Publications by Year: 2016

2016
Nikolopoulos GK, Paraskevis D, Psichogiou M, Hatzakis A. HBV-DNA levels predict overall mortality in HIV/HBV coinfected individuals. J Med Virol. 2016;88(3):466-73.Abstract
The coinfection of Hepatitis B virus (HBV) and human immunodeficiency virus (HIV) has been associated with increased death rates. However, the relevant research has mostly relied on serologic HBV testing [HBV surface antigen (HBsAg)]. The aim of this work was to explore the relationship of HBV viraemia with overall mortality among HIV/HBV coinfected individuals. The analysis included 1,609 HIV seropositives of a previously described cohort (1984-2003) with limited exposure to tenofovir (12%) and a median follow-up of approximately 5 years. Those with persistent expression of HBsAg were further tested for HBV-DNA. The data were analyzed using Poisson regression models. Totally, 101 participants were chronic carriers of HBsAg (6.28%). Of these, 81 were tested for HBV-DNA. The median HBV-DNA levels were 3.81 log (base-10) International Units (IU)/ml. A third (31%) of those tested for HBV-DNA had received tenofovir. Before developing acquired immune deficiency syndrome (AIDS), the adjusted incidence rate ratio (IRR) for all-cause mortality of coinfected patients with HBV viraemia above the median value versus the HIV monoinfected group was 3.44 [95% confidence interval (CI): 1.05-11.27]. Multivariable regressions in the coinfected group only (n = 81) showed that one log-10 increase in HBV-DNA levels was associated with an elevated risk for death (IRR: 1.24, 95%CI: 1.03-1.49). HBV-DNA levels predict overall mortality in the setting of HIV/HBV coinfection, especially during the period before developing AIDS, and could thus help prioritize needs and determine the frequency of medical monitoring.
Hermans LE, Svicher V, Pas SD, Salpini R, Alvarez M, Ben Ari Z, Boland G, Bruzzone B, Coppola N, Seguin-Devaux C, et al. Combined Analysis of the Prevalence of Drug-Resistant Hepatitis B Virus in Antiviral Therapy-Experienced Patients in Europe (CAPRE). J Infect Dis. 2016;213(1):39-48.Abstract
BACKGROUND: European guidelines recommend treatment of chronic hepatitis B virus infection (CHB) with the nucleos(t)ide analogs (NAs) entecavir or tenofovir. However, many European CHB patients have been exposed to other NAs, which are associated with therapy failure and resistance. The CAPRE study was performed to gain insight in prevalence and characteristics of NA resistance in Europe. METHODS: A survey was performed on genotypic resistance testing results acquired during routine monitoring of CHB patients with detectable serum hepatitis B virus DNA in European tertiary referral centers. RESULTS: Data from 1568 patients were included. The majority (73.8%) were exposed to lamivudine monotherapy. Drug-resistant strains were detected in 52.7%. The most frequently encountered primary mutation was M204V/I (48.7%), followed by A181T/V (3.8%) and N236T (2.6%). In patients exposed to entecavir (n = 102), full resistance was present in 35.3%. Independent risk factors for resistance were age, viral load, and lamivudine exposure (P < .001). CONCLUSIONS: These findings support resistance testing in cases of apparent NA therapy failure. This survey highlights the impact of exposure to lamivudine and adefovir on development of drug resistance and cross-resistance. Continued use of these NAs needs to be reconsidered at a pan-European level.
Papachristou E, Tsagkovits A, Zavitsanou A, Hatzakis A, Paraskevis D. HCV dispersal patterns among intravenous drug users (IDUs) in Athens metropolitan area. Infect Genet Evol. 2016;45:415-419.Abstract
BACKGROUND: Most of the HCV transmission the recent years in Greece was among IDUs. Our aim was to estimate the prevalence of HCV genotypes and to investigate the patterns of HCV dispersal among IDUs in Athens using current state of the art molecular epidemiology methods. METHODS: HCV sequences were determined from 238 HIV-negative IDUs collected on the basis of the "ARISTOTLE" prevention program carried out in Athens between 2012 and 2013. Phylogenetic trees were inferred on HCV sequences isolated from IDUs in Athens for the most prevalent HCV clades (subtypes 1a and 3a). Phylogenetic analysis was performed by Neighbor-Joining and Bayesian methods using GTR+G as nucleotide substitution model. HCV dispersal patterns were estimated using as references, all globally available HCV sequences for subtypes 1a and 3a. RESULTS: The prevalence of HCV subtypes was: 3a (59.2%), 1a (21.9%), 4 (13.0%), 1b (5.4%) and 2 (0.5%). Phylogenetic analyses revealed that most sequences (63.5%) οf subtypes 1a and 3a fell within IDU-specific monophyletic groups. The proportion of sequences in monophyletic clades was similar for subtype 3a (62.9%) and 1a (65.3%). For the latter group, monophyletic clades were smaller in size. Multivariable logistic regression analyses showed that monophyletic clustering was marginally associated recent onset of injecting ([AOR]=1.44; 95% CI (0.97-2.13), p=0.068). CONCLUSIONS: The high proportions of HCV sequences within IDU-specific monophyletic clusters suggest that transmissions occurred locally among IDUs in Greece. The numerous clusters for both 1a and 3a provide evidence that both sub-epidemics were the result of multiple introductions among the IDUs. Higher regional clustering was probably associated with a more recent onset of drug use.
