

EYE MOVEMENT RESEARCH IN ADULT PSYCHIATRY

Nikolaos Smyrnis
University Mental Health Research Institute
National and Kapodistrian University of Athens

Current Practice in Psychiatry

- Syndrome diagnosis based on interviews (phenomenology).
- Selection of treatment based on symptoms.
 Trial and error for different agents.
- Maintenance of treatment that produced symptom remission and has favorite adverse reaction profile.

In search for biomarkers

- Objective diagnostic tools as opposed to phenomenology.
- Probes to understand the pathophysiology of psychiatric disorders.
- Endophenotypes to study genetics of psychiatric disorders.
- Tools in the decision of treatment alternatives and the efficacy of treatment.

Why use eye movements?

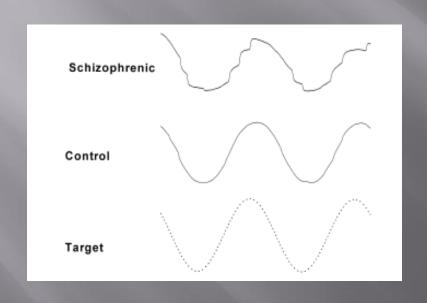
- Much richer data set probing neural mechanisms
- Baseline conditions where patients perform as well (prosaccades)
- Information about many cognitive processes disturbed in these patients
- Easily recorded
- Easy tasks and instructions

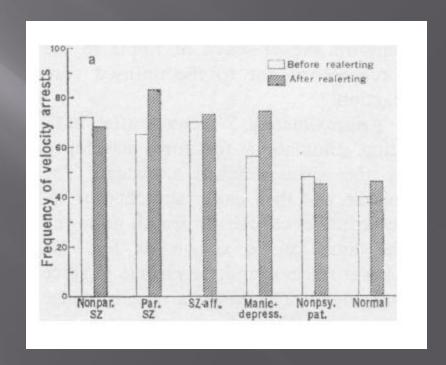
Focus of this presentation

- Eye movement paradigms discussed will be smooth eye pursuit and saccades (prosaccades, antisaccades, memory saccades).
- Model psychiatric disorder will be schizophrenia with references on affective psychoses (bipolar disorder, major depression) and obsessive compulsive disorder.

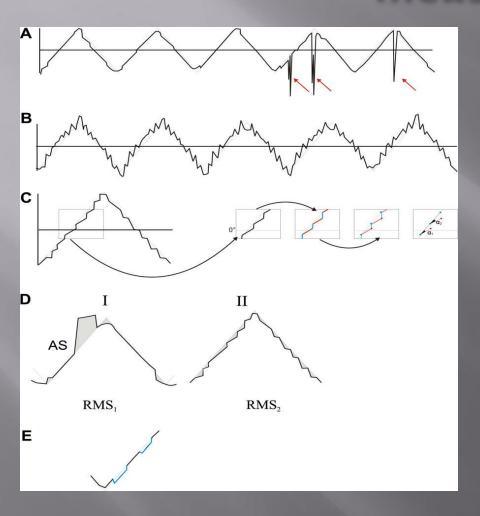
Objectives

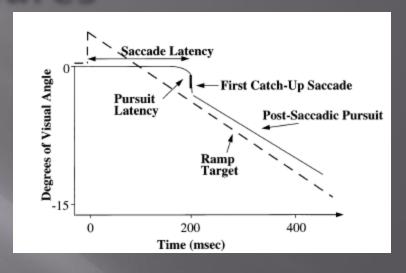
- Sensitivity (dissociating patients from controls)
- Specificity (dissociating different psychiatric syndromes)
- Relation to psychopathology and medication status
- Heritability and influence of genetic factors
- Neural substrate of differences between patients and controls

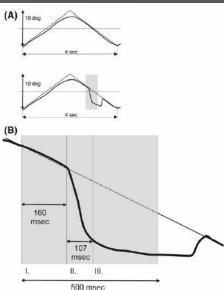

History


- In 1908 Diefendorf and Dodge using a method based on photography recorded eye movements during reading, visually guided saccades and smooth eye pursuit.
- "Insane" Patients (schizophrenia, bipolar disorder, depression etc) had worse smooth eye pursuit performance then controls.

History


- In 1973 Holzman and colleagues used EOG to confirm worse pursuit in psychotic patients.
- In 1974 the same group showed deficits in smooth eye pursuit in first degree relatives of patients with schizophrenia.


Smooth pursuit abnormalities in schizophrenia



Smooth Eye Pursuit performance measures

Sweeney et al 1998 (A) 10000

Smyrnis 2008

Kattoulas et al 2011

Test re-test reliability

Table 1. Descriptive Statistics of Oculomotor Variables at Baseline and Retest (N = 21), Pearson and Intraclass Correlations (ICC), Repeatability Coefficients (RC), t Tests, and Effect Sizes (ES)

	Baseline		Retest						
	Mean	SD	Mean	SD	Pearson	ICC	RC	t test	ES
SPEM gain 12°/s	98.60	8.09	96.35	9.28	r = 0.11, p = .64	ICC = 0.10, p > .10	23.53	t = 0.92, $df = 19$, $p = .37$	0.19
SPEM gain 24°/s	95.32	10.58	95.89	11.10	r = 0.31, p = .17	ICC = 0.31, p > .10	25.45	t = -0.21, $df = 20$, $p = .84$	-0.05
SPEM gain 36°/s	89.59	9.03	88.34	11.77	r = 0.81, p < .001	ICC = 0.77, p < .01	14.31	t = 0.84, $df = 19$, $p = .41$	0.18
SPEM gain 48°/s	71.85	16.00	70.34	14.89	r = 0.71, p < .001	ICC = 0.70, p < .01	23.71	t = 0.58, $df = 20$, $p = .57$	0.13
AS 12°/s	0.15	0.21	0.15	0.19	r = 0.94, p < .001	ICC = 0.93, p < .01	0.15	t = 0.53, $df = 19$, $p = .60$	0.02
AS 24°/s	0.40	0.30	0.44	0.41	r = 0.59, p = .005	ICC = 0.56, p < .01	0.68	t = -0.51, $df = 20$, $p = .62$	-0.12
AS 36°/s	0.63	0.36	0.50	0.32	r = 0.79, p < .001	ICC = 0.73, p < .01	0.45	t = 2.25, $df = 19$, $p = .04$	0.57
AS 48°/s	0.50	0.35	0.44	0.37	r = 0.59, p = .004	ICC = 0.58, p < .01	0.65	t = 0.89, $df = 20$, $p = .38$	0.18
CUS 12°/s	0.29	0.09	0.26	0.14	r = 0.42, p = .07	ICC = 0.34, p > .10	0.22	t = 1.82, df = 19, p = .08	0.27
CUS 24°/s	1.01	0.39	0.96	0.27	r = 0.64, p = .002	ICC = 0.59, p < .01	0.61	t = 0.70, df = 20, p = .49	0.17
CUS 36°/s	1.84	0.66	1.69	0.70	r = 0.60, p = .005	ICC = 0.58, p < .01	1.23	t = 0.96, $df = 19$, $p = .35$	0.25
CUS 48°/s	2.37	0.74	2.52	0.79	r = 0.59, p = .005	ICC = 0.58, p < .01	1.38	t = -0.99, $df = 20$, $p = .33$	-0.22
Fixation N saccades/s	0.01	0.02	0.008	0.02	r = 0.55, p = .02	ICC = 0.54, p < .02	0.04	t = 0.57, $df = 17$, $p = .58$	0.13
Antisaccade gain	-119.17	40.33	-98.20	28.37	r = 0.51, p = .02	ICC = 0.35, p > .10	71.37	t = -2.69, $df = 20$, $p = .01$	-0.59
Antisaccade spatial error	51.72	26.30	39.62	9.71	r = 0.30, p = .18	ICC = 0.09, p > .10	50.26	t = 2.21, $df = 20$, $p = .04$	0.48
Antisaccade latency	285.09	31.94	278.09	26.45	r = 0.69, p = .001	ICC = 0.65, p < .01	47.07	t = 1.36, $df = 20$, $p = .19$	0.30
Antisaccade error rate	20.90	15.14	16.40	11.02	r = 0.89, p < .001	ICC = 0.79, p < .01	14.59	t = 2.83, $df = 20$, $p = .01$	0.62
Prosaccade gain	102.26	8.39	98.60		r = 0.67, p = .001	ICC = 0.59, p < .01	13.27	t = 2.53, $df = 20$, $p = .02$	0.55
Prosaccade spatial error	15.12	4.65	14.29		r = 0.15, p = .53	ICC = 0.14, p > .10	11.50	t = 0.66, $df = 20$, $p = .52$	0.18
Prosaccade latency	183.01	18.80	187.90	19.13	r = 0.79, p < .001	ICC = 0.76, p < .01	24.43	t = -1.83, df = 20, p = .08	-0.40

