Publications by Year: 1993

1993
Pijuan V, Zhuang Y, Smith L, Kroupis C, Condrescu M, Aceto JF, Reeves JP, Smith JB. Stable expression of the cardiac sodium-calcium exchanger in CHO cells. Am.J.Physiol [Internet]. 1993;264(4 Pt 1):C1066 - C1074. WebsiteAbstract
A line of Chinese hamster ovary (CHO) cells called CK1.4 was produced by transfection with the gene for the bovine cardiac Na(+)-Ca2+ exchanger. CK1.4 cells stably expressed substantial exchange activity and exchanger protein as shown by immunoprecipitation. Exchange activity was quantified as 45Ca2+ influx that depended on both increasing intracellular Na+ and lowering the concentration of external Na+. Replacing external Na+ with K+ slightly increased 45Ca2+ uptake by CK1.4 cells with basal Na+ and greatly increased 45Ca2+ uptake by Na(+)-loaded cells. Neither exchange activity nor exchanger protein was detected in the nontransfected parental line. By contrast to CK1.4 cells, replacing external Na+ with K+ decreased 45Ca2+ uptake in the nontransfected cells whether or not they were Na+ loaded. Changes in cytosolic free Ca2+ determined with fura-2 were consistent with the 45Ca2+ uptake data. Analysis of poly(A)(+)-RNA by Northern blot confirmed that CK1.4 cells, but not the parental line, expressed the exchanger. Expression of the exchanger was also observed in aortic myocytes and a renal epithelial cell line (LLC-MK2) but not in other lines of renal epithelial cells (MDCK, LLC-PK1) or human dermal fibroblasts. The cardiac exchanger produced substantial 45Ca2+ efflux from CK1.4 cells in response to hormone-evoked release of stored Ca2+. CK1.4 cells are an attractive model for studies of the regulation of the cardiac exchanger because they stably express sufficient exchanger for biochemical and immunological analysis
McGinnis K, Kroupis C, Wilson DB. Dimerization of Thermomonospora fusca beta-1,4-endoglucanase E2. Biochemistry [Internet]. 1993;32(32):8146 - 8150. WebsiteAbstract
Unboiled Thermomonospora fusca endoglucanase E2 electrophoresed on SDS-polyacrylamide gels migrated in the range of 80-90 kDa, but when boiled it migrated in the 40-42-kDa range. Sedimentation equilibrium centrifugation as well as chemical cross-linking experiments confirmed that E2 is a dimer. The dimer was reversibly dissociated at low pH. The E2 dimer was stable up to 70 degrees C, but began to dissociate at this temperature after a 30-60-min incubation. A nondimerizing mutant was obtained using region-specific chemical mutagenesis. DNA sequencing of this mutant revealed a single base change that substituted Gly for Glu-263. Chemical modification of carboxylic acid residues in E2 disrupted the dimer interaction