Publications by Year: 2015

2015
Petropoulou M, Mastichiadis A. Bethe-Heitler emission in BL Lacs: filling the gap between X-rays and γ-rays. [Internet]. 2015;447. WebsiteAbstract
We present the spectral signatures of the Bethe-Heitler pair production (pe) process on the spectral energy distribution (SED) of blazars, in scenarios where the hard γ-ray emission is of photohadronic origin. If relativistic protons interact with the synchrotron blazar photons producing γ rays through photopion processes, we show that, besides the ∼2-20 PeV neutrino emission, the typical blazar SED should have an emission feature due to the synchrotron emission of pe secondaries that bridges the gap between the low- and high-energy humps of the SED, namely in the energy range 40 keV-40 MeV. We first present analytical expressions for the photopion and pe loss rates in terms of observable quantities of blazar emission. For the pe loss rate in particular, we derive a new approximate analytical expression for the case of a power-law photon distribution, which has an excellent accuracy with the numerically calculated exact one, especially at energies much above the threshold for pair production. We show that for typical blazar parameters, the photopair synchrotron emission emerges in the hard X-ray/soft γ-ray energy range with a characteristic spectral shape and non-negligible flux, which may even be comparable to the hard γ-ray flux produced through photopion processes. We argue that the expected `pe bumps' are a natural consequence of leptohadronic models, and as such, they may indicate that blazars with a three-hump SED are possible emitters of high-energy neutrinos.
Petropoulou M, Dimitrakoudis S, Padovani P, Mastichiadis A, Resconi E. Photohadronic origin of γ -ray BL Lac emission: implications for IceCube neutrinos. [Internet]. 2015;448. WebsiteAbstract
The recent IceCube discovery of 0.1-1 PeV neutrinos of astrophysical origin opens up a new era for high-energy astrophysics. Although there are various astrophysical candidate sources, a firm association of the detected neutrinos with one (or more) of them is still lacking. A recent analysis of plausible astrophysical counterparts within the error circles of IceCube events showed that likely counterparts for nine of the IceCube neutrinos include mostly BL Lacs, among which Mrk 421. Motivated by this result and a previous independent analysis on the neutrino emission from Mrk 421, we test the BL Lac-neutrino connection in the context of a specific theoretical model for BL Lac emission. We model the spectral energy distribution (SED) of the BL Lacs selected as counterparts of the IceCube neutrinos using a one-zone leptohadronic model and mostly nearly simultaneous data. The neutrino flux for each BL Lac is self-consistently calculated, using photon and proton distributions specifically derived for every individual source. We find that the SEDs of the sample, although different in shape and flux, are all well fitted by the model using reasonable parameter values. Moreover, the model-predicted neutrino flux and energy for these sources are of the same order of magnitude as those of the IceCube neutrinos. In two cases, namely Mrk 421 and 1H 1914-194, we find a suggestively good agreement between the model prediction and the detected neutrino flux. Our predictions for all the BL Lacs of the sample are in the range to be confirmed or disputed by IceCube in the next few years of data sampling.
Petropoulou M, Piran T, Mastichiadis A. Spectral signatures of compact sources in the inverse Compton catastrophe limit. [Internet]. 2015;452. WebsiteAbstract
The inverse Compton catastrophe is defined as a dramatic rise in the luminosity of inverse Compton scattered photons. It is described by a non-linear loop of radiative processes that sets in for high values of the electron compactness and is responsible for the efficient transfer of energy from electrons to photons, predominantly through inverse Compton scatterings. We search for the conditions that drive a magnetized non-thermal source to the inverse Compton catastrophe regime and study its multiwavelength (MW) photon spectrum. We develop a generic analytical framework and use numerical calculations as a backup to the analytical predictions. We find that the escaping radiation from a source in the Compton catastrophe regime bears some unique features. The MW photon spectrum is a broken power law with a break at ∼mec2 due to the onset of the Klein-Nishina suppression. The spectral index below the break energy depends on the electron and magnetic compactnesses logarithmically, while it is independent of the electron power-law index (s). The maximum radiating power emerges typically in the γ-ray regime, at energies ∼mec2 (∼γmax mec2) for s > 2 (s ≲ 2), where γmax is the maximum Lorentz factor of the injected electron distribution. We apply the principles of the inverse Compton catastrophe to blazars and γ-ray bursts using the analytical framework we developed, and show how these can be used to impose robust constraints on the source parameters.
Kazanas D, Racusin JL, Sultana J, Mastichiadis A. The Statistics of BAT-To-XRT Flux Ratio in GRBs: Evidence for a Characteristic Value and Its Implications. [Internet]. 2015;802:83. WebsiteAbstract
We present the statistics of the ratio, R, between the prompt and afterglow “plateau” fluxes of gamma-ray bursts (GRBs). We define this as the ratio of the mean prompt energy flux in Swift BAT and the Swift XRT one, immediately following the steep transition between these two states and the beginning of the afterglow stage referred to as the “plateau”. Like the distribution of many other GRB observables, the histogram of R is log-normal with maximum at a value {{R}m}≃ 2000, FWHM of about two decades, and with the entire distribution spanning about five decades in the value of R. We note that the peak of the distribution is close to the proton-to-electron mass ratio ({{R}m}≃ {{m}p}/{{m}e}=1836), as proposed to be the case in an earlier publication, on the basis of a specific model of the GRB dissipation process. It therefore appears that, in addition to the values of the energy of peak luminosity {{E}pk}∼ {{m}e}{{c}2}, GRBs present us with one more quantity with an apparent characteristic value. The fact that the values of both these quantities ({{E}pk} and R) are consistent with the same specific model invoked to account for the efficient conversion of their relativistic proton energies to electrons argues favorably for its underlying assumptions.