Cosmic jets: their dynamics and the role of the magnetic field

Nektarios Vlahakis University of Athens

Outline

- introduction (observed jet characteristics)
- collimation-acceleration paradigm
- jet stability

Examples of astrophysical jets

(scale =1000 AU, $V_{\infty} = a few 100$ km/s)

UNIVERSITY OF CRETE

7 November 2019

The jet from the M87 galaxy

(from Blandford+2018)

Jet speed

Superluminal Motion in the M87 Jet

collimation at \sim 100 Schwarzschild radii

UNIVERSITY OF CRETE

The jet shape (Nakamura & Asada 2013)

(Hada+2013)

jet from the disk or the black hole?

UNIVERSITY OF CRETE

Transverse profile (Mertens+2016)

- they manage to observe sheath rotation: the value favors disk-driven (and not BH-driven) jet
- the spine?

UNIVERSITY OF CRETE

(Asada+2017)

X-ray binaries

γ -ray bursts

mildly relativistic

 $\gamma = a \text{ few } 100$

Basic questions

- source of matter/energy?
- bulk acceleration?
- collimation?
- interaction with environment?

Theoretical modeling

if energy source = thermal energy:

thermal acceleration is an efficient mechanism

gives terminal speed $\frac{m_p V_{\infty}^2}{2} \sim k_{\rm B} T_i$ for YSO jets or terminal Lorentz factors $\gamma_{\infty} m_p c^2 \sim k_{\rm B} T_i$ for relativistic jets

in both cases needs high initial temperatures T_i to explain the observed motions

magnetic acceleration more likely

Polarization

(Marscher et al 2008, Nature)

observed $E_{rad} \perp B_{\perp los}$ (modified by Faraday rotation and relativistic effects)

Faraday RM gradients across the jet

helical field surrounding the emitting region (Gabuzda)

What magnetic fields can do

- * extract energy (Poynting flux)
- ★ extract angular momentum
- ★ transfer energy and angular momentum to matter
- ★ explain relatively large-scale acceleration
- ★ self-collimation
- ★ synchrotron emission
- ⋆ polarization and Faraday RM maps

How MHD acceleration works

A unipolar inductor (Faraday disk)

magnetic field + rotation

current $\leftrightarrow B_{\phi}$ Poynting flux $\frac{c}{4\pi}EB_{\phi}$ is extracted (angular momentum as well)

The Faraday disk could be the rotating accretion disk, or the frame dragging if energy is extracted from the ergosphere of a rotating black hole (Blandford & Znajek mechanism)

magnetic acceleration

• simplified nonrelativistic momentum equation along the flow

$$\rho \frac{dV}{dt} = -\frac{B_{\phi}}{4\pi \varpi} \frac{\partial}{\partial \ell} (\varpi B_{\phi}) \quad = \boldsymbol{J} \times \boldsymbol{B} \text{ force}$$

(ϖ = cylindrical distance, ℓ = arclength along flow)

• simplified Ferraro's law (ignore V_{ϕ} – small compared to $\varpi \Omega$)

$$V_{\phi} = \varpi \Omega + V B_{\phi}/B_p \quad \Leftrightarrow \quad B_{\phi} \approx -\frac{\varpi \Omega B_p}{V} \quad$$
 "Parker spiral"
• combine the two, use the mass-to-magnetic flux $\Psi_A = \frac{4\pi \rho V}{B_p}$ (constant due to flux-freezing)

$$m\frac{dV}{dt} = -\frac{\partial}{\partial\ell} \left(\frac{S}{V}\right), \quad m = \frac{\Psi_A}{A\Omega^2}, \quad S = \frac{\varpi^2 B_p}{A}$$

(A is the magnetic flux - integral)

UNIVERSITY OF CRETE

bunching function $S = \varpi^2 B_p / A$ using the definition of A, $S = \frac{2\pi \varpi^2 B_p}{\int B_p \cdot da}$

thus S measures the ratio of the local over the mean poloidal magnetic field

it measures how bunched are the fieldlines at a given point

its variation along the flow measures the expansion of the flow, $S = \frac{2\pi \varpi \delta \ell_\perp B_p}{A} \frac{\varpi}{\delta \ell_\perp} \propto \frac{\varpi}{\delta \ell_\perp}$

UNIVERSITY OF CRETE

toy model

$$m\frac{dV}{dt} = -\frac{\partial}{\partial \ell} \left(\frac{S}{V}\right)$$

motion of a mass $m = \frac{\Psi_A}{A\Omega^2}$ in a velocity-dependent potential $\frac{S}{mV}$
corresponding energy integral = Bernoulli $\frac{V^2}{2} + \frac{S}{mV} = E$
The equation of particle motion can be written as a de-Laval
nozzle equation

$$\frac{dV}{d\ell} = \frac{V \frac{dS}{d\ell}}{S - mV^3}, \qquad \frac{1}{S} \propto \frac{\delta\ell_{\perp}}{\varpi}$$

