Avgeris M, Kokkinopoulou I, Maratou E, Mitrou P, Boutati E, Scorilas A, Fragoulis EG, Christodoulou MI.
Blood-based analysis of 84 microRNAs identifies molecules deregulated in individuals with type-2 diabetes, risk factors for the disease or metabolic syndrome. Diabetes Res Clin Pract 2020;164:108187.
AbstractAIM: Micro-RNAs (miRNAs) are implicated in insulin-signaling and the development of type-2 diabetes (T2D). Their deregulated expression is mostly described in the pancreas, liver, skeletal muscle, or adipose tissue of diabetic animals. Relevant studies in humans are limited due to difficulties in accessing tissue-biopsies. Though, circulating miRNAs are indicators of organ-specific pathophysiological events and could potentially serve as disease biomarkers. We explored the profile of 84 T2D-related miRNAs in peripheral blood of subjects with or without the disease. METHODS: An RT-qPCR array screening 84 T2D-related miRNAs was applied in samples of T2D (n = 6) versus non-T2D (n = 6) subjects. The deregulated miRNAs were thereafter analyzed in peripheral blood samples of a validation cohort of 40 T2D and 37 non-T2D individuals [16 controls and 21 subjects with metabolic syndrome (Met-S) and/or T2D risk factors (T2D-RF)], using specific RT-qPCR assays. Correlations with clinicopathological parameters and risk factors were evaluated. RESULTS: Subjects with the disease displayed decreased levels of miR-214-3p, miR-24-3p and let-7f-5p, compared to those without. MiRNA levels correlated with serum insulin and HbA1c levels in individuals with T2D or Met-S/T2D-RF, and with higher BMI, dyslipidemia and family history in controls. CONCLUSIONS: Blood levels of miR-214-3p, miR-24-3p and let-7f-5p are down-regulated in T2D- and Met-S/T2D-RF subjects. Future studies are needed to evaluate their potential as disease biomarkers and elucidate the associated tissue-specific pathogenetic mechanisms.
Leontariti M, Avgeris M, Katsarou MS, Drakoulis N, Siatouni A, Verentzioti A, Alexoudi A, Fytraki A, Patrikelis P, Vassilacopoulou D, Gatzonis S, Sideris DC.
Circulating miR-146a and miR-134 in predicting drug-resistant epilepsy in patients with focal impaired awareness seizures. Epilepsia 2020;61:959-970.
AbstractOBJECTIVE: Epilepsy is one of the most prevalent neurologic disorders, causing serious psychological problems and reducing quality of life. Although 20 different antiepileptic drugs (AEDs) have been approved by the US Food and Drug Administration (FDA), 30% of patients have drug-resistant epilepsy (DRE). Considering the role of miR-146a and miR-134 in neuroinflammation and dendritic functionality, respectively, the aim of this study was the clinical evaluation of circulating miR-146a and miR-134 as novel noninvasive molecular markers for the prognosis of refractory epilepsy. METHODS: The study included 162 patients with focal impaired awareness seizures. Total RNA was extracted from serum samples spiked with synthetic cel-miR-39-3p for normalization purposes. First-strand complementary DNA (cDNA) synthesis was performed using microRNA-specific stem-loop primers, and hsa-miR-134/146a levels were quantified by quantitative polymerase chain reaction (qPCR). DRE was used as clinical end point event. Internal validation was performed by bootstrap analysis, and decision curve analysis was used to evaluate the clinical benefit on disease prognosis. RESULTS: The circulating levels of both miR-134 and miR-146a were elevated in patients with drug-resistant seizures. The receiver-operating characteristic (ROC) curve and logistic regression analysis demonstrated that patients with increased circulating miR-134/146a levels are at significantly higher risk for developing DRE, independently of temporal lobe sclerosis, epilepsy duration, familial history, age at first seizure, age, body mass index (BMI), smoking behavior, and gender. Finally, decision curve analysis highlighted that the evaluation of circulating miR-134/146a led to superior clinical benefit for DRE prognosis and patients' risk stratification. SIGNIFICANCE: Elevated serum miR-134/146a levels are associated with a higher risk for AED-resistant epilepsy and could constitute novel noninvasive molecular markers to improve disease early prognosis and support precision medicine.
Panoutsopoulou K, Avgeris M, Magkou P, Mavridis K, Dreyer T, Dorn J, Obermayr E, Reinthaller A, Michaelidou K, Mahner S, Vergote I, Loverix L, Braicu I, Sehouli J, Zeillinger R, Magdolen V, Scorilas A.
miR-181a overexpression predicts the poor treatment response and early-progression of serous ovarian cancer patients. Int J Cancer 2020;147:3560-3573.