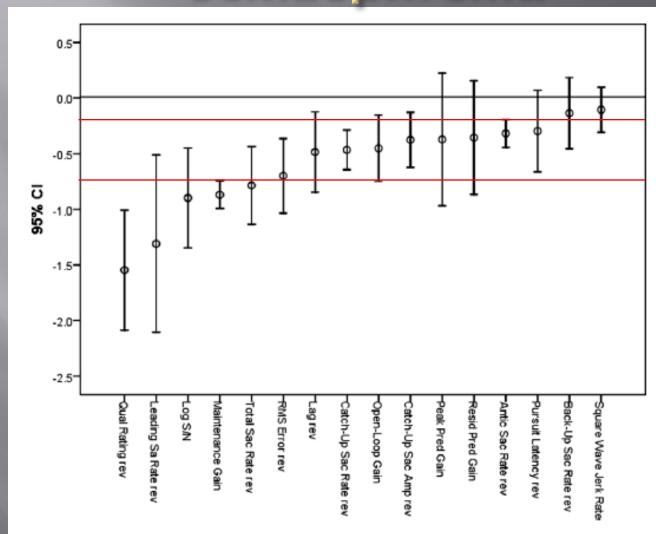
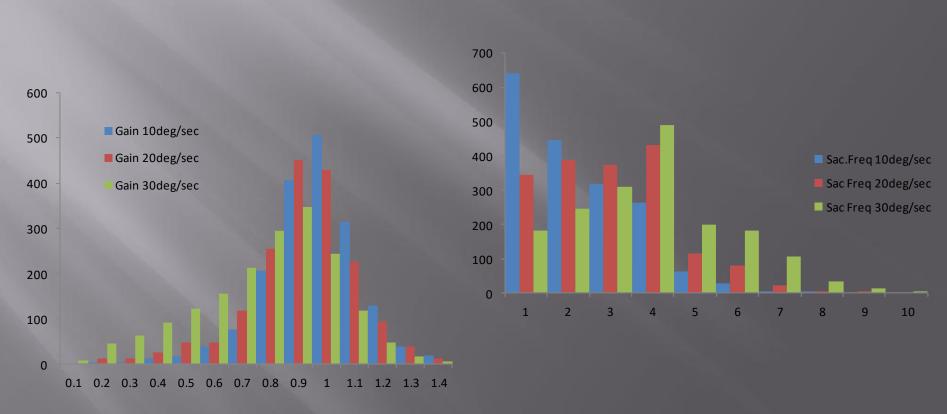
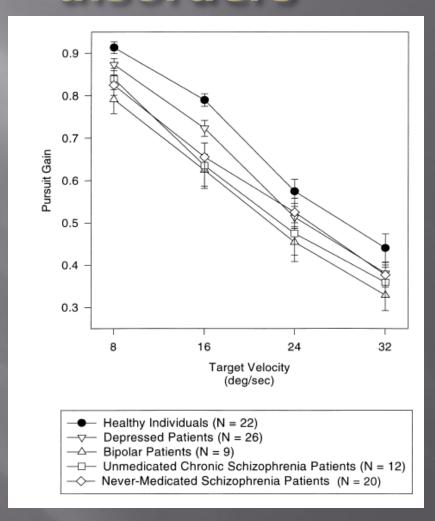

Smooth eye pursuit deficit in schizophrenia

Table 1 Vote count for dependent variables^a

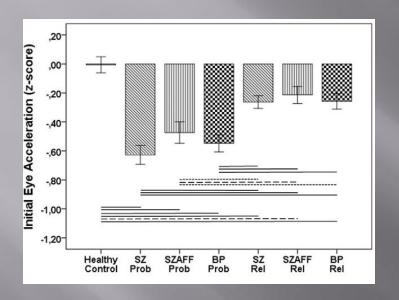

Variable	Studies	Controls	Schizophren ia	Vote count
	(n)	(n)	(n)	(Sig/Nsig)
Global				
Qualititative ratings	9	196	244	9Y/0N
Log S/N	4	123	168	4Y/0N
Total saccade rate	17	465	434	9Y/8N
RMS error	11	470	636	8Y/3N
Pursuit system				
Maintenance Gain	45	1471	1547	37Y/8N
Open loop gain/Vel/Acc	12	256	329	7Y/5N
Pursuit latency	8	203	242	3Y/5N
CUS rate	26	899	985	11Y/16N
CUS amplitude	12	389	455	4Y/8N
Resid predictive gain	5	112	142	2Y/3N
Peak predictive gain	5	178	158	2Y/3N
Lag	9	215	340	4Y/5N
Saccadic intrusions				
SWJ rate	17	506	633	4Y/13N
BUS rate	10	306	372	3Y/7N
AS rate	22	795	831	9Y/13N
Leading saccade rate	10	317	291	8Y/2N

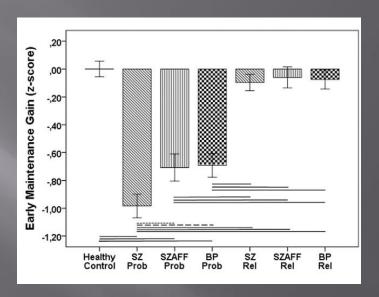
a Fifty-nine total studies were included in the vote count.

Smooth eye pursuit deficit in schizophrenia

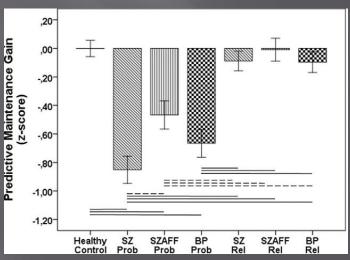


Normal variation of smooth eye pursuit indexes in healthy young adults

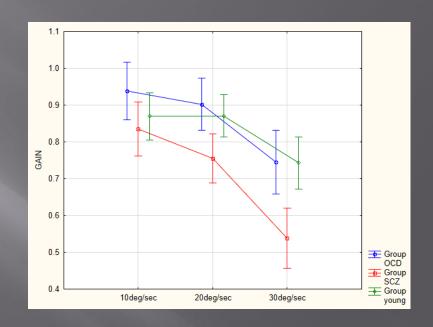



Smyrnis et al 2007

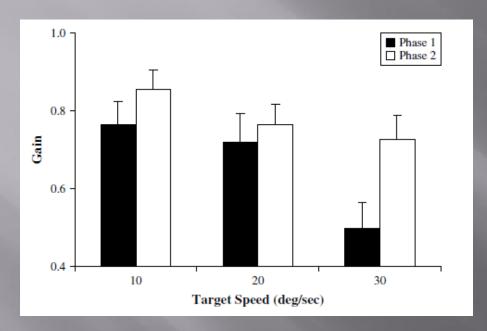
Smooth eye pursuit in psychotic disorders



