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layer inverse opals, application of complex architectures such as multilayer 

stacks of 3D photonic crystals in photocatalysis remains essentially 

unexplored [2]. This work reports the deposition of heterostructured films 

consisting of a TiO2 inverse opal bottom layer and a highly efficient 

mesoporous titania top layer using the benchmark Aeroxide® P25 (Evonik) 

titania nanopowder, modified by “molecular” scale CoOx nanoclusters using 

the chemisorption-calcination-cycle (CCC) method [3], in order to enhance 

visible light harvesting and photocatalytic activity by means of slow photons 

and Bragg reflection. 

 

 

 

 

 

 

 

Well-ordered photonic band gap engineered anatase TiO2 inverse opal underlayers were deposited 

using the evaporation-induced co-assembly of PMMA colloidal spheres of 406 and 499 nm 

diameters with a hydrolyzed Ti alkoxide precursor. Cleaned glass slides were vertically suspended 

in a vial containing 20 ml of 0.125 wt% diluted PMMA sphere suspension in Milli-Q water and 0.14 

ml of fresh titania precursor (1.25 ml TiBALDH solution, 0.5 ml HCl 0.1 M and 1 ml EtOH), both 

sonicated for 30 min prior to use. The vials with the suspended glass substrates were kept at 55 °C 

until the solvent fully evaporated over a period of 3 days, yielding composite films comprising the 

titania gel distributed within the interstices of the close packed PMMA opal structure. The dry films 

were then calcined at 500 °C for 2 h in air at a heating rate of 1 °C/min, to remove the polymer 

matrix and crystallize titania in the inverse opal structure.  

Morphology and surface characteristics 

Optical properties - PBG engineering vs Visible light activation 

Vibrations at 194, 482 και 691 cm-1 arise from the F2g, Eg and A1g modes of the tetrahedral (CoO4) 

and octahedral (CoO6) units in the Co3O4  [Co2+][Co3+]2[O
2-]4 normal spinel.  In defect-free CoO, 

first-order Raman scattering is forbidden due to its centrosymmetric cubic NaCl-type structure. The 

higher intensity of the Co3O4 Raman bands at 785 nm is due to the optical absorption and the 

consequent resonant enhancement of Raman scattering by the surface Co-oxides.   

Raman spectroscopy – identification of Co oxides 

The photocatalytic activity was evaluated on the 

aqueous phase degradation of salicylic acid (SA). The 

photocatalytic experiments were carried out in vials 

containing 4 ml of 3 μM aqueous SA solution. Before 

illumination, the films were left in the SA solution to 

reach adsorption-desorption equilibrium under dark. The 

solution pH was stabilized at 3 to enhance SA 

adsorption on TiO2 and direct oxidation by holes. The 

power density of the incident beam from a Xe lamp and 

suitable filters was 96 mW/cm2. 

Photocatalytic activity 

SEM images verified the formation of highly ordered 3D close packed inverse opal structures 

corresponding to the (111) planes of an fcc lattice consisting of void spheres (diameter of 260 nm for 

PC406 and 310 nm for PC499) within the titania framework. Cross section images disclose a 

smooth interface between the photonic crystal and the mesoporous P25 top layer. The inverse opal 

macropores were well interconnected through smaller ones of 50-90 nm (dark circular areas). TEM 

images reveals that the skeleton consists of ~10 nm nanoparticles with distinct d-spacings, the most 

common being 0.35 nm corresponding to the (101) planes of the anatase TiO2 phase. 

Bilayer fabrication and CoOx surface modification 

Photonic crystal assisted TiO2 photocatalysis 

EDX analysis verified the successful deposition of Co species on the bilayer titania films by 1 cycle 

of the chemisorption-calcination method. The atomic Co percentage was found to be ~2.75%. 

