Deposition of nanostructured Ag films on siliconwafers by electrochemical/electrophoretic deposition for electrochemical and SERS sensing

Citation:

Halouzka V, Jakubec P, Kvitek L, Likodimos V, Kontos AG, Papadopoulos K, Falaras P, Hrbac J. Deposition of nanostructured Ag films on siliconwafers by electrochemical/electrophoretic deposition for electrochemical and SERS sensing. Journal of the Electrochemical Society [Internet]. 2013;160:B54-B59.

Abstract:

Electrolysis of ultrapure water in a two-electrode cell with silver anode and conductive substrate (Si wafer) as a cathode leads to the formation of nanostructured silver layers deposited on cathode. In the process, the silver anode is electrochemically dissolved to silver cations, which react with water (or OH• radicals derived from water electrolysis) forming silver oxide nanoparticles, which fill the interelectrode space by electrophoretic movement, diffusion and convection induced by temperature effects of electrolysis. During the process the silver oxide nanoparticles are partially transformed into silver nanoparticles. On the cathode, silver cations and silver/silver oxide nanoparticles undergo reduction to form nanostructured silver film. The results of the present study open a new, extremely simple and ultra-low cost way to prepare nanostructured silver films on conducting and semiconducting substrates. The prepared nanosilver coated silicon substrates exhibit high performances as amperometric sensors for hydrogen peroxide and also as SERS substrates. © 2013 The Electrochemical Society.

Notes:

cited By 9

Website