Smooth eye pursuit in psychotic disorders

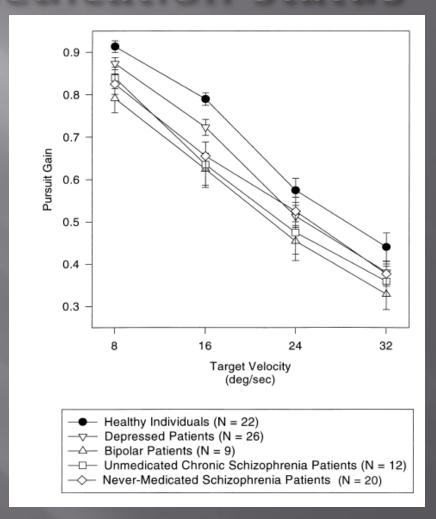


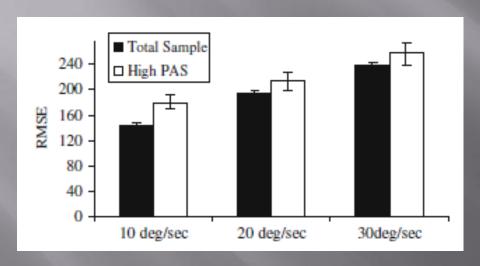
Lencer et al 2015

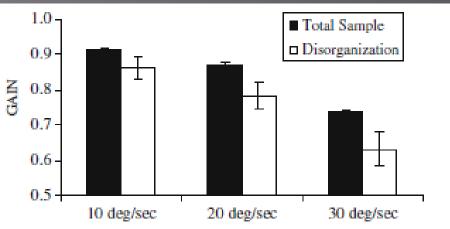

Smooth eye pursuit in OCD

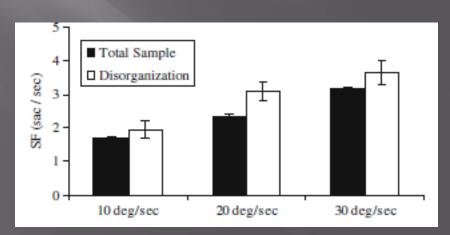
		Group	
Variable	Obsessive- Compulsive	Nonpsychiatric	Effect Size
Size (data points)			
12 deg per sec	4348 (803)	4654 (503)	-0.61
24 deg per sec	1692 (363)	1773 (216)	-0.38
Pursuit gain			
12 deg per sec	0.96 (0.06)	0.97 (0.07)	-0.14
24 deg per sec	0.91 (0.06)	0.95 (0.05)	-0.80
EyeVel sd (deg per sec)			
12 deg per sec	2.30 (0.59)	2.71 (1.11)	-0.37
24 deg per sec	3.85 (0.78)	4.09 (1.08)	-0.22
CUS frequency per sec			
12 deg per sec	0.69 (0.48)	0.67 (0.52)	0.04
24 deg per sec	1.26 (0.70)	0.98 (0.69)	0.41
CUS amplitude (deg)			
12 deg per sec	1.31 (0.34)	1.09 (0.32)	0.69
24 deg per sec	2.22 (0.94)	1.96 (0.37)	0.70

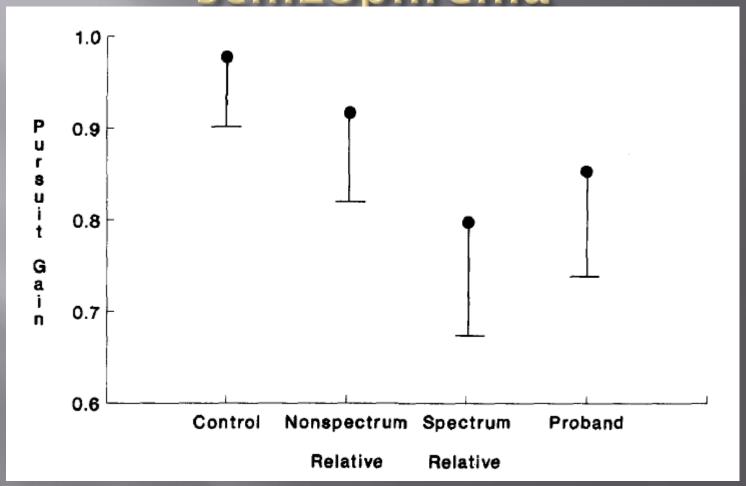
Damilou et al 2016

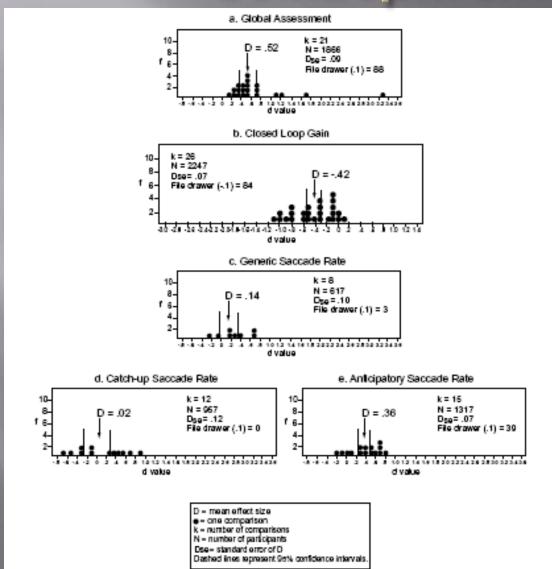

Relation to symptom severity

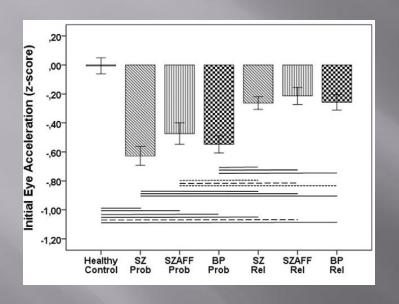

Kallimani et al 2009

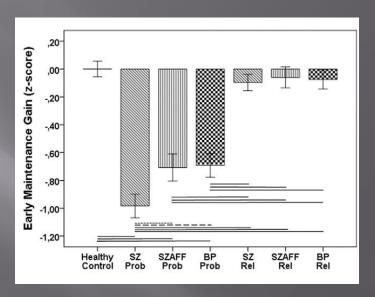

	r^2	F	$\operatorname{PSd} b$	t	$\operatorname{NSd} b$	t	$\operatorname{GSd} b$	t
Saccade task								
Med latency	0.10	0.6	-0.2	-0.62	-0.27	-0.88	0.5	1.32
Antisaccade task								
Error rate	0.19	1.15	0.23	0.73	0.52	1.69	-0.47	-1.28
Med latency	0.07	0.36	0.13	0.37	0.33	0.95	-0.36	-0.84
Smooth eye purs	uit tas	k						
RMSE 10	0.26	1.93	-0.35	-1.21	-0.52	-1.85	0.77	2.26
RMSE 20	0.06	0.36	-0.17	-0.52	-0.02	-0.08	-0.08	-0.22
RMSE 30	0.13	0.82	-0.39	-1.23	-0.04	-0.14	-0.07	0.18
Gain 10	0.19	1.24	0.34	1.12	0.46	1.56	-0.51	-1.43
Gain 20	0.53	2.13	0.25	0.88	0.63	2.26	-0.43	-1.29
Gain 30	0.23	1.57	0.36	1.21	0.48	1.65	-0.7	-2.00
Saccade	0.24	1.66	-0.05	-0.16	-0.63	-2.2	0.37	1.07
frequency 10 Saccade	0.10	0.60	0.09	0.29	-0.38	-1.23	0.30	0.79
frequency 20 Saccade	0.08	0.47	0.02	0.05	0.18	0.58	0.12	0.3
frequency 30								