Vlahakis+2000 nonrelativistic solution

first *S* increases then decreases (differential collimation)

 $S_\infty \sim 1$ so the Bernoulli integral gives the value of V_∞

higher $S_{\max} \rightarrow$ higher acceleration efficiency

in V00 $S_{\rm max} \approx 4.5$ and acceleration efficiency $\gtrsim 90\%$

Vlahakis & Königl 2003, 2004 relativistic solutions

acceleration efficiency $\gtrsim 50\%$

UNIVERSITY OF CRETE

Simulations of special relativistic jets (e.g. Komissarov+2009)

energy flux ratios:

UNIVERSITY OF CRETE

7 November 2019

left: density/field lines, right: Lorentz factor/current lines (jet shape $z \propto r^{1.5}$)

Even in general relativistic magnetohydrodynamic jet simulations (the latest Chatterjee+2019)

UNIVERSITY OF CRETE

7 November 2019

Basic questions: collimation

hoop-stress:

+ electric force

degree of collimation ? Role of environment?

 $^{\hbox{\tiny INS}}$ transfield component of the momentum equation for relativistic jets simplifies to $\mathcal{R}\approx\gamma^2\varpi$

since $\mathcal{R}^{-1} \approx -\frac{d^2 \varpi}{dz^2} \approx \frac{\varpi}{z^2}$ it gives power-law $\gamma \approx z/\varpi$ (for parabolic shapes $z \propto \varpi^a$, γ is a power of ϖ)

role of external pressure

 $p_{\rm ext} = B_{\rm co}^2 / 8\pi \simeq (B^{\hat{\phi}})^2 / 8\pi \gamma^2 \propto 1/\varpi^2 \gamma^2$

- if the pressure drops slower than z^{-2} then
 - $\star\,\,$ shape more collimated than $z\propto arpi^2$
 - $\star~$ linear acceleration $\gamma\propto\varpi$
- if the pressure drops as z^{-2} then
 - \star parabolic shape $z \propto \varpi^a$ with $1 < a \leq 2$
 - $\star~~{\rm first}~\gamma\propto\varpi$ and then power-law acceleration $\gamma\sim z/\varpi\propto\varpi^{a-1}$
- if pressure drops faster than z^{-2} then
 - \star conical shape

* linear acceleration $\gamma \propto \varpi$ (small efficiency) UNIVERSITY OF CRETE

Basic questions

source of matter/energy?
disk or central object,
rotation+magnetic field

- bulk acceleration \checkmark
- collimation \checkmark
- interaction with environment? $P_{\rm ext}$ is important especially in relativistic jets

2nd level of understanding

distribution of B in the source? (advection vs diffusion, instabilities in disks?)

- details of jet physics near rotating black holes (pair creation in stagnation surface) – energy extraction from the black hole?
- detailed study of the interaction with environment (Riemann problem – shock and rarefaction waves)
- Image is stability (Kelvin-Helmholtz? current driven?)
- nonthermal radiation particle acceleration shocks or reconnection ? connection with instabilities ?
- polarization maps and comparison with observations

credit: Boston University Blazar Group

Stability analysis

• are astrophysical jets stable?

 3D relativistic MHD simulations hard to cover the full jet range (formation and propagation zone + environment) interesting results for the jet-formation region (McKinney & Blandford, Tchekhovskoy, Narayan & McKinney)

- our approach (Charis Sinnis & Vlahakis in preparation):
- focus on the propagation phase
- assume cylindrical unperturbed jet
- add perturbation $Q(\varpi, z, \phi, t) = Q_0(\varpi) + Q_1(\varpi) \exp [i(m\phi + kz - \omega t)]$ (with complex ω) and linearize

Eigenvalue problem

- solve the problem inside the jet (attention to regularity condition on the axis)
- \bullet similarly in the environment (solution vanishes at ∞)
- The matching of the solutions at ϖ_j gives the dispersion relation $\omega = \omega(k,m)$

 \bullet find the growth rate $\Im\omega$ and the eigenfunctions

 $\sigma = 10$

- \star typical growth rate = $\Im \omega \sim 0.1 c / \varpi_j$
- ★ growth length \approx growth time (c = 1) a few tens of jet radii
- ★ for highly magnetized jet the instability is more important inside the volume of the jet
- ⋆ for low magnetized jet it is Kelvin-Helmholtz-type

Simulations of two-component jets (Millas & Vlahakis in preparation)

Summary

- \star magnetic field + rotation \rightarrow Poynting flux extraction
- the collimation-acceleration mechanism is very efficient provides a viable explanation for the bulk acceleration in all jets (relativistic or not)
- \star acceleration efficiency $\gtrsim 50\%$
- \star environment significantly affects jet dynamics (jet-shape, spatial scale of γ)
- * typical instability growth length = a few tens ϖ_j volume or surface instabilities depending on the magnetization