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106 ENTROPY

ENTROPY. Many physicists and chemists
quip that the second law of thermodynam-
ics has as many formulations as there are
physicists and chemists. Perhaps the most
intriguing expression of the law is Ludwig
“Boltzmann’s paraphrase of Willard
*Gibbs: “The impossibility of an uncom-
pensated decrease in entropy seems to be
reduced to improbability.”

Entropy owes its birth to a paradox first
pointed out by William *Thomson in 1847:
energy cannot be destroyed or created, yet
heat energy loses its capacity to do work
(for example, to raise a weight) when it is
transferred from a warm body to a cold
one. In 1852 he suggested that in processes
like heat conduction energy is not lost but
becomes “dissipated” or unavailable. Fur-
thermore, the dissipation, according to
Thomson, amounts to a general law of na-
ture, expressing the “directionality” of nat-
ural processes. The Scottish engineer
Macquorn Rankine and Rudolf Clausius
proposed a new concept, which represented
the same tendency of energy towards dissi-
pation. Initially called “thermodynamic
function” by Rankine and “disgregation”
by Clausius, in 1865 the latter gave the
concept its definitive name, “entropy,”
after the Greek word for transformation.
Every process that takes place in an iso-
lated system increases the system’s en-
tropy. Clausius thus formulated the first
and second laws of thermodynamics in his
statement “The energy of the universe is
constant, its entropy tends to a maximum.”
Hence, all large-scale matter will eventu-
ally reach a uniform temperature, there
will be no available energy to do work, and
the universe will suffer a slow “heat
death.”

In 1871 James Clerk *Maxwell pub-
lished a thought-experiment attempting to
show that heat need not always flow from a
warmer to a colder body. A microscopic
agent (“Maxwell’s demon,” as Thomson
latter dubbed it), controlling a diaphragm
on a wall separating a hot and a cold gas,
could choose to let through only molecules
of the cold gas moving faster than the aver-
age speed of the molecules of the hot gas. In
that way, heat would flow from the cold to
the hot gas. This thought-experiment indi-
cated that the “dissipation” of energy was

not inherent in nature, but arose from
human inability to control microscopic
processes. The second law of thermody-
namics has only statistical validity—in
macroscopic regions entropy almost always
increases.

Boltzmann attempted to resolve a seri-
ous problem pointed out by his colleague
Joseph Loschmidt in 1876, and by Thom-
son two years earlier, that undermined the
mechanical interpretation of thermody-
namics and of the second law. This law sug-
gests that an asymmetry in times
dominates natural processes; the passage
of time results in an irreversible change,
the increase of entropy. However, if the
laws of mechanics govern the constituents
of thermodynamic systems, their evolution
should be reversible, since the laws of me-
chanics are the same whether time flows
forward or backward: Newton’s laws retro-
dict the moon’s position a thousand years
ago as readily as they predict its position a
thousand years from now. Prima facie,
there seems to be no mechanical counter-
part to the second law of thermodynamics.
In 1877 Boltzmann found a way out of this
difficulty by interpreting the second law in
the sense of Maxwell’s demon. According to
Boltzmann’s calculus, to each macroscopic
state of a system correspond many mi-
crostates (particular distributions of en-
ergy among the molecules of the system)
that Boltzmann considered to be equally
probable. Accordingly, the probability of a
macroscopic state was determined by the
number of microstates corresponding to it.
Boltzmann then identified the entropy of a
system with a logarithmic function of the
probability of its macroscopic state. On
that interpretation, the second law as-
serted that thermodynamic systems have
the tendency to evolve toward more proba-
ble states. A decrease of entropy was un-
likely, but not impossible.

In 1906 Walther Nernst formulated his
heat theorem, which stated that if a chemi-
cal change took place between pure crys-
talline solids at absolute zero, there would
be no change in entropy. Its more general
formulation is accepted as the third law of
thermodynamics: the maximum work ob-
tainable from a process can be calculated
from the heat evolved at temperatures
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close to absolute zero. More commonly the
third law states that it is impossible to cool
a body to absolute zero by any finite
process and that at absolute zero all bodies
tend to have the same constant entropy,
which could be arbitrarily set to zero.
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ERROR AND THE PERSONAL EQUA-
TION. Since Greek times astronomers
have recognized that observations were af-
flicted by errors, that results based on
them might only be approximate, and that
the quality of data varied. Astronomers in
early modern Europe took the first steps
toward giving reliable estimates of those
errors. Johannes *Kepler, who used Tycho
*Brahe’s observations to derive the ellipti-
cal shape of planetary orbits, was probably
the first to construct a correction term that
assigned a magnitude to error, and among
the first to give a theory of an instrument
(the Galilean *telescope) for purposes of
improving the accuracy of measurements
taken with it.

During the eighteenth century steps
were taken toward standardizing the analy-
sis of measurements and understanding the
conditions under which different sets of
measurements could be combined. Analysts
identified two types of errors: constant (af-
fecting the instruments or the conditions of
measurement) and accidental (randomly af-
fecting the quality of the measurements
themselves). Control over instrumental er-
rors was achieved at first by codifying the
behavior and demeanor of the observer, by
taking into account the limitations of the
human senses (especially vision), by exam-
ining how outside sources contaminate ex-
periments, by perfecting the construction of

instruments, and by developing methods
for instrument calibration.

The second type of error, the random,
relates to classical probability theory. Ini-
tially the criteria for the selection of good
measurements rested mainly on the notion
that the median or the mean of measure-
ments reduced the effect of errors in any of
them. In 1756 the mathematician Thomas
Simpson countered reports that a single
well-taken measurement sufficed by
demonstrating the superiority of the mean;
his presentation to the Royal Society of
London included a discussion of the equal
probability of positive and negative errors
and an argument that the mean lies closer
to the true value than any random meas-
urement. But no consensus existed about
the selection or combination of measure-
ments. The first firm parameters of an
error theory emerged from the considera-
tion of observations of the Moon’s motion,
especially its libration; from secular in-
equalities in the motions of Jupiter and
Saturn; and from measurements of the
shape of the earth. During the second half
of the eighteenth century, Johann Tobias
Mayer, Leonhard *Euler, Rudjer J. Bosko-
vi¢, and Johann Heinrich Lambert devel-
oped ad hoc, limited, varied, but effective
procedures for combining measurements
made under different conditions. In 1774
Pierre-Simon *Laplace deduced a rule for
the combination of measurements using
probability theory.

The meridian measurements made dur-
ing the French Revolution to determine
the new standard of length, the meter, gave
the occasion to devise the first general
method for establishing an equilibrium
among errors of observation by determin-
ing their “center of gravity.” This method,
the method of least squares, was so em-
ployed in 1805 by Adrien Marie Legendre.
In 1806 Carl Friedrich *Gauss acknowl-
edged Legendre’s work but only to say that
he had been using the method for years. A
priority dispute ensued. Three years later
Gauss published the first rigorous proof of
the method of least squares; he demon-
strated that if the mean is the most proba-
ble value, then the errors of measurement
form a bell curve (Gaussian) distribution.
The true value (which has the smallest
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