Smooth eye pursuit deficit and medication status

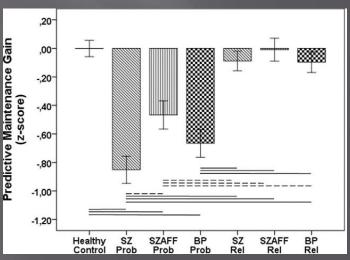

Smooth eye pursuit in schizotypy




Heritability of SPEM deficit in schizophrenia



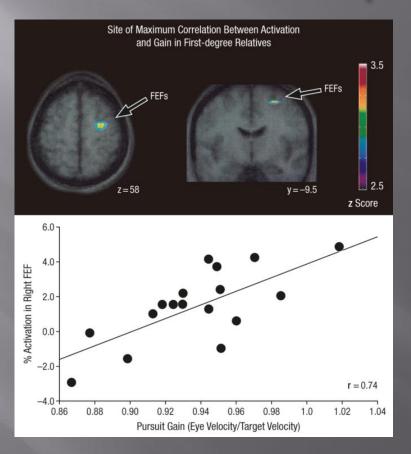
Heritability of SPEM deficit in schizophrenia



Heritability of SPEM deficit in psychotic disorders

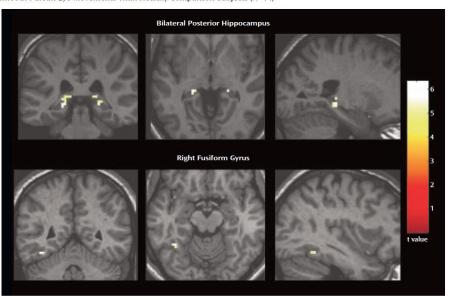
Lencer et al 2015

Association of schizophrenia related GWAS SNPs to endophenotypes from ASPIS study


TABLE IV. PGC-SZ Genome-Wide Significant SNPs Nominally Associated With Multiple ASPIS Phenotypes

		ASPIS	Best ASPIS	PGC-SZ	
SNP ID	Location	Outcomes	P-value	P-value	Genes in region
rs12421382	11q22.3	VNB, SNB	7.8E-04 (VNB)	3.7E-08	C11orf87
rs7523273	1q32.2	CPT, ACV	2.0E-02 (CPT)	4.5E-08	CD46, CR1L, CD34
rs6704641	2q33.1	SNB, SPEM	7.5E-03 (SPEM)	8.3E-09	SATB2
rs7819570	8q21.3	SNB-RT, VNB-RT	2.9E-03 (SNB-RT)	1.2E-08	MMP16
rs4129585	8q24.3	CPT-RT, SNB-RT	7.2E-03 (CPT-RT)	1.7E-15	TSNARE1
rs7893279	10p12.31	CPT, VNB	3.4E-02 (CPT)	2.0E-12	CACNB2
rs77502336	11q24.1	IQ, SPEM	4.3E-03 (IQ)	7.5E-09	GRAMD1B
rs2068012	14q12	VNB, SNB	1.9E-02 (VNB)	1.4E-08	PRKD1, MIR548AI

PGC, psychiatric genomics consortium. Two-sided P-values are shown.

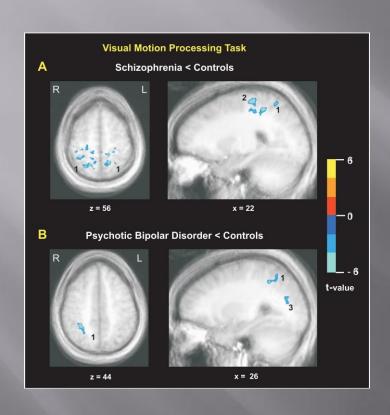

Hatzimanolis et al 2015

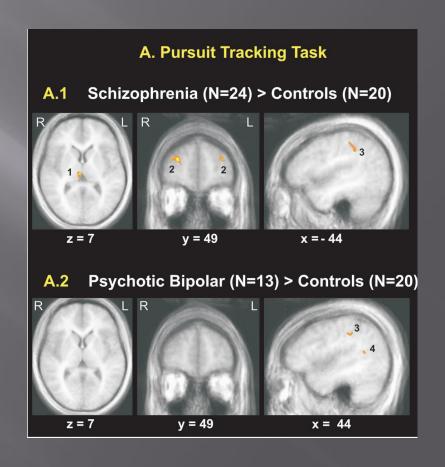
Smooth pursuit in first degree relatives of patients with schizophrenia

Smooth pursuit in patients with schizophrenia vs controls

FIGURE 1. fMRI Images Showing Brain Regions in Which Subjects With Schizophrenia (N=14) Had Greater Activation During Smooth Pursuit Eye Movements Than Healthy Comparison Subjects (N=14)^a

^a Greater activation was found in the bilateral posterior hippocampi and right fusiform gyrus in the subjects with schizophrenia, relative to the comparison subjects. Statistical maps thresholded at p<0.05, corrected.

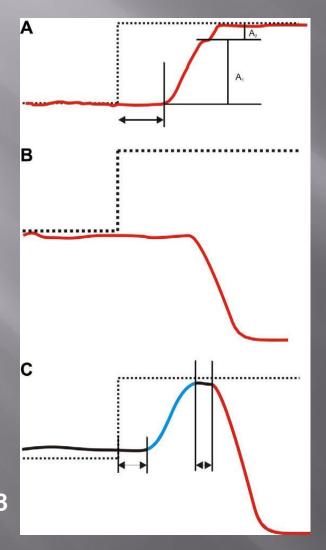

TABLE 2. Region-of-Interest Analysis Showing Less Activity During Smooth Pursuit Eye Movements in Patients With Schizophrenia (N=14) Than in Healthy Comparison Subjects (N=14)

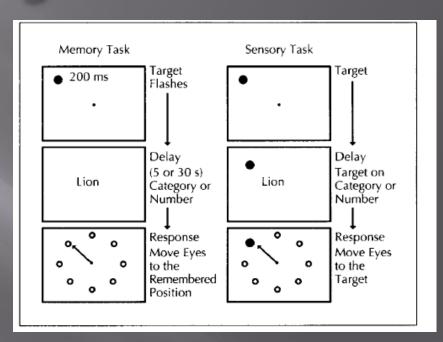

Brain Region	ı	Location	1	of Dif	ficance ference ctivity
and Hemisphere	X	у	Z	t	p ^b
Frontal eye fields, right	51	3	39	2.47	0.04
Cingulate gyrus, left	-9	0	45	2.45	0.04
Medial occipital, right	3	-66	6	3.61	0.002

^a Values (mm) refer to local maxima of blood-oxygen-level-dependent response at stereotactic coordinates based on dimensions of the atlas of Talairach and Tournoux (14).

^b Bonferroni corrected for the number of regions evaluated.

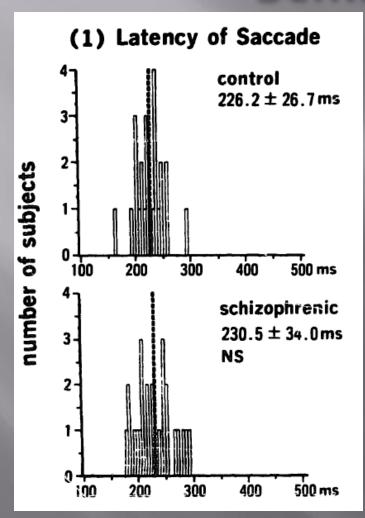
Decreased activation of motion processing areas and increased for SPEM related areas in patients with psychotic disorders

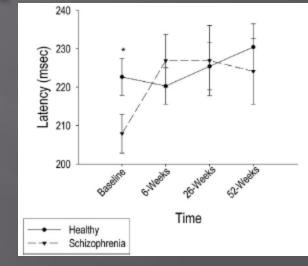


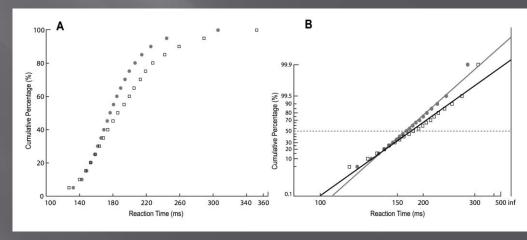

Lencer et al 2011

Quiz

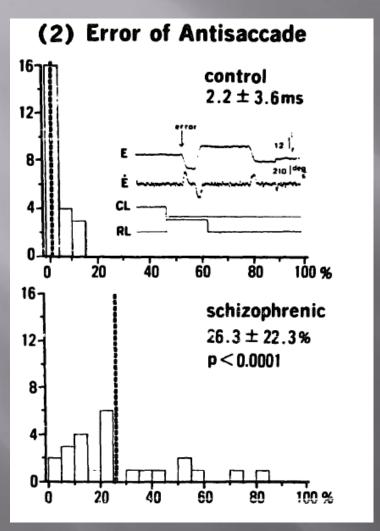
- 1. What is the major difference in pursuit performance between schizophrenia patients and healthy controls?
- 2. What parameters dissociate smooth pursuit performance in schizophrenia, affective disorders (bipolar, major depression) and obsessive compulsive disorder?
- 3. What parameters of smooth eye pursuit performance can be considered as endophenotypes of schizophrenia and why?
- 4. What brain areas are associated with the smooth eye pursuit deficit in schizophrenia?

