Drossopoulou G, Antoniou K, Kitraki E, Papathanasiou G, Papalexi E, Dalla C, Papadopoulou-Daifoti Z.
Sex differences in behavioral, neurochemical and neuroendocrine effects induced by the forced swim test in rats. Neuroscience. 2004;126(4):849-57.
AbstractThe forced swim test (FST) has been considered as a pharmacologically valid test of the depressive syndrome in rodents. However, few studies have focused on neurochemical and behavioral responses during FST in both male and female rats. Thus, we investigated certain behavioral and neuroendocrine responses as well as the serotonergic activity after the application of FST in both sexes. Our data show that the duration of immobility was increased in both male and female rats during the 2nd session of the FST. Sex differences are observed in some behavioral responses, such as head swinging that is mostly present in male rats. In female rats FST induced a decrease in serotonergic activity in hippocampus and hypothalamus while in male rats it induced an increase in serotonergic activity in hypothalamus. Corticosterone serum levels were elevated in both sexes. However, hippocampal GR mRNA levels tended to be increased in males and females respectively. Moreover, hypothalamic serotonin (5-HT)1A mRNA levels were decreased in female rats while in male rats hippocampal 5-HT1A mRNA levels were increased. These data have shown that FST induces "depressive like symptoms" in both sexes and provide evidence that sex differences characterize certain behavioral aspects in the FST. Notably, hippocampal and hypothalamic serotonergic activity has been differentially modified in male rats compared with female rats and these neurochemical findings could be relevant to the differentiated expression of 5-HT1A receptor. Hypothalamic-pituitary-adrenal axis activity was also affected by FST application in a sex specific manner. The present results support that FST induced behavioral, neurochemical and neurobiological alterations, which are sex dependent.
Dalla C, Antoniou K, Papadopoulou-Daifoti Z, Balthazart J, Bakker J.
Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology. Eur J Neurosci. 2004;20(1):217-28.
AbstractWe recently found that female aromatase knockout (ArKO) mice that are deficient in oestradiol due to a targeted mutation in the aromatase gene show deficits in sexual behaviour that cannot be corrected by adult treatment with oestrogens. We determined here whether these impairments are associated with changes in general levels of activity, anxiety or 'depressive-like' symptomatology due to chronic oestrogen deficiency. We also compared the neurochemical profile of ArKO and wild-type (WT) females, as oestrogens have been shown to modulate dopaminergic, serotonergic and noradrenergic brain activities. ArKO females did not differ from WT in spontaneous motor activity, exploration or anxiety. These findings are in line with the absence of major neurochemical alterations in hypothalamus, prefrontal cortex or striatum, which are involved in the expression of these behaviours. By contrast, ArKO females displayed decreased active behaviours, such as struggling and swimming, and increased passive behaviours, such as floating, in repeated sessions of the forced swim test, indicating that these females exhibit 'depressive-like' symptoms. Adult treatment with oestradiol did not reverse the behavioural deficits observed in the forced swim test, suggesting that they may be due to the absence of oestradiol during development. Accordingly, an increased serotonergic activity was observed in the hippocampus of ArKO females compared with WT, which was also not reversed by adult oestradiol treatment. The possible organizational role of oestradiol on the hippocampal serotonergic system and the 'depressive-like' profile of ArKO females provide new insights into the pathophysiology of depression and the increased vulnerability of women to depression.