[1] V. Likodimos, Photonic crystal-assisted visible light activated TiO2 photocatalysis, Appl. Catal. B: Environ. 230, 269–303 (2018). 
[2] E. Eftekhari, P. Broisson, N. Aravindakshan, Z. Wu, I.S. Cole, X. Li, D. Zhao, Q. Li, Sandwich-structured TiO2 inverse opal 
circulates slow photons for tremendous improvement in solar energy conversion efficiency, J. Mater. Chem. A 5, 12803 (2017). 
[3] Q. Jin, H. Yamamoto, K. Yamamoto, M. Fujishima, H. Tada, Simultaneous induction of high level thermal and visible-light 
catalytic activities to titanium(IV) oxide by surface with cobalt(III) oxide clusters, Phys. Chem. Chem. Phys. 15, 20313 −20319 (2013). 
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Tuning the photonic properties of the TiO2 substrates to the visible light electronic absorption of 

the surface CoOx oxides resulted in the marked enhancement of the bilayer film photocatalytic 

activity via the synergy of slow photons and Bragg backscattering, surpassing the benchmark P25 

films of higher thickness. The highest performance was achieved in the case of amplification by 

“red” slow photons of the TiO2 photonic underlayer in combination with the lesser contribution by 

Bragg reflection to the nanocrystalline TiO2 top layer, indicating that photonic crystals can be 

effective both as photocatalytic layers and Bragg mirrors in heterostructured photocatalytic films. 
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PC406 260 486 1,17 0,069 1,45 498 614 

 

PC499 310 578 1,17 0,067 1,44 593 731 
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An advanced photon management approach that aims at enhancing titania’s ability to harness solar 

light is by structuring TiO2 photocatalysts in the form of photonic crystals [1]. This modification 

combines the unique potential for slow photon-assisted light harvesting, mass transport and 

adsorption of macroporous periodic structures such as inverse opals with compositional tuning of the 

catalysts for enhanced charge separation and visible light activation (VLA). However, besides single 

Titania

precursor

+ PMMA 

suspension

template removal 

by calcination  at 

500 °C for 2 h in air
solvent

evaporation

Spin coating P25 

paste, calcination  

at 450 °C in air
chemisorption–calcination 

cycle 

Mesoporous TiO2 layers (2 and 5 L) were deposited on top of the photonic underlayer using a paste 

of the benchmark Aeroxide® P25 (Evonik) titania nanopowder, by spin coating leading to bilayer 

films with smooth interfaces. Co oxide modification was performed by immersing the films to 100 ml 

of 10-3 Μ Co(acac)2(H2O)2 solution for 24 h. The films were repeatedly washed with the solvent for 

the physisorbed complexes to be removed and dried, followed by heating in air at 500 oC for 1 h. 

P25/PC499 P25/PC499 

P25 PC406 PC499 

Ti 

at % 

Co  

at % 
Ratio 

CoOx-P25/PC406 97,24 2,76 0,028 

CoOx-P25/PC499 97,60 2,40 0,025 

CoOx-P25 (2L) 97,29 2,71 0,028 

CoOx-P25 (5L) 97,22 2,78 0,029 

EDX Elem     Wt %  At % K-Ratio   

----------------------------------- 

TiK      96.63  97.24  0.9662 

CoK    3.37   2.76  0.0283 

Total  100.00 100.00 

CoOx surface modification EF-TEM, EDX 
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D  macropore diameter of the TiO2 inverse opal films determined by SEM.  

λexp(150)  stop band wavelength determined from the 150 incidence specular spectra. 

λ (0o)  stop band wavelength predicted from modified Bragg law 𝜆 = 2𝑑111 𝑛2
𝑒𝑓𝑓 − 𝑠𝑖𝑛2𝜃,   

𝑛2
𝑒𝑓𝑓 = 𝑛2

𝑠𝑝ℎ𝑒𝑟𝑒 
𝑓 + 𝑛2

𝑠𝑜𝑙𝑖𝑑 
(1-f) for 00 incidence angle and 𝑑111 = 2/3𝐷 the spacing of (111) planes. 
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