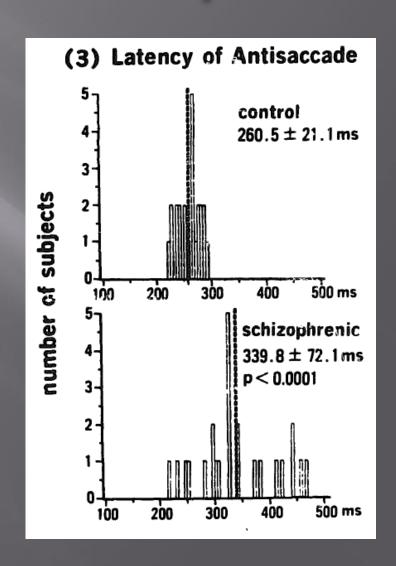

Saccadic eye movement paradigms



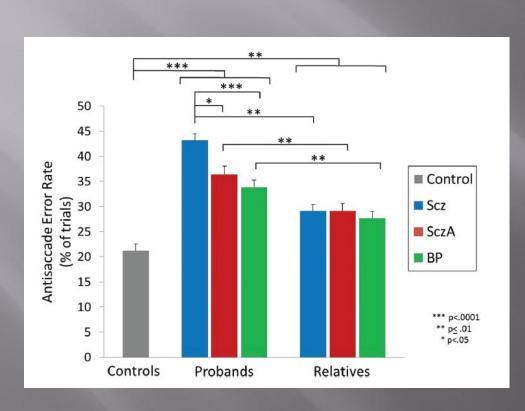

Park and Holzman 1992

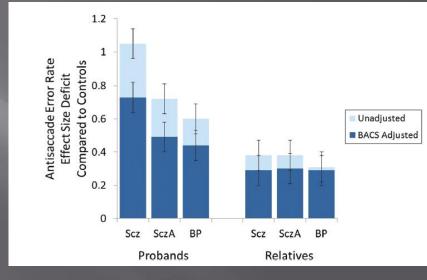
Reflexive Saccades in Schizophrenia


Reilly et al 2005



Smyrnis et al 2009


Fukushima et al 1990


Antisaccades in schizophrenia

Antisaccade performance in psychosis

Memory saccades in psychosis

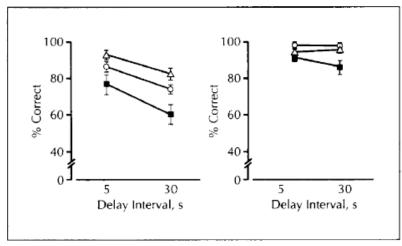
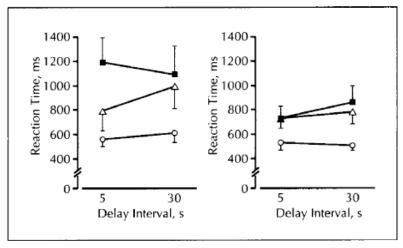
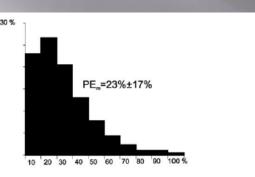



Fig 2.—Percent correct eye movements to target in the memory-guided oculomotor delayed-response task (left) and in the sensory-guided oculomotor delayed-response task (right) in two delays (5 and 30 seconds) for three subject groups: schizophrenics (squares), bipolar patients (triangles), and normal controls (circles).

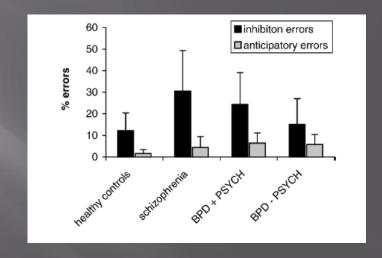

Fig 3.—Reaction time for eye movements to target after two delay periods (5 and 30 seconds) in the memory-guided oculomotor delayed-response task (left) and in the sensory-guided oculomotor delayed-response task (right) for three subject groups: schizophrenics (squares), bipolar patients (triangles), and normal controls (circles).

Park and Holzman 1992

Reliability

Table 1. Descriptive Statistics of Oculomotor Variables at Baseline and Retest (N = 21), Pearson and Intraclass Correlations (ICC), Repeatability Coefficients (RC), t Tests, and Effect Sizes (ES)

	Baseline		Retest						
	Mean	SD	Mean	SD	Pearson	ICC	RC	t test	ES
SPEM gain 12°/s	98.60	8.09	96.35	9.28	r = 0.11, p = .64	ICC = 0.10, p > .10	23.53	t = 0.92, $df = 19$, $p = .37$	0.19
SPEM gain 24°/s	95.32	10.58	95.89	11.10	r = 0.31, p = .17	ICC = 0.31, p > .10	25.45	t = -0.21, $df = 20$, $p = .84$	-0.05
SPEM gain 36°/s	89.59	9.03	88.34	11.77	r = 0.81, p < .001	ICC = 0.77, p < .01	14.31	t = 0.84, $df = 19$, $p = .41$	0.18
SPEM gain 48°/s	71.85	16.00	70.34	14.89	r = 0.71, p < .001	ICC = 0.70, p < .01	23.71	t = 0.58, $df = 20$, $p = .57$	0.13
AS 12°/s	0.15	0.21	0.15	0.19	r = 0.94, p < .001	ICC = 0.93, p < .01	0.15	t = 0.53, $df = 19$, $p = .60$	0.02
AS 24°/s	0.40	0.30	0.44	0.41	r = 0.59, p = .005	ICC = 0.56, p < .01	0.68	t = -0.51, $df = 20$, $p = .62$	-0.12
AS 36°/s	0.63	0.36	0.50	0.32	r = 0.79, p < .001	ICC = 0.73, p < .01	0.45	t = 2.25, df = 19, p = .04	0.57
AS 48°/s	0.50	0.35	0.44	0.37	r = 0.59, p = .004	ICC = 0.58, p < .01	0.65	t = 0.89, df = 20, p = .38	0.18
CUS 12°/s	0.29	0.09	0.26	0.14	r = 0.42, p = .07	ICC = 0.34, p > .10	0.22	t = 1.82, df = 19, p = .08	0.27
CUS 24°/s	1.01	0.39	0.96	0.27	r = 0.64, p = .002	ICC = 0.59, p < .01	0.61	t = 0.70, $df = 20$, $p = .49$	0.17
CUS 36°/s	1.84	0.66	1.69	0.70	r = 0.60, p = .005	ICC = 0.58, p < .01	1.23	t = 0.96, df = 19, p = .35	0.25
CUS 48°/s	2.37	0.74	2.52	0.79	r = 0.59, p = .005	ICC = 0.58, p < .01	1.38	t = -0.99, $df = 20$, $p = .33$	-0.22
Fixation N saccades/s	0.01	0.02	0.008	0.02	r = 0.55, p = .02	ICC = 0.54, p < .02	0.04	t = 0.57, $df = 17$, $p = .58$	0.13
Antisaccade gain	-119.17	40.33	-98.20	28.37	r = 0.51, p = .02	ICC = 0.35, p > .10	71.37	t = -2.69, $df = 20$, $p = .01$	-0.59
Antisaccade spatial error	51.72	26.30	39.62	9.71	r = 0.30, p = .18	ICC = 0.09, p > .10	50.26	t = 2.21, $df = 20$, $p = .04$	0.48
Antisaccade latency	285.09	31.94	278.09	26.45	r = 0.69, p = .001	ICC = 0.65, p < .01	47.07	t = 1.36, $df = 20$, $p = .19$	0.30
Antisaccade error rate	20.90	15.14	16.40	11.02	r = 0.89, p < .001	ICC = 0.79, p < .01	14.59	t = 2.83, $df = 20$, $p = .01$	0.62
Prosaccade gain	102.26	8.39	98.60	8.02	r = 0.67, p = .001	ICC = 0.59, p < .01	13.27	t = 2.53, $df = 20$, $p = .02$	0.55
Prosaccade spatial error	15.12	4.65	14.29	4.13	r = 0.15, p = .53	ICC = 0.14, p > .10	11.50	t = 0.66, $df = 20$, $p = .52$	0.18
Prosaccade latency	183.01	18.80	187.90		r = 0.79, p < .001	ICC = 0.76, p < .01	24.43	t = -1.83, df = 20, p = .08	-0.40

