1 :p)n + I + p] ’ 

(7.6) 

where e,, eP* are as defined in Theorems 6.1 and 6.3, respectively. For w = &l/2) and n a 4, the 
weights are obtained as in Theorem 6.2 in terms of the weights u>~-‘), a:“-‘)* in (7.3), (7.4). 
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Erratum 
To: Gauss-Kronrod quadrature formulae for weight functions of Bernstein-Szegij type 

W. GAUTSCHI and S.E. NOTARIS 
Journal of Computational and Applied Mathematics 25 (2) (1989) 199-224 

The publishers sincerely apologize for the typographical errors, which appear in the above- 
mentioned paper. 

The first name of the second author is “Sotirios”, not “Sotorios”. 

On p.202, 

On p.208, 

On p.213, 

On p.214, 

line 9, read “modulus”, not “modules”. 

delete “x” in (3.25). 

line 4, read (( w( - i/2, i/2) “. 

in the second relation of (5.6), the second “ +” sign, between “l/4” and “(“, should 
be deleted. 

On p.216, line 5, no comma after “admissible”. 

On p.218, line 7, read “p = i( n + 1)” instead of “p = i( n + 2)“. 

0377-0427/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 
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