Publications by Year: 2019

2019
Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, et al. Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci. 2019;22:401-412.Abstract
Accumulation of damaged mitochondria is a hallmark of aging and age-related neurodegeneration, including Alzheimer's disease (AD). The molecular mechanisms of impaired mitochondrial homeostasis in AD are being investigated. Here we provide evidence that mitophagy is impaired in the hippocampus of AD patients, in induced pluripotent stem cell-derived human AD neurons, and in animal AD models. In both amyloid-beta (Abeta) and tau Caenorhabditis elegans models of AD, mitophagy stimulation (through NAD(+) supplementation, urolithin A, and actinonin) reverses memory impairment through PINK-1 (PTEN-induced kinase-1)-, PDR-1 (Parkinson's disease-related-1; parkin)-, or DCT-1 (DAF-16/FOXO-controlled germline-tumor affecting-1)-dependent pathways. Mitophagy diminishes insoluble Abeta1-42 and Abeta1-40 and prevents cognitive impairment in an APP/PS1 mouse model through microglial phagocytosis of extracellular Abeta plaques and suppression of neuroinflammation. Mitophagy enhancement abolishes AD-related tau hyperphosphorylation in human neuronal cells and reverses memory impairment in transgenic tau nematodes and mice. Our findings suggest that impaired removal of defective mitochondria is a pivotal event in AD pathogenesis and that mitophagy represents a potential therapeutic intervention.
Palikaras K, Lionaki E, Tavernarakis N. Mitophagy Dynamics in Caenorhabditis elegans. Methods Mol Biol. 2019;1880:655-668.Abstract
Mitochondrial selective autophagy (mitophagy) is a critical cellular process for mitochondrial homeostasis and survival both under basal and stress conditions. Distinct cell types display different requirements for mitochondrial turnover depending on their metabolic status, differentiation state, and environmental cues. This points to the necessity of developing novel tools for real-time, tissue-specific assessment of mitophagy. Caenorhabditis elegans is an invaluable model organism for this kind of analysis providing a platform for simultaneous monitoring of mitophagy in vivo in different tissues and cell types, during development, stress conditions, and/or throughout life span. In this chapter we describe three versatile, noninvasive methods, developed for monitoring in vivo early and late mitophagic events in body wall muscles and neuronal cells of C. elegans. These procedures can be readily used and/or provide insights into the generation of novel imaging methods to investigate further the role of mitophagy at the organismal level under normal and pathological conditions.