Karamitros T, Paraskevis D, Hatzakis A, Psichogiou M, Elefsiniotis I, Hurst T, Geretti A-M, Beloukas A, Frater J, Klenerman P, et al. A contaminant-free assessment of Endogenous Retroviral RNA in human plasma. Sci Rep. 2016;6:33598.Abstract
Endogenous retroviruses (ERVs) comprise 6-8% of the human genome. HERVs are silenced in most normal tissues, up-regulated in stem cells and in placenta but also in cancer and HIV-1 infection. Crucially, there are conflicting reports on detecting HERV RNA in non-cellular clinical samples such as plasma that suggest the study of HERV RNA can be daunting. Indeed, we find that the use of real-time PCR in a quality assured clinical laboratory setting can be sensitive to low-level proviral contamination. We developed a mathematical model for low-level contamination that allowed us to design a laboratory protocol and standard operating procedures for robust measurement of HERV RNA. We focus on one family, HERV-K HML-2 (HK2) that has been most recently active even though they invaded our ancestral genomes almost 30 millions ago. We extensively validated our experimental design on a model cell culture system showing high sensitivity and specificity, totally eliminating the proviral contamination. We then tested 236 plasma samples from patients infected with HIV-1, HCV or HBV and found them to be negative. The study of HERV RNA for human translational studies should be performed with extensively validated protocols and standard operating procedures to control the widespread low-level human DNA contamination.
Beloukas A, Psarris A, Giannelou P, Kostaki E, Hatzakis A, Paraskevis D. Molecular epidemiology of HIV-1 infection in Europe: An overview. Infect Genet Evol. 2016;46:180-189.Abstract
Human Immunodeficiency Virus type 1 (HIV-1) is characterised by vast genetic diversity. Globally circulating HIV-1 viruses are classified into distinct phylogenetic strains (subtypes, sub-subtypes) and several recombinant forms. Here we describe the characteristics and evolution of European HIV-1 epidemic over time through a review of published literature and updated queries of existing HIV-1 sequence databases. HIV-1 in Western and Central Europe was introduced in the early-1980s in the form of subtype B, which is still the predominant clade. However, in Eastern Europe (Former Soviet Union (FSU) countries and Russia) the predominant strain, introduced into Ukraine in the mid-1990s, is subtype A (A) with transmission mostly occurring in People Who Inject Drugs (PWID). In recent years, the epidemic is evolving towards a complex tapestry with an increase in the prevalence of non-B subtypes and recombinants in Western and Central Europe. Non-B epidemics are mainly associated with immigrants, heterosexuals and females but more recently, non-B clades have also spread amongst groups where non-B strains were previously absent - non-immigrant European populations and amongst men having sex with men (MSM). In some countries, non-B clades have spread amongst the native population, for example subtype G in Portugal and subtype A in Greece, Albania and Cyprus. Romania provides a unique case where sub-subtype F1 has predominated throughout the epidemic. In contrast, HIV-1 epidemic in FSU countries remains more homogeneous with Aclade predominating in all countries. The differences between the evolution of the Western epidemic and the Eastern epidemic may be attributable to differences in transmission risk behaviours, lifestyle and the patterns of human mobility. The study of HIV-1 epidemic diversity provides a useful tool by which we can understand the history of the pandemic in addition to allowing us to monitor the spread and growth of the epidemic over time.
Paraskevis D, Nikolopoulos GK, Magiorkinis G, Hodges-Mameletzis I, Hatzakis A. The application of HIV molecular epidemiology to public health. Infect Genet Evol. 2016;46:159-168.Abstract
HIV is responsible for one of the largest viral pandemics in human history. Despite a concerted global response for prevention and treatment, the virus persists. Thus, urgent public health action, utilizing novel interventions, is needed to prevent future transmission events, critical to eliminating HIV. For public health planning to prove effective and successful, we need to understand the dynamics of regional epidemics and to intervene appropriately. HIV molecular epidemiology tools as implemented in phylogenetic, phylodynamic and phylogeographic analyses have proven to be powerful tools in public health planning across many studies. Numerous applications with HIV suggest that molecular methods alone or in combination with mathematical modelling can provide inferences about the transmission dynamics, critical epidemiological parameters (prevalence, incidence, effective number of infections, Re, generation times, time between infection and diagnosis), or the spatiotemporal characteristics of epidemics. Molecular tools have been used to assess the impact of an intervention and outbreak investigation which are of great public health relevance. In some settings, molecular sequence data may be more readily available than HIV surveillance data, and can therefore allow for molecular analyses to be conducted more easily. Nonetheless, classic methods have an integral role in monitoring and evaluation of public health programmes, and should supplement emerging techniques from the field of molecular epidemiology. Importantly, molecular epidemiology remains a promising approach in responding to viral diseases.
