Publications by Year: 2011

2011
Livas C, Halazonetis DJ, Booij JW, Katsaros C. Extraction of maxillary first molars improves second and third molar inclinations in Class II Division 1 malocclusion. Am J Orthod Dentofacial Orthop. 2011;140(3):377-82.Abstract
INTRODUCTION: The aim of this study was to assess the changes in inclination of the maxillary second (M2) and third (M3) molars after orthodontic treatment of Class II Division 1 malocclusion with extraction of maxillary first molars. METHODS: Two groups of subjects were studied. The experimental group consisted of 37 subjects, 18 boys and 19 girls (mean age, 13.2 ± 1.62 years). The inclusion criteria were white origin, Class II Division 1 malocclusion, overjet ≥4 mm, no missing teeth or agenesis, and maxillary M3 present. All patients were treated with extraction of the maxillary first molars and the Begg technique. Standardized lateral cephalometric radiographs were taken at the start of active treatment (T1) and at least 3.7 years posttreatment (T2). The control group was drawn from the archives of the Nittedal Growth Material (Oslo University, Oslo, Norway) and included 54 untreated Class I and Class II subjects,18 boys and 36 girls (mean age, 13.4 ± 1.99 years) followed up for a minimum of 3.6 years. M2 and M3 inclinations relative to the palatal plane (PP) and functional occlusal plane (FOP) were measured and compared between groups and time periods. RESULTS: M2 to PP inclination improved significantly in both the control group (M2-PP at T1, 17.7° ± 5.81°, and at T2, 11.9° ± 4.61°) and the experimental group (M2-PP at T1, 26.7° ± 5.75°, and at T2, 6.9° ± 6.76°). There were also significant increases of the mesial inclination of M3 in the control group (M3-PP at T1, 30.1° ± 8.54°, and at T2, 19.6° ± 9.01°) and extraction group (M3-PP at T1, 32.2° ± 7.90°, and at T2, 12.8° ± 7.36°). By using the FOP as the reference system, no significant change in the inclination of M2 was observed in the control group, whereas, in the extraction group, although more distally inclined at T1, M2 ended up mesially inclined at T2 (M2-FOP at T1, 14.2° ± 4.62°, and at T2, -6.2° ± 6.10°; P <0.0001). M3 inclinations were similar between the groups at T1 (M3-FOP control, 17.3° ± 9.35°; M3-FOP experimental, 19.6° ± 7.37°), and these improved significantly in both groups. However, M3 uprighting was almost 4 times greater in the extraction group (M3-FOP from T2-T1, 5.6° vs 19.9°). The greatest distal inclination of M3 at T2 in the extraction group was 9.4°, a value attained by only 43% of the control group. CONCLUSIONS: Extraction of the maxillary first molars in Class II Division 1 patients results in significant uprighting of M2 and M3 and facilitates the normal eruption of M3.
Gkantidis N, Halazonetis DJ, Alexandropoulos E, Haralabakis NB. Treatment strategies for patients with hyperdivergent Class II Division 1 malocclusion: is vertical dimension affected?. Am J Orthod Dentofacial Orthop. 2011;140(3):346-55.Abstract
INTRODUCTION: The dilemma of extraction vs nonextraction treatment, along with the uncertain potential of orthodontic treatment to control vertical dimensions, still remains among the most controversial issues in orthodontics. The aim of this study was to evaluate 2 contradictory treatment protocols for hyperdivergent Class II Division 1 malocclusion regarding their effectiveness in controlling vertical dimensions. METHODS: The subjects were retrospectively selected from 2 orthodontic offices that used contrasting treatment protocols. The patients had similar hyperdivergent skeletal patterns, malocclusion patterns, skeletal ages, and sexes. Group A (29 patients) was treated with 4 first premolar extractions and "intrusive" mechanics (eg, high-pull headgear), whereas group B (28 patients) was treated nonextraction with no regard to vertical control (eg, cervical headgear, Class II elastics). Twenty-seven landmarks were digitized on lateral cephalometric radiographs before and after treatment, and 14 measurements were assessed. Geometric morphometric methods were also implemented to evaluate size and shape differences. RESULTS: As expected, the maxillary and mandibular molars translated mesially and the mandibular incisors uprighted in group A but remained approximately unchanged in group B. The vertical positions of the molars and the incisors were similar between groups before and after treatment, although they were altered by treatment or growth. No significant differences were observed in the posttreatment skeletal measurements between the 2 groups, including vertical variables, which remained unaltered. Permutation tests on Procrustes distances between skeletal shapes confirmed these results. CONCLUSIONS: This study demonstrated the limitations of conventional orthodontics to significantly alter skeletal vertical dimensions. More important factors are probably responsible for the development and establishment of the vertical skeletal pattern, such as neuromuscular balance and function.
