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e Applications to GRB outflows:

— Impulsive acceleration
— rarefaction acceleration
— axisymmetric model — simulations



Simple waves

e Finite amplitude waves caused by pressure imbalances

e Form of the solution in the textbook case (1D nonrelativistic
HD):

p=p&), P=PE), V=V (),
where ¢ = &(z, t)

e In the absence of scale £ = x/t (self-similarity)

e Relativistic MHD generalization:

p=p&), P=PE), V=Vi(O)T+V.(2 B=DBy&jJ
where ¢ = x/t

EWASS 4 July 2016, Athens



The Riemann problem

Initially two uniform states are in contact.
If the total pressure is not the same and (or) the z-velocities are
different, two travelling waves are formed (shock or rarefaction).

Vs, Pg, Pr, Br

Ver,Pr, pr, Br

Discontinuity
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Rarefaction simple waves

e when pr/pr, = 0 (vacuum on the right) a simple rarefaction
wave forms 5
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magnetized plasma
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Possible cases:
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Solving the problem

Katsoulakos & NV in preparation (see also Marti+1994, Lyutikov 2010)

For the rarefaction, solve the MHD equations (all quantities functions of = /).
For the shock, solve the jump conditions for various shock speeds.
The solution is found requiring same total pressure and z-velocity at CD.
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GRB application 1: impulsive acceleration
(Granot, Komissarov & Spitkovsky 2011)
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0 L \rarefaction shock (pr/p =107 -

log10(pressure)

Yy Vv/c

e the crossing of the two curves gives the maximum ~

e even tiny pr/pr affect v,
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GRB application 2: rarefaction acceleration
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GRB application 2: rarefaction acceleration
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GRB application 2: rarefaction acceleration
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Rarefaction simple waves with V, £ 0
Komissarov, Vlahakis & Konigl 2010

At t = 0 two uniform states are in contact:

o
[
X

right state

o when pr/pr, = 0 simple rarefaction wave
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Att > 0:
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for the cold ultrarelativistic case the MHD equations (through the
Riemann invariants) imply
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The colour image in the Minkowski diagram represents the distribution of the
Lorentz factor and the contours show the worldlines of various fluid parcels
(see also Aloy & Rezzolla 2006 for HD, Mizuno+2008 for MHD simulations)
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Simulation results
Komissarov, Vlahakis & Konigl 2010

(see also Tchekhovskoy, Narayan & McKinney 2010)
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Steady-state rarefaction wave
Sapountzis & Vlahakis (2013)

» “flow around a corner”

o planar geometry

e ignoring B,, (nonzero B,)

» similarity variable x/z (angle 6)

o generalization of the nonrelativistic, hydrodynamic rarefaction
(e.g. Landau & Lifshitz)
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The frozen pulse approximation

Introduced by Piran+1993 for HD flows and extended by NV & Konigl (2003) in
the MHD case.

In a superfast magnetosonic, ultrarelativistic flow any possible disturbance is
travelling with it and cannot affect the neighbouring parts. As a result the
evolution of each fluid parcel is essentially steady-state.

In mathematical terms, if we change coordinates from (x, z,¢) to

. . . L 0
(z, z,s = ct — z) the approximate equations do not contain derivatives 5
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Axisymmetric model
Solve steady-state axisymmetric MHD eqgs using the method of characteristics

(Sapountzis & Vlahakis in preparation)
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Reflection of the wave from the axis
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The role of the environment

e for nonzero p.,; Riemann problem: rarefaction on the left state
/ contact discontinuity / shock on the right
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Numerical simulations with PLUTO
(preliminary results)
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Left: v; = 10, o; = 10 (RW hit the axis at z/r; ~ ~;/,/7; =~ 3)
Middle: 10 times lower density and pressure outside
Right: v; = 20, 0; = 5 (note the different z-scale; z/r; ~ v;/,/0; =~ 9)
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Similar to recollimation shock structure, e.g. Mizuno+2015

helical B (MHD-c), t=200, B,=0.2
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(Their o is < 0.36 and the jet is not cold. Also p; < pout and P; = 1.5P,,;.)
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Summary

Simple (rarefaction) waves could significantly affect the dynamics
of GRB outflows

* contribute to the jet bulk acceleration
» make magnetically accelerated GRB jets with v > 1

~ create series of shocks (that are standing and do not depend
on the engine activity)
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