Publications by Year: 2004

Tomczak KK, Marinescu VD, Ramoni MF, Sanoudou D, Montanaro F, Han M, Kunkel LM, Kohane IS, Beggs AH. Expression profiling and identification of novel genes involved in myogenic differentiation. FASEB JFASEB JFASEB J. 2004;18:403-5.Abstract
Skeletal muscle differentiation is a complex, highly coordinated process that relies on precise temporal gene expression patterns. To better understand this cascade of transcriptional events, we used expression profiling to analyze gene expression in a 12-day time course of differentiating C2C12 myoblasts. Cluster analysis specific for time-ordered microarray experiments classified 2895 genes and ESTs with variable expression levels between proliferating and differentiating cells into 22 clusters with distinct expression patterns during myogenesis. Expression patterns for several known and novel genes were independently confirmed by real-time quantitative RT-PCR and/or Western blotting and immunofluorescence. MyoD and MEF family members exhibited unique expression kinetics that were highly coordinated with cell-cycle withdrawal regulators. Among genes with peak expression levels during cell cycle withdrawal were Vcam1, Itgb3, Itga5, Vcl, as well as Ptger4, a gene not previously associated with the process of myogenesis. One interesting uncharacterized transcript that is highly induced during myogenesis encodes several immunoglobulin repeats with sequence similarity to titin, a large sarcomeric protein. These data sets identify many additional uncharacterized transcripts that may play important functions in muscle cell proliferation and differentiation and provide a baseline for comparison with C2C12 cells expressing various mutant genes involved in myopathic disorders.
Sanoudou D, Kang PB, Haslett JN, Han M, Kunkel LM, Beggs AH. Transcriptional profile of postmortem skeletal muscle. Physiol GenomicsPhysiol GenomicsPhysiol Genomics. 2004;16:222-8.Abstract
Autopsy specimens are often used in molecular biological studies of disease pathophysiology. However, few analyses have focused specifically on postmortem changes in skeletal muscles, and almost all of those investigate protein or metabolic changes. Although some structural and enzymatic changes have been described, the sequence of transcriptional events associated with these remains unclear. We analyzed a series of new and preexisting human skeletal muscle data sets on approximately 12,500 genes and expressed sequence tags (ESTs) generated by the Affymetrix U95Av2 GeneChips from seven autopsy and seven surgical specimens. Remarkably, postmortem specimens (up to 46 h) revealed a significant and prominent upregulation of transcripts involved with protein biosynthesis. Additional upregulated transcripts are associated with cellular responses to oxidative stress, hypoxia, and ischemia; however, only a subset of genes in these pathways was affected. Overexpression was also seen for apoptosis-related, cell cycle regulation/arrest-related, and signal transduction-related genes. No major gene expression differences were seen between autopsy specimens with <20-h and 34- to 46-h postmortem intervals or between pediatric and adult cases. These data demonstrate that, likely in response to hypoxia and oxidative stress, skeletal muscle undergoes a highly active transcriptional, and possibly, translational phase during the initial 46-h postmortem interval. Knowledge of these changes is important for proper interpretation of gene expression studies utilizing autopsy specimens.
Sanoudou D, Frieden LA, Haslett JN, Kho AT, Greenberg SA, Kohane IS, Kunkel LM, Beggs AH. Molecular classification of nemaline myopathies: "nontyping" specimens exhibit unique patterns of gene expression. Neurobiol DisNeurobiol DisNeurobiol Dis. 2004;15:590-600.Abstract
Nemaline myopathy (NM) is a slowly progressive or nonprogressive neuromuscular disorder caused by mutations in genes encoding skeletal muscle sarcomeric thin filament proteins. It is characterized by great heterogeneity at the clinical, histopathological, and genetic level. Although multiple molecular pathways are commonly affected in all NM patients, little is known about the molecular characteristics of muscles from patients in different NM subgroups. We have analyzed a group of global gene expression data sets for transcriptional patterns characteristic of particular nemaline myopathy classes. Differential expression between disease subgroups was primarily seen in mitochondrial-, structural-, and transcription-related genes. Multiple lines of evidence support the hypothesis that muscles from cases with "nontyping" NM, although clinically classified as typical NM, share a unique pathophysiological state and are characterized by distinct patterns of gene expression. Determination of the specific molecular differences in NM subgroups may eventually lead to improved prognostic determinations and treatment of these patients.