Zou P, Pinotsis N, Lange S, Song YH, Popov A, Mavridis I, Mayans OM, Gautel M, Wilmanns M.
Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. NatureNature. 2006;439:229-33.
AbstractThe Z-disk of striated and cardiac muscle sarcomeres is one of the most densely packed cellular structures in eukaryotic cells. It provides the architectural framework for assembling and anchoring the largest known muscle filament systems by an extensive network of protein-protein interactions, requiring an extraordinary level of mechanical stability. Here we show, using X-ray crystallography, how the amino terminus of the longest filament component, the giant muscle protein titin, is assembled into an antiparallel (2:1) sandwich complex by the Z-disk ligand telethonin. The pseudosymmetric structure of telethonin mediates a unique palindromic arrangement of two titin filaments, a type of molecular assembly previously found only in protein-DNA complexes. We have confirmed its unique architecture in vivo by protein complementation assays, and in vitro by experiments using fluorescence resonance energy transfer. The model proposed may provide a molecular paradigm of how major sarcomeric filaments are crosslinked, anchored and aligned within complex cytoskeletal networks.
Pinotsis N, Petoukhov M, Lange S, Svergun D, Zou P, Gautel M, Wilmanns M.
Evidence for a dimeric assembly of two titin/telethonin complexes induced by the telethonin C-terminus. J Struct BiolJ Struct Biol. 2006;155:239-50.
AbstractThe Z-disk region defines the lateral boundary of the sarcomere and requires a high level of mechanical strength to provide a stable framework for large filamentous muscle proteins. The level of complexity at this area is reflected by a large number of protein-protein interactions. Recently, we unraveled how the N-terminus of the longest filament component, the giant muscle protein titin, is assembled into an antiparallel (2:1) sandwich complex by the N-terminal titin-binding segment of the Z-disk ligand telethonin/T-cap [Zou, P., Pinotsis, N., Lange, S., Song, Y.H., Popov, A., Mavridis, I., Mayans, O.M., Gautel, M., Wilmanns, M., 2006. Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature 439, 229-233]. In this contribution, we present structural data of a related complex of the titin N-terminus with full-length telethonin. The C-terminus of telethonin remains invisible, suggesting that it does not fold into a defined structure even in the presence of titin. In contrast to the structure with truncated telethonin, a dimer of two titin/telethonin complexes is formed within the crystal environment, potentially indicating the formation of higher oligomers. We further investigated the structure and dynamics of this assembly by small-angle X-ray scattering, circular dichroism, and in vivo complementation data. The data consistently indicate the involvement of the C-terminal part of telethonin into the assembly of two titin/telethonin complexes.
Lee EH, Gao M, Pinotsis N, Wilmanns M, Schulten K.
Mechanical strength of the titin Z1Z2-telethonin complex. StructureStructure. 2006;14:497-509.
AbstractUsing molecular dynamics simulations, we have explored the mechanical strength of the titin Z1Z2-telethonin complex, namely, its ability to bear strong forces such as those encountered during passive muscle stretch. Our results show that not only does this complex resist considerable mechanical force through beta strand crosslinking, suggesting that telethonin is an important component of the N-terminal titin anchor, but also that telethonin distributes these forces between its two joined titin Z2 domains to protect the proximal Z1 domains from bearing too much stress. Our simulations also reveal that without telethonin, apo-titin Z1Z2 exhibits significantly decreased resistance to mechanical stress, and that the N-terminal segment of telethonin (residues 1-89) does not exhibit a stable fold conformation when it is unbound from titin Z1Z2. Consequently, our study sheds light on a key but little studied architectural feature of biological cells-the existence of strong mechanical links that glue separate proteins together.
Giastas P, Pinotsis N, Efthymiou G, Wilmanns M, Kyritsis P, Moulis JM, Mavridis IM.
The structure of the 2[4Fe-4S] ferredoxin from Pseudomonas aeruginosa at 1.32-A resolution: comparison with other high-resolution structures of ferredoxins and contributing structural features to reduction potential values. J Biol Inorg ChemJ Biol Inorg Chem. 2006;11:445-58.
AbstractThe structure of the 2[4Fe-4S] ferredoxin (PaFd) from Pseudomonas aeruginosa, which belongs to the Allochromatium vinosum (Alvin) subfamily, has been determined by X-ray crystallography at 1.32-A resolution, which is the highest up to now for a member of this subfamily of Fds. The main structural features of PaFd are similar to those of AlvinFd. However, the significantly higher resolution of the PaFd structure makes possible a reliable comparison with available high-resolution structures of [4Fe-4S]-containing Fds, in an effort to rationalize the unusual electrochemical properties of Alvin-like Fds. Three major factors contributing to the reduction potential values of [4Fe-4S]2+/+ clusters of Fds, namely, the surface accessibility of the clusters, the N-H...S hydrogen-bonding network, and the volume of the cavities hosting the clusters, are extensively discussed. The volume of the cavities is introduced in the present work for the first time, and can in part explain the very negative potential of cluster I of Alvin-like Fds.