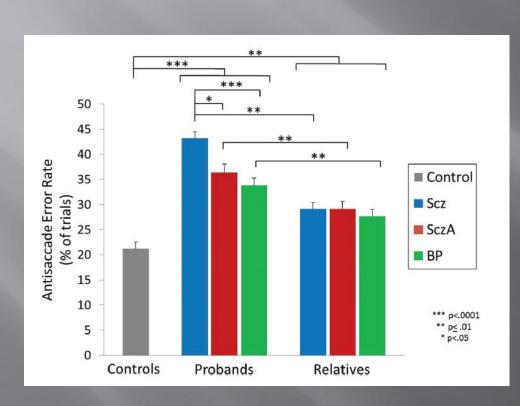


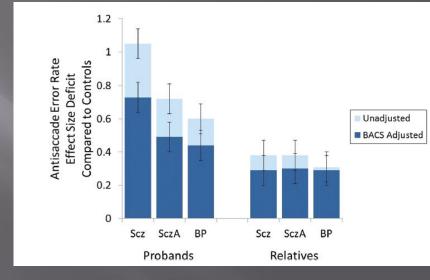
Normal variation of antisaccade indexes in young adults

Evdokimidis et al 2002

Diagnostic Specificity

	Schizophrenia $(N = 34)$	Bipolar $(N = 21)$	Control (N = 30) Mean (SD)	
Variable	Mean (SD)	Mean (SD)		
Gender (% male)	58.80	30.00	53.30	
Age ^o	38.35 (9.29)	39.00 (9.54)	35.03 (10.29)	
Estimated IQ ⁶	102.26 (9.46)	110.40 (5.99)	110.97 (4.68)	
Working Memory	SE SHE 255, 572, 0050	114 TV-000-07-50007-0.	201000000000000000000000000000000000000	
Percent correct	68.63 (27.93)	96.33 (4.17)	97.89 (3.66)	
Reaction time	1799.75 (523.82)	1456.86 (271.83)	1330.58 (339.98)	
Sensorimotor Task		Action constraints and the	202-202-202-202-202-202-202-202-202-202	
Percent correct	97.45 (6.57)	98.67 (5.23)	99.56 (1.45)	
Reaction time ^c	633.04 (160.61)	632.26 (233.96)	581.56 (157.70)	
Antisaccade task	- 1 0 mg t C = 000 m C = 000 m 1 mg 1	panetic-son pare-co		
Error rate	.51 (.26)	.30 (.18)	.14(.10)	
Latency ^e		100070070	535.7355.335	
Error response	190.96 (34.52)	203.87 (47.59)	193.95 (33.49)	
Correct response	288.99 (57.92)	291.35 (52.48)	258.09 (32.91)	



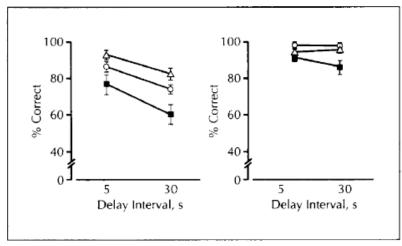
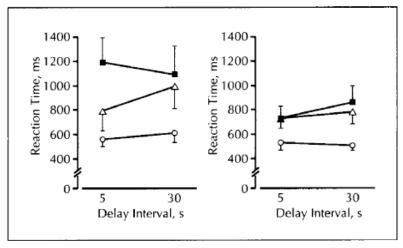

Estimated IQ based on the Shipley-Hartford Test.

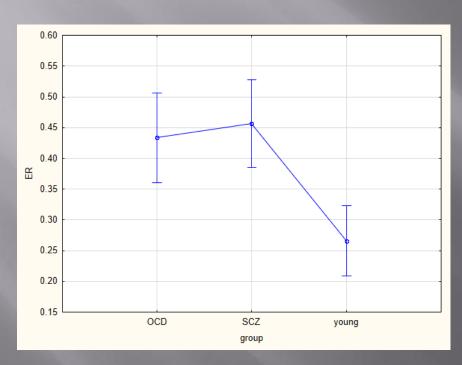
Groutens et al 2008

Gouding and Tallent 2001

Antisaccade performance in psychosis

Memory saccades in psychosis


Fig 2.—Percent correct eye movements to target in the memory-guided oculomotor delayed-response task (left) and in the sensory-guided oculomotor delayed-response task (right) in two delays (5 and 30 seconds) for three subject groups: schizophrenics (squares), bipolar patients (triangles), and normal controls (circles).

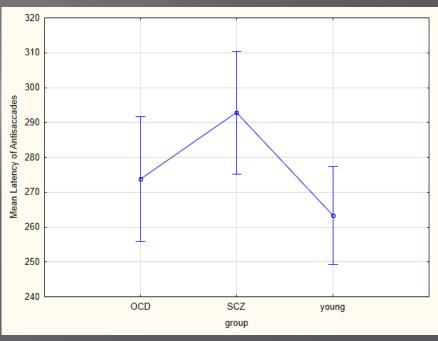
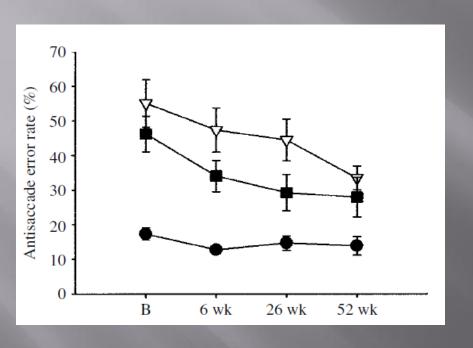
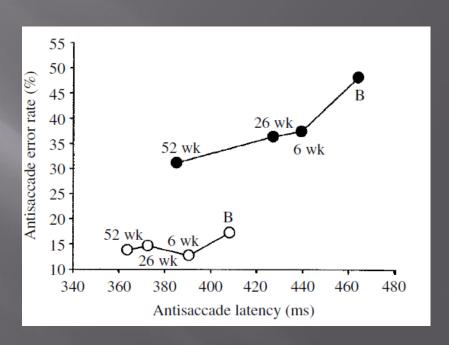


Fig 3.—Reaction time for eye movements to target after two delay periods (5 and 30 seconds) in the memory-guided oculomotor delayed-response task (left) and in the sensory-guided oculomotor delayed-response task (right) for three subject groups: schizophrenics (squares), bipolar patients (triangles), and normal controls (circles).

