Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation

Citation:

Arvanitis DA, Vafiadaki E, Papalouka V, Sanoudou D. Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation. Biochim Biophys Acta Mol Cell ResBiochim Biophys Acta Mol Cell ResBiochim Biophys Acta Mol Cell Res. 2017;1864:2308-2321.

Abstract:

Muscle Lim Protein (MLP) is a protein with multiple functional roles in striated muscle physiology and pathophysiology. Herein, we demonstrate that MLP directly binds to slow, fast, and cardiac myosin-binding protein C (MyBP-C) during myogenesis, as shown by yeast two-hybrid and a range of protein-protein interaction assays. The minimal interacting domains involve MLP inter-LIM and MyBP-C [C4]. The interaction is sensitive to cytosolic Ca(2+) concentrations changes and to MyBP-C phosphorylation by PKA or CaMKII. Confocal microscopy of differentiating myoblasts showed MLP and MyBP-C colocalization during myoblast differentiation. Suppression of the complex formation with recombinant MyBP-C [C4] peptide overexpression, inhibited myoblast differentiation by 65%. Suppression of both MLP and MyBP-C expression in myoblasts by siRNA revealed negative synergistic effects on differentiation. The MLP/MyBP-C complex modulates the actin activated myosin II ATPase activity in vitro, which could interfere with sarcomerogenesis and myofilaments assembly during differentiation. Our data demonstrate a critical role of the MLP/MyBP-C complex during early myoblast differentiation. Its absence in muscles with mutations or aberrant expression of MLP or MyBP-C could be directly implicated in the development of cardiac and skeletal myopathies.

Notes:

Arvanitis, Demetrios AVafiadaki, ElizabethPapalouka, VasilikiSanoudou, DespinaengResearch Support, Non-U.S. Gov'tNetherlands2017/09/05 06:00Biochim Biophys Acta Mol Cell Res. 2017 Dec;1864(12):2308-2321. doi: 10.1016/j.bbamcr.2017.08.010. Epub 2017 Sep 1.