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e collimation-acceleration paradigm
e jet stability
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The jet from the M87 galaxy

(from Blandford+2018)
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Jet speed

Superluminal Motion in the M87 Jet
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(Hada et al 2016)

collimation at ~100 Schwarzschild radii
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The jet shape (Nakamura & Asada 2013)
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(Hada+2013)
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jet from the disk or the black hole?
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Relative DEC (mas)

Transverse profile (Mertens+2016)
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e fast spine — slow sheath
e they manage to observe sheath rotation:

the value favors disk-driven (and not BH-driven) jet
e the spine?

UNIVERSITY OF CRETE

7 November 2019



105 | IIIIIII

10 >
= f
E 10 |k E
= E
E o= =
-~ N
& _
e 102 p d
= - ;
= E
S 1
= "
1l ]
% 10] ? =
2|
I 3
III,I1H‘I i r11||r|| [ 1 IIIIIII 1 [ ||||n'
1 10! 102 103 104

Radius: r {rg)

UNIVERSITY OF CRETE 7 November 2019



X-ray binaries ~v=-ray bursts

mildly relativistic ~v=a few 100
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Basic questions

source of matter/energy?

bulk acceleration?

collimation?

interaction with environment?
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Theoretical modeling

If energy source = thermal energy:

thermal acceleration is an efficient mechanism

2
mp Voo

gives terminal speed ~ kgT; for YSO jets

or terminal Lorentz factors v.,m,c* ~ kgT; for relativistic jets

in both cases needs high initial temperatures T; to explain the
observed motions

magnetic acceleration more likely
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Polarization
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Milliarcseconds

(Marscher et al 2008, Nature)

observed E..q L B |
(modified by Faraday rotation and relativistic effects)
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Faraday RM gradients across the jet
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What magnetic fields can do

* extract energy (Poynting flux)

* extract angular momentum

* transfer energy and angular momentum to matter
* explain relatively large-scale acceleration

* self-collimation

* synchrotron emission

» polarization and Faraday RM maps
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How MHD acceleration works

A unipolar inductor (Faraday disk)

Beam] I I

magnetic field + rotation
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current < By

Poynting flux =FEB,
IS extracted (angular
momentum as well)

B
+ L U
S

The Faraday disk could be the rotating accretion disk, or the
frame dragging if energy is extracted from the ergosphere of a
rotating black hole (Blandford & Znajek mechanism)
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maghnetic acceleration
e simplified nonrelativistic momentum equation along the flow

dVv. By 0
it T T dnwor
(o= cylindrical distance, /= arclength along flow)

(wBy) = J x B force

e simplified Ferraro’s law (ignore V,, — small compared to w(?)

wilB,

V¢:ZDQ—|—VB¢/BP & B¢%— v

“Parker spiral”

A pV

e combine the two, use the mass-to-magnetic flux W4 =
(constant due to flux-freezing)

dV o, (S) | wQBp
_ om

N TANT

(A is the magnetic flux — integral)
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bunching function S = w*B,/A

27Tw23p

using the definition of A, S =
B, -da

thus S measures the ratio of the local over the mean poloidal
magnetic field

It measures how bunched are the fieldlines at a given point

its variation along the flow measures the expansion of the flow,
g 2nwol | By w w0

A o6, 80y
if 6/, /w increases, S decreases if 6/, /o decreases, S increases

&
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toy model

av._ 9 (5
"o T o \v

. Uy . . .S
motion of a mass m = Y 6‘2 In a velocity-dependent potential o~
. . . %6 S
corresponding energy integral = Bernoulli - + T E
m

The equation of particle motion can be written as a de-Laval
nozzle equation

49
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_CX_

dt S —mV3’ S w
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Viahakis+2000 nonrelativistic solution

bunching function B,w?/A
5 ' roT ' roT ' T ' T

oL . Ly e e ey
0.001 0.01 0.1 1 10 100 1000 10000

UNIVERSITY OF CRETE 7 November 2019



enthalpy
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first S increases then decreases
(differential collimation)

