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Outline

• Introduction to simple waves – Riemann problem

• Applications to GRB outflows:
– impulsive acceleration
– rarefaction acceleration
– axisymmetric model – simulations



Simple waves

• Finite amplitude waves caused by pressure imbalances

• Form of the solution in the textbook case (1D nonrelativistic
HD):
ρ = ρ(ξ), P = P (ξ), V = Vx(ξ)x̂,

where ξ = ξ(x, t)

• In the absence of scale ξ = x/t (self-similarity)

• Relativistic MHD generalization:
ρ = ρ(ξ), P = P (ξ), V = Vx(ξ)x̂+ Vz(ξ)ẑ, B = By(ξ)ŷ

where ξ = x/t
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The Riemann problem
Initially two uniform states are in contact.
If the total pressure is not the same and (or) the x-velocities are
different, two travelling waves are formed (shock or rarefaction).
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Rarefaction simple waves

• when ρR/ρL = 0 (vacuum on the right) a simple rarefaction
wave forms
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Possible cases:
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Solving the problem
Katsoulakos & NV in preparation (see also Marti+1994, Lyutikov 2010)

For the rarefaction, solve the MHD equations (all quantities functions of x/t).
For the shock, solve the jump conditions for various shock speeds.
The solution is found requiring same total pressure and x-velocity at CD.

Example:
Left state:
P = 0.80,
Vx = 0.0,
ρ = 1.0,
Vz = 0.6,
By = 2.0.
Right state:
P = 0.40,
Vx = 0.0,
ρ = 0.5,
Vz = 0.6,
By = 0.5.
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GRB application 1: impulsive acceleration
(Granot, Komissarov & Spitkovsky 2011)
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• the crossing of the two curves gives the maximum γ

• even tiny ρR/ρL affect γmax
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GRB application 2: rarefaction acceleration
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GRB application 2: rarefaction acceleration
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GRB application 2: rarefaction acceleration
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Rarefaction simple waves with Vz 6= 0

Komissarov, Vlahakis & Königl 2010

At t = 0 two uniform states are in contact:

x
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• when ρR/ρL = 0 simple rarefaction wave

EWASS 4 July 2016, Athens



At t > 0:
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The colour image in the Minkowski diagram represents the distribution of the
Lorentz factor and the contours show the worldlines of various fluid parcels
(see also Aloy & Rezzolla 2006 for HD, Mizuno+2008 for MHD simulations)
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Simulation results

Komissarov, Vlahakis & Königl 2010

(see also Tchekhovskoy, Narayan & McKinney 2010)
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Steady-state rarefaction wave

Sapountzis & Vlahakis (2013)

• “flow around a corner”

• planar geometry

• ignoring Bp (nonzero By)

• similarity variable x/z (angle θ)

• generalization of the nonrelativistic, hydrodynamic rarefaction
(e.g. Landau & Lifshitz)
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The frozen pulse approximation

Introduced by Piran+1993 for HD flows and extended by NV & Königl (2003) in
the MHD case.

In a superfast magnetosonic, ultrarelativistic flow any possible disturbance is
travelling with it and cannot affect the neighbouring parts. As a result the
evolution of each fluid parcel is essentially steady-state.

In mathematical terms, if we change coordinates from (x, z, t) to

(x, z, s = ct− z) the approximate equations do not contain derivatives
∂

∂s
.
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Axisymmetric model
Solve steady-state axisymmetric MHD eqs using the method of characteristics
(Sapountzis & Vlahakis in preparation)
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γj = 100, σj = 5, ρext = 0
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The role of the environment

• for nonzero ρext Riemann problem: rarefaction on the left state
/ contact discontinuity / shock on the right
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Numerical simulations with PLUTO
(preliminary results)
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Left: γj = 10, σj = 10 (RW hit the axis at z/rj ∼ γj/
√
σj ≈ 3)

Middle: 10 times lower density and pressure outside
Right: γj = 20, σj = 5 (note the different z-scale; z/rj ∼ γj/

√
σj ≈ 9)
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Similar to recollimation shock structure, e.g. Mizuno+2015
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(Their σ is < 0.36 and the jet is not cold. Also ρj � ρout and Pj = 1.5Pout.)

EWASS 4 July 2016, Athens



Summary

Simple (rarefaction) waves could significantly affect the dynamics
of GRB outflows

? contribute to the jet bulk acceleration

? make magnetically accelerated GRB jets with γϑ� 1

? create series of shocks (that are standing and do not depend
on the engine activity)
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