Park and Holzman 1992


Antisaccades in OCD



Damilou et al 2016

Medication Effects and temporal stability of antisaccade deficit in schizophrenia

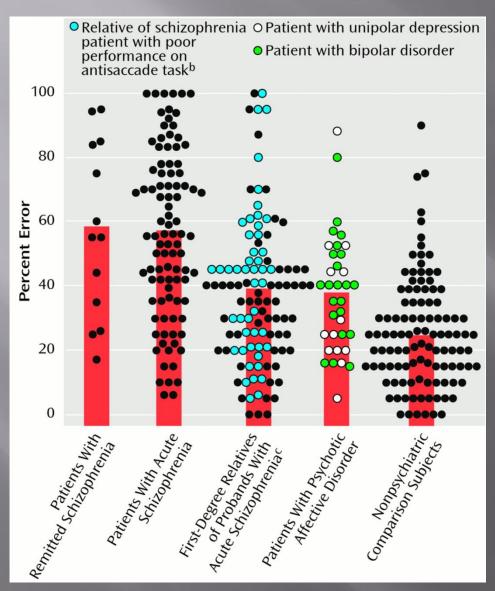
Relation to symptom severity

Oculomotor variable	Phase 1 group mean (SD)	Phase 2 group mean (SD)	Paired t ₁₉
Saccade task Median latency (ms)	183.5 (36.4)	174.3 (36.6)	1.02
Antisaccade task Error rate (%) Median latency (ms)	49.1 (29.7) 320.4 (63.8)	42.8 (15.8) 300.2 (65.6)	1.13 1.2

Kallimani et al 2009

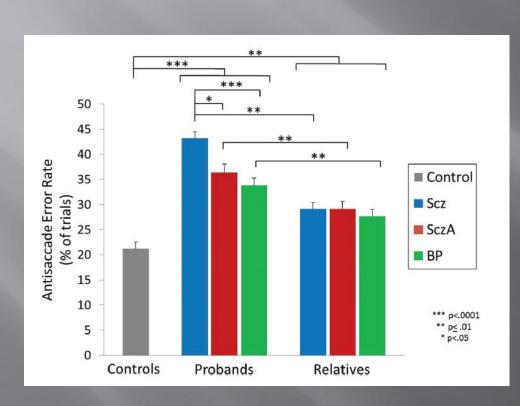
	r^2	F	PSd b	t	NSd b	t	$\operatorname{GSd} b$	t
Saccade tack								
Med latency	0.10	0.6	-0.2	-0.62	-0.27	-0.88	0.5	1.32
Antisaccade task								
Error rate	0.19	1.15	0.23	0.73	0.52	1.69	-0.47	-1.28
Med latency	0.07	0.36	0.13	0.37	0.33	0.95	-0.36	-0.84
Smooth eye pursuit task								
RMSE 10	0.26	1.93	-0.35	-1.21	-0.52	-1.85	0.77	2.26
RMSE 20	0.06	0.36	-0.17	-0.52	-0.02	-0.08	-0.08	-0.22
RMSE 30	0.13	0.82	-0.39	-1.23	-0.04	-0.14	-0.07	0.18
Gain 10	0.19	1.24	0.34	1.12	0.46	1.56	-0.51	-1.43
Gain 20	0.53	2.13	0.25	0.88	0.63	2.26	-0.43	-1.29
Gain 30	0.23	1.57	0.36	1.21	0.48	1.65	-0.7	-2.00
Saccade	0.24	1.66	-0.05	-0.16	-0.63	-2.2	0.37	1.07
frequency 10								
Saccade	0.10	0.60	0.09	0.29	-0.38	-1.23	0.30	0.79
frequency 20								
Saccade	0.08	0.47	0.02	0.05	0.18	0.58	0.12	0.3
frequency 30								

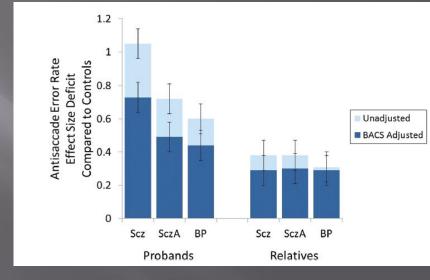
Antisaccade and schizotypy

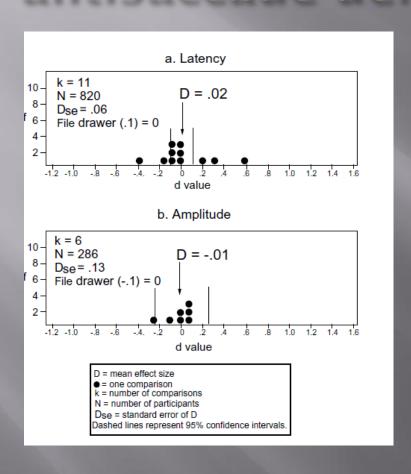

Table 3
Antisaccade Correlations With Schizotypy, Anxiety, and Depression

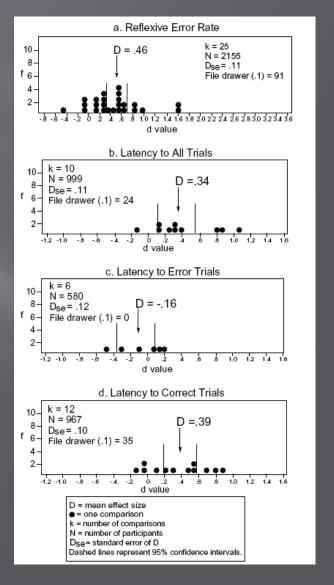
							SCI	L 90-R
Variable	PE(t)	LC_M	LC_{SD}	LE_{M}	LE_{SD}	EDU	Anxiety	Depression
PAS PAS total SPQ SPQ total F cog-per. F negative F disorganized	.05 .06 .02 .01 .00 .05	.04 .05 .02 .01 .01 .05	.09 .11 .06 .07 .04 .09	.02 .05 .04 .04 .02 .05	.06 .06 .03 .03 .04 .03	10* 20 07 12 07* 10* 08	.38* .33 .47* .44 .43* .35* .44*	.35* .31 .47* .44 .41* .37* .44*
F paranoid SCL90-R Anxiety Depression	04 .08 .06	.00 .02 04	.02 .10* .03	.01 02 04	.00 .05 .00	01 .04 .00	.40* — .77*	.40* .77* —

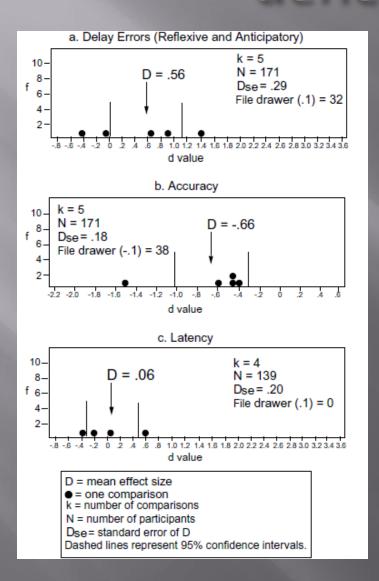
LC _M 266.7 277.7 39.4 2.08 1.99	Index	M^{a}	M	SD	t(1,270)	t(1,260
LC _M 266.7 277.7 39.4 2.08 1.99	PE (%)	22.2	29.9	20.3		
M	PE(t)	0.466	0.555	0.238	3.08*	2.58b
	LC _M	266.7	277.7	39.4	2.08	1.99
ND	LC_{SD}	54.1	62.2	20.7	3.25*	2.66*
	LE_{SD}	44.4	50.2	25.6	1.86	_


Smyrnis et al 2003


Heritability


Curtis et al 2001


Antisaccade performance in psychosis



Heritability of saccade and antisaccade deficits

Heritability of memory saccade deficits

Calkins et al 2008

Genetic associations of antisaccade measures

TABLE III. Permutation-Based Enrichment Analysis for GWAS Top-Associated Genetic Loci

	GWAS dataset	Permuted datasets					
Outcome	Nobs	N _{exc} /N _{perm}	Pemp	50th PCTL	Nobs-50th PCTL	5th PCTL	Nobs-5th PCTL
IQ	391	11/1000	0.011	343	48	378	13
CPT	338	60/100	ns	342		375	-
CPT-RT	349	36/100	ns	340	9	375	
VNB	418	0/3000	< 0.001	344	74	379	39
VNB-RT	323	84/100	ns	347		378	
SNB	370	7/100	ns	343	27	373	-
SNB-RT	354	33/100	ns	345	10	383	
ERT	357	25/100	ns	343	14	382	-
ART	381	35/1000	0.035	345	36	378	3
ACV	448	0/3000	< 0.001	352	96	387	61
SPEM	335	67/100	ns	345		382	-

 N_{obs} number of observed loci at GWAS P < 0.001.