S« ~ 1 s0 the Bernoulli integral
gives the value of V

higher  Shax —  higher
acceleration efficiency

n VOO S,.«. ~ 4.5 and
acceleration efficiency > 90%
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Vlahakis & Konigl 2003, 2004 relativistic solutions

acceleration efficiency > 50%
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Simulations of special relativistic jets
(e.g. Komissarov+2009)
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left: density/field lines, right: Lorentz factor/current lines (jet shape z o r!-°)
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Even in general relativistic magnetohydrodynamic
jet simulations (the latest Chatterjee+2019)

jet length r/r,
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Basic questions: collimation

hoop-stress:

+ electric force

degree of collimation ? Role of environment?
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= transfield component of the momentum equation for
relativistic jets simplifies to R ~ v*w

. 2 . .
since R~! ~ —4% ~ Z it gives power-law  ~ = /=

(for parabolic shapes z x w?, v Is a power of w)

= role of external pressure
Pext = BZ,/8T ~ (B?)?/8172 o 1/w%y?

o if the pressure drops slower than =2 then

~ shape more collimated than z o« @?
* linear acceleration v ox w
o if the pressure drops as z~2 then

* parabolic shape z x w® with 1 < a < 2
* first v « w and then power-law acceleration
v~ z/w o ]
o if pressure drops faster than =2 then
* conical shape

* _linear acceleration v o« w (small efficiency)

UNIVERSITY OF CRETE 7 November 2019




Basic questions

source of matter/energy?
disk or central object,
rotation+magnetic field

bulk acceleration v

collimation v*

interaction with environment?
P.. 1s Important especially in
relativistic jets
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2nd level of understanding

= distribution of B in the source? (advection vs diffusion,
instabilities in disks?)

= detalls of jet physics near rotating black holes (pair creation in
stagnation surface) — energy extraction from the black hole?

= detailed study of the interaction with environment (Riemann
problem — shock and rarefaction waves)

= jet stability (Kelvin-Helmholtz? current driven?)

i nonthermal radiation — particle acceleration

shocks or reconnection ? connection with instabilities ?

i polarization maps and comparison with observations
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Stability analysis

e are astrophysical jets stable?

» 3D relativistic MHD simulations hard to cover the full jet range
(formation and propagation zone + environment)

interesting results for the jet-formation region (McKinney &
Blandford Tchekhovskoy, Narayan & McKlnney)
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our approach (Charis Sinnis & Vlahakis in preparation):

e focus on the propagation phase
e assume cylindrical unperturbed jet
e add perturbation

Qlw,z,¢,t) = Qo(w) + Q1(w) exp [i(meo + kz — wt)] (with
complex w) and linearize
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Eigenvalue problem

Pt

e solve the problem inside the jet
(attention to regularity condition on the axis)

. o similarly in the environment
jet (solution vanishes at oo)
(matter + EM field)

environment

e The matching of the solutions at w; gives
the dispersion relation w = w(k, m)

e find the growth rate Sw and the
eigenfunctions
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~ typical growth rate = Sw ~ 0.1¢/w;

~ growth length ~ growth time (¢ = 1)
a few tens of jet radii

= for highly magnetized jet the instability is more important inside
the volume of the et

* for low magnetized jet it is Kelvin-Helmholtz-type
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Simulations of two-component jets
(Millas & Vlahakis In preparation)

Time: 0.0 Time: 150.0
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Summary

* magnetic field + rotation — Poynting flux extraction

* the collimation-acceleration mechanism is very efficient —
provides a viable explanation for the bulk acceleration in all jets
(relativistic or not)

x acceleration efficiency = 50%

* environment significantly affects jet dynamics (jet-shape,
spatial scale of v)

~ typical instability growth length = a few tens w;
volume or surface instabilities depending on the magnetization
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