Abstract:
Abstract Species occurring in sympatry have to effectively segregate their niche in order to co-exist. In the case of ectotherms in particular, the very important parameter of thermal biology has to be taken into account. Here we investigated the thermoregulatory effectiveness (E) of two endemic Greek lizards (Hellenolacerta graeca and Podarcis peloponnesiacus) that live syntopically on a rocky cliff in the Peloponnese. We presumed that the two species would select different microhabitats, to avoid interspecific competition, and follow a similar thermoregulation pattern as they experience the same conditions. We also expected that E values for both species would differ depending on the season. Overall, we found that the two species had similar E values for each season but differentiated partial thermoregulatory attributes. Though they both occurred in the same types of microhabitat, H. graeca selected higher sites (average 99cm above ground) than P. peloponnesiacus (average 44cm). Also, the latter achieved higher preferred temperatures during summer and winter. Finally, the effectiveness of thermoregulation for both species varied interseasonally and received its highest values during summer, in response to the lowest thermal quality that was observed then. Similar studies stress the importance of thermal shifts for ectotherm co-existence.
Website