Publications by Year: 2008

2008
Dalla C, Antoniou K, Kokras N, Drossopoulou G, Papathanasiou G, Bekris S, Daskas S, Papadopoulou-Daifoti Z. Sex differences in the effects of two stress paradigms on dopaminergic neurotransmission. Physiol Behav. 2008;93(3):595-605.Abstract
Sex differences in behavioral and neurobiological responses to stress are considered to modulate the prevalence of some psychiatric disorders, including major depression. In the present study, we compared dopaminergic neurotransmission and behavior in response to two different stress paradigms, the Forced Swim Test (FST) and the Chronic Mild Stress (CMS). Male and female rats were subjected to one session of swim stress for two consecutive days (FST) or to a variety of mild stressors alternating for six weeks (CMS). Subsequently, the tissue levels of dopamine (DA) and its metabolites (HVA and DOPAC) in the hippocampus, the hypothalamus, the prefrontal cortex and the striatum were measured using high-performance liquid chromatography (HPLC). The ratios HVA/DA and DOPAC/DA were also calculated as indices of the dopaminergic activity. Results from the FST determined that males exhibited lower immobility, higher climbing duration and increased dopaminergic activity in the prefrontal cortex and the hippocampus compared to females. CMS induced alterations in sucrose intake in both sexes, while it only decreased dopaminergic activity in the prefrontal cortex of females. These findings show that FST and CMS have different effects on the dopaminergic activity of discrete brain regions depending on the sex of the animal. These data support the growing evidence that females display a differential response and adaptation to stress than males.
Dalla C, Edgecomb C, Whetstone AS, Shors TJ. Females do not express learned helplessness like males do. Neuropsychopharmacology. 2008;33(7):1559-69.Abstract
Women are more likely than men to suffer from stress-related mental disorders, such as depression. In the present experiments, we identified sex differences in one of the most common animal models of depression, that of learned helplessness. Male and female rats were trained to escape a mild footshock each day for 7 days (controllable stress). Each rat was yoked to another rat that could not escape (uncontrollable stress), but was exposed to the same amount of shock. One day later, all stressed rats and unstressed controls were tested on a more difficult escape task in a different context. Most males exposed to uncontrollable stress did not learn to escape and were therefore helpless. In contrast, most females did learn to escape on the more difficult escape task, irrespective of whether they had been exposed to controllable or uncontrollable stress. The sex differences in helplessness behavior were not dependent on the presence of sex hormones in adulthood, because neither ovariectomy of females nor castration of males abolished them. The absence of helplessness in females was neither dependent on organizational effects of testosterone during the day of birth, because masculinized females did not express helplessness as adults. Thus, sex differences in helplessness behavior are independent of gonadal hormones in adulthood and testosterone exposure during perinatal development. Learned helplessness may not constitute a valid model for depressive behavior in women, at least as reflected by the response of female rats to operant conditioning procedures after stressful experience.