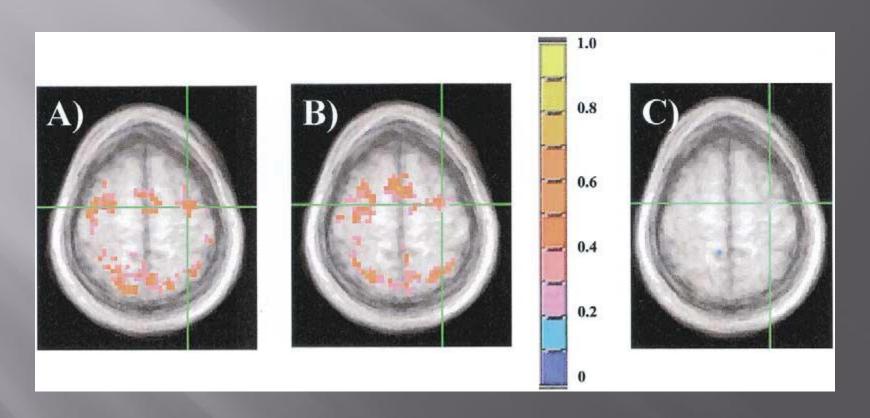
 $N_{\rm exc}$, number of permutation where the number of loci at P < 0.001 exceeded $N_{\rm obs}$.

Nperm, number of permutations performed.

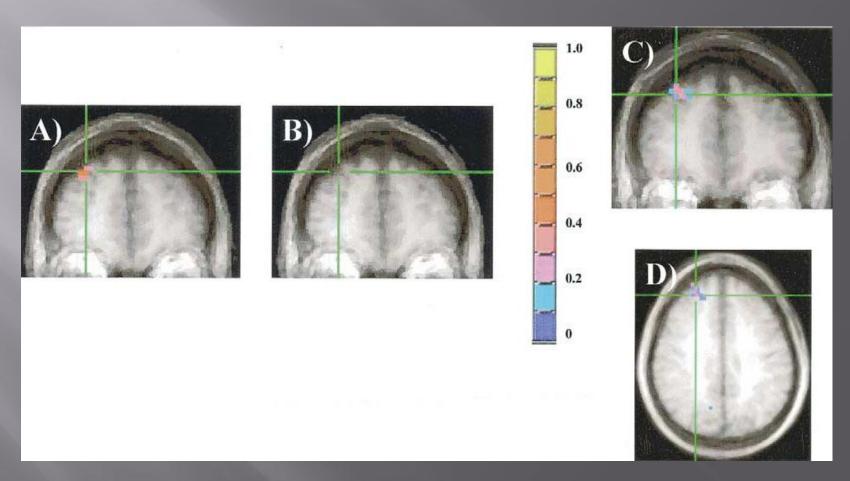
Pemp, empirical P-value. Significant enrichment at P<0.05 is shown in bold.

PCTL, percentile, for example 5th PCTL is the number of loci with P < 0.001 in 5% of permutations.ns, not significant ($P_{emp} > 0.05$).

Association of schizophrenia related GWAS SNPs to endophenotypes from ASPIS study

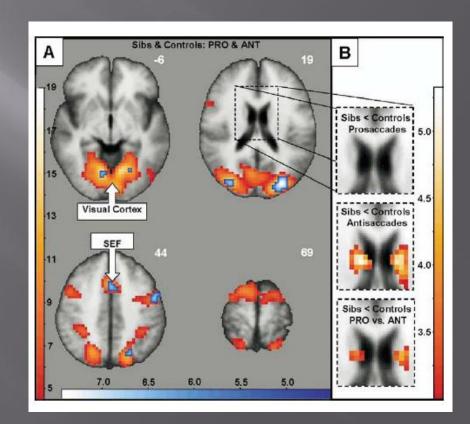

TABLE IV. PGC-SZ Genome-Wide Significant SNPs Nominally Associated With Multiple ASPIS Phenotypes

		ASPIS	Best ASPIS	PGC-SZ	
SNP ID rs12421382	Location	Outcomes VNR SNR	<i>P</i> -value 2.8F-0.4 (VNR)	<i>P</i> -value	Genes in region
rs7523273	1q32.2	CPT, ACV	2.0E-02 (CPT)	4.5E-08	CD46, CR1L, CD34
rs6704641	2q33.1	SNB, SPEM	7.5E-03 (SPEM)	8.3E-09	SATB2
rs7819570	8q21.3	SNB-RT, VNB-RT	2.9E-03 (SNB-RT)	1.2E-08	MMP16
rs4129585	8q24.3	CPT-RT, SNB-RT	7.2E-03 (CPT-RT)	1.7E-15	TSNARE1
rs7893279	10p12.31	CPT, VNB	3.4E-02 (CPT)	2.0E-12	CACNB2
rs77502336	11q24.1	IQ, SPEM	4.3E-03 (IQ)	7.5E-09	GRAMD1B
rs2068012	14q12	VNB, SNB	1.9E-02 (VNB)	1.4E-08	PRKD1, MIR548AI

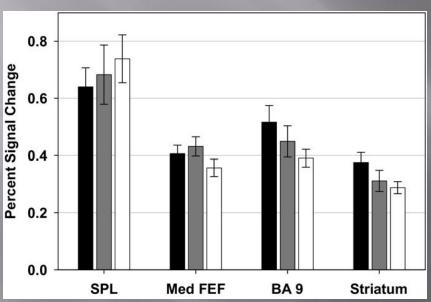

PGC, psychiatric genomics consortium. Two-sided P-values are shown.

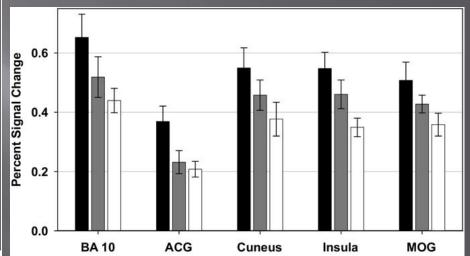
Hatzimanolis et al 2015

Saccades in schizophrenia versus controls


Antisaccades in Schizophrenia versus control

Antisaccades in first degree relatives of patients with schizophrenia


Table 1. Average Scores with Standard Deviations on the Four Measures of Task Performance


	Control Subjects (n = 16)	Siblings (n = 16)	Effect Size (<i>d</i>)
Latency Prosaccades (ms)	183.8 ± 30.1	205.3 ± 41.4	.59
Latency Antisaccades (ms)	251.9 ± 42.9	281.0 ± 68.4	.51
Errors Prosaccades (%)	$.5\% \pm 1.5\%$	1.2% ± 2.2%	.37
Errors Antisaccades (%)	$22.8\% \pm 18.6\%$	$26.8\% \pm 21.4\%$.2

Raemaekers et al 2005

Differences in activation between schizophenia patients relatives and controls for antisaccades and memory saccades

Quiz

- 1. What is the major difference in visually guided saccade performance between schizophrenia patients and healthy controls?
- 2. What is the major difference in antisaccade performance between schizophrenia patients and healthy controls?
- 3. What is the major difference in memory saccade performance between schizophrenia patients and healthy controls?

More quiz

- 4. What parameters dissociate antisaccade and memory saccade performance in schizophrenia, affective disorders and obsessive compulsive disorder?
- 5. What parameters of antisaccade and memory saccade performance can be considered as endophenotypes and why?
- 6. What is the neural substrate of the antisaccade and memory saccade deficit in schizophrenia?