AbstractOvarian cancer (OC) remains a leading cause of gynecological cancer-related death worldwide, characterized by poor 5-year survival. Molecular markers could serve as crucial tools of personalized prognosis and therapy. Herein, we present miR-181a as novel predictor of OC prognosis, using five independent OC cohorts. In particular, a screening (n = 81) and an institutionally independent validation (n = 100, OVCAD multicenter study) serous OC (SOC) cohorts were analyzed. Bagnoli et al (2016) OC179 (n = 124) to OC133 (n = 100) and TCGA (n = 489) served as external validation cohorts. Patients' survival and disease progression were assessed as clinical endpoint events. Bootstrap analysis was performed for internal validation and decision curve analysis was utilized to evaluate clinical benefit. miR-181a overexpression was unveiled as powerful and independent molecular predictor of patients' poor survival and higher risk for disease progression after debulking surgery and platinum-based chemotherapy. Analysis of the OVCAD institutionally independent cohort, as well as of Bagnoli et al. and TCGA external cohorts further confirmed the unfavorable prognostic nature of miR-181a overexpression in SOC. Strikingly, multivariate prognostic models incorporating miR-181a with established disease markers clearly improved patients' risk-stratification and offered superior clinical benefit in OC prognostication. Conclusively, miR-181a evaluation could augment prognostic accuracy and support precision medicine decisions in OC.
Panoutsopoulou K, Avgeris M, Mavridis K, Dreyer T, Dorn J, Obermayr E, Reinthaller A, Michaelidou K, Mahner S, Vergote I, Vanderstichele A, Braicu I, Sehouli J, Zeillinger R, Magdolen V, Scorilas A.
miR-203 is an independent molecular predictor of prognosis and treatment outcome in ovarian cancer: a multi-institutional study. Carcinogenesis 2020;41:442-451.
AbstractOvarian cancer (OC) accounts for the most gynecological cancer-related deaths in developed countries. Unfortunately, the lack of both evident early symptoms and effective asymptomatic population screening results in late diagnosis and inevitably poor prognosis. Hence, it is urgent to identify novel molecular markers to support personalized prognosis. In the present study, we have analyzed the clinical significance of miR-203 in OC using two institutionally independent cohorts. miR-203 levels were quantified in a screening (n = 125) and a validation cohort (n = 100, OVCAD multicenter study). Survival analysis was performed using progression and death as clinical endpoint events. Internal validation was conducted by bootstrap analysis, and decision curve analysis was used to evaluate the clinical benefit. Increased miR-203 levels in OC patients were correlated with unfavorable prognosis and higher risk for disease progression, independently of FIGO stage, tumor grade, residual tumor after surgery, chemotherapy response and age. The analysis of the institutionally independent validation cohort (OVCAD study) clearly confirmed the shorter survival outcome of the patients overexpressing miR-203. Additionally, integration of miR-203 levels with the established disease prognostic markers led to a superior stratification of OC patients that can ameliorate prognosis and benefit patient clinical management. In this regard, miR-203 expression constitutes a novel independent molecular marker to improve patients' prognosis in OC.
Papadimitriou MA, Avgeris M, Levis P, Papasotiriou EC, Kotronopoulos G, Stravodimos K, Scorilas A.
tRNA-Derived Fragments (tRFs) in Bladder Cancer: Increased 5'-tRF-LysCTT Results in Disease Early Progression and Patients' Poor Treatment Outcome. Cancers (Basel) 2020;12
AbstractThe heterogeneity of bladder cancer (BlCa) prognosis and treatment outcome requires the elucidation of tumors' molecular background towards personalized patients' management. tRNA-derived fragments (tRFs), although originally considered as degradation debris, represent a novel class of powerful regulatory non-coding RNAs. In silico analysis of the TCGA-BLCA project highlighted 5'-tRF-LysCTT to be significantly deregulated in bladder tumors, and 5'-tRF-LysCTT levels were further quantified in our screening cohort of 230 BlCa patients. Recurrence and progression for non-muscle invasive (NMIBC) patients, as well as progression and patient's death for muscle-invasive (MIBC) patients, were used as clinical endpoint events. TCGA-BLCA were used as validation cohort. Bootstrap analysis was performed for internal validation and the clinical net benefit of 5'-tRF-LysCTT on disease prognosis was assessed by decision curve analysis. Elevated 5'-tRF-LysCTT was associated with unfavorable disease features, and significant higher risk for early progression (multivariate Cox: HR = 2.368; p = 0.033) and poor survival (multivariate Cox: HR = 2.151; p = 0.032) of NMIBC and MIBC patients, respectively. Multivariate models integrating 5'-tRF-LysCTT with disease established markers resulted in superior risk-stratification specificity and positive prediction of patients' progression. In conclusion, increased 5'-tRF-LysCTT levels were strongly associated with adverse disease outcome and improved BlCa patients' prognostication.