Bartzela TN, Katsaros C, Bronkhorst EM, Rizell S, Halazonetis D, Kuijpers-Jagtman AM. A two-centre study on facial morphology in patients with complete bilateral cleft lip and palate at nine years of age. Int J Oral Maxillofac Surg. 2011;40(8):782-9.Abstract
The aim of this study was to compare craniofacial morphology and soft tissue profiles in patients with complete bilateral cleft lip and palate at 9 years of age, treated in two European cleft centres with delayed hard palate closure but different treatment protocols. The cephalometric data of 83 consecutively treated patients were compared (Gothenburg, N=44; Nijmegen, N=39). In total, 18 hard tissue and 10 soft tissue landmarks were digitized by one operator. To determine the intra-observer reliability 20 cephalograms were digitized twice with a monthly interval. Paired t-test, Pearson correlation coefficients and multiple regression models were applied for statistical analysis. Hard and soft tissue data were superimposed using the Generalized Procrustes Analysis. In Nijmegen, the maxilla was protrusive for hard and soft tissue values (P=0.001, P=0.030, respectively) and the maxillary incisors were retroclined (P<0.001), influencing the nasolabial angle, which was increased in comparison with Gothenburg (P=0.004). In conclusion, both centres showed a favourable craniofacial form at 9-10 years of age, although there were significant differences in the maxillary prominence, the incisor inclination and soft tissue cephalometric values. Follow-up of these patients until facial growth has ceased, may elucidate components for outcome improvement.
Halazonetis DJ. Permutation method for evaluating topographic craniofacial correlations. Am J Orthod Dentofacial Orthop. 2011;139(3):e211-7.Abstract
INTRODUCTION: Correlations between cephalometric measurements are frequently assumed to represent biologic associations. However, a significant portion of such correlations might arise from purely geometric dependencies, when measurements share common landmarks. Analytic calculation of this topographic component is difficult. The purpose of this study was to propose a permutation method for evaluating the topographic component of cephalometric correlations. METHODS: The method consisted of creating a virtual sample of cephalometric tracings (landmark configurations) from the original biologic sample under investigation. Each novel landmark configuration was constructed by assigning coordinates to the cephalometric points; the coordinates of each point were taken randomly from the original sample, each from a potentially different subject. Correlation analysis was performed separately on both samples and the results compared. Biologic meaning was ascribed only when there was a significant difference in correlation values between the samples. Confidence intervals for assessing statistical significance were calculated by using a randomization approach. The method was tested on a sample of 170 radiographs to evaluate the correlation between cranial base angle (NSBa) and angles SNA and SNB, as well as between ANB angle and the Wits appraisal. RESULTS: No biologic association was found between ANB and Wits, or between NSBa and SNA. The biologic correlation between NSBa and SNB was statistically significant but low (r(2) = 12%). CONCLUSIONS: Topographic associations between cephalometric measurements are ubiquitous and difficult to assess. The proposed method enables evaluation of their relative strength without the need for analytic solutions.
Coquerelle M, Bookstein FL, Braga J, Halazonetis DJ, Weber GW, Mitteroecker P. Sexual dimorphism of the human mandible and its association with dental development. Am J Phys Anthropol. 2011;145(2):192-202.Abstract
The present study investigates whether the human mandible is sexually dimorphic during early postnatal development and whether early dimorphic features persist during subsequent ontogeny. We also examine whether mandibular dimorphism is linked to dimorphism of dental development. Dense CT-derived mandibular meshes of 84 females and 75 males, ranging from birth to adulthood, were analyzed using geometric morphometric methods. On the basis of the specimen's chronological ages and mineralization stages of the deciduous and permanent teeth, we compute dental age as proxy for dental development by the additive conjoint measurement method. By birth, males have, on average, more advanced age-specific shapes than females. However, sex differences decrease quickly as females catch up via a different association between shape and size. This leads to an almost complete reduction of sexual dimorphism between the ages of 4 and 14. From puberty to adulthood, males are characterized by allometric shape changes while the shape of the female mandible continues to change even after size has ceased to increase. Dimorphism of dental maturation becomes visible only at puberty. Sexual dimorphism, concentrated at the ramus and the mental region during the earliest ontogenetic stages and again at adulthood, is not associated with the development of the teeth. At puberty there is a simultaneous peak in size increase, shape development, and dental maturation likely controlled by the surge of sex hormones with a dimorphic onset age. We argue that the infant and adult dimorphism of the mental region may be associated with the development of supralaryngeal structures.
Gkantidis N, Halazonetis DJ. Morphological integration between the cranial base and the face in children and adults. J Anat. 2011;218(4):426-38.Abstract
The primary aim of the present study was to assess morphological covariation between the face and the basicranium (midline and lateral), and to evaluate patterns of integration at two specific developmental stages. A group of 71 children (6-10 years) was compared with a group of 71 adults (20-35 years). Lateral cephalometric radiographs were digitized and a total of 28 landmarks were placed on three areas; the midline cranial base, the lateral cranial base and the face. Geometric morphometric methods were applied and partial least squares analysis was used to evaluate correlation between the three shape blocks. Morphological integration was tested both with and without removing the effect of allometry. In children, mainly the midline and, to a lesser extent, the lateral cranial base were moderately correlated to the face. In adults, the correlation between the face and the midline cranial base, which ceases development earlier than the lateral base, was reduced. However, the lateral cranial base retained and even strengthened its correlation to the face. This suggests that the duration of common developmental timing is an important factor that influences integration between craniofacial structures. However, despite the apparent switch of primary roles between the cranial bases during development, the patterns of integration remained stable, thereby supporting the role of genetics over function in the establishment and development of craniofacial shape.