Nikolopoulos GK, Kostaki E-G, Paraskevis D. Overview of HIV molecular epidemiology among people who inject drugs in Europe and Asia. Infect Genet Evol. 2016;46:256-268.Abstract
HIV strains continuously evolve, tend to recombine, and new circulating variants are being discovered. Novel strains complicate efforts to develop a vaccine against HIV and may exhibit higher transmission efficiency and virulence, and elevated resistance to antiretroviral agents. The United Nations Joint Programme on HIV/AIDS (UNAIDS) set an ambitious goal to end HIV as a public health threat by 2030 through comprehensive strategies that include epidemiological input as the first step of the process. In this context, molecular epidemiology becomes invaluable as it captures trends in HIV evolution rates that shape epidemiological pictures across several geographical areas. This review briefly summarizes the molecular epidemiology of HIV among people who inject drugs (PWID) in Europe and Asia. Following high transmission rates of subtype G and CRF14_BG among PWID in Portugal and Spain, two European countries, Greece and Romania, experienced recent HIV outbreaks in PWID that consisted of multiple transmission clusters including subtypes B, A, F1, and recombinants CRF14_BG and CRF35_AD. The latter was first identified in Afghanistan. Russia, Ukraine, and other Former Soviet Union (FSU) states are still facing the devastating effects of epidemics in PWID produced by A(also known as IDU-A), B(known as IDU-B), and CRF03_AB. In Asia, CRF01_AE and subtype B (Western B and Thai B) travelled from PWID in Thailand to neighboring countries. Recombination hotspots in South China, Northern Myanmar, and Malaysia have been generating several intersubtype and inter-CRF recombinants (e.g. CRF07_BC, CRF08_BC, CRF33_01B etc.), increasing the complexity of HIV molecular patterns.
Magiorkinis G, Angelis K, Mamais I, Katzourakis A, Hatzakis A, Albert J, Lawyer G, Hamouda O, Struck D, Vercauteren J, et al. The global spread of HIV-1 subtype B epidemic. Infect Genet Evol. 2016;46:169-179.Abstract
Human immunodeficiency virus type 1 (HIV-1) was discovered in the early 1980s when the virus had already established a pandemic. For at least three decades the epidemic in the Western World has been dominated by subtype B infections, as part of a sub-epidemic that traveled from Africa through Haiti to United States. However, the pattern of the subsequent spread still remains poorly understood. Here we analyze a large dataset of globally representative HIV-1 subtype B strains to map their spread around the world over the last 50years and describe significant spread patterns. We show that subtype B travelled from North America to Western Europe in different occasions, while Central/Eastern Europe remained isolated for the most part of the early epidemic. Looking with more detail in European countries we see that the United Kingdom, France and Switzerland exchanged viral isolates with non-European countries than with European ones. The observed pattern is likely to mirror geopolitical landmarks in the post-World War II era, namely the rise and the fall of the Iron Curtain and the European colonialism. In conclusion, HIV-1 spread through specific migration routes which are consistent with geopolitical factors that affected human activities during the last 50years, such as migration, tourism and trade. Our findings support the argument that epidemic control policies should be global and incorporate political and socioeconomic factors.
Vasylyeva TI, Friedman SR, Paraskevis D, Magiorkinis G. Integrating molecular epidemiology and social network analysis to study infectious diseases: Towards a socio-molecular era for public health. Infect Genet Evol. 2016;46:248-255.Abstract
The number of public health applications for molecular epidemiology and social network analysis has increased rapidly since the improvement in computational capacities and the development of new sequencing techniques. Currently, molecular epidemiology methods are used in a variety of settings: from infectious disease surveillance systems to the description of disease transmission pathways. The latter are of great epidemiological importance as they let us describe how a virus spreads in a community, make predictions for the further epidemic developments, and plan preventive interventions. Social network methods are used to understand how infections spread through communities and what the risk factors for this are, as well as in improved contact tracing and message-dissemination interventions. Research is needed on how to combine molecular and social network data as both include essential, but not fully sufficient information on infection transmission pathways. The main differences between the two data sources are that, firstly, social network data include uninfected individuals unlike the molecular data sampled only from infected network members. Thus, social network data include more detailed picture of a network and can improve inferences made from molecular data. Secondly, network data refer to the current state and interactions within the social network, while molecular data refer to the time points when transmissions happened, which might have happened years before the sampling date. As of today, there have been attempts to combine and compare the data obtained from the two sources. Even though there is no consensus on whether and how social and genetic data complement each other, this research might significantly improve our understanding of how viruses spread through communities.
Hofstra ML, Sauvageot N, Albert J, Alexiev I, Garcia F, Struck D, Van de Vijver DAMC, Åsjö B, Beshkov D, Coughlan S, et al. Transmission of HIV Drug Resistance and the Predicted Effect on Current First-line Regimens in Europe. Clin Infect Dis. 2016;62(5):655-663.Abstract
BACKGROUND: Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, these baseline resistance data enable transmitted drug resistance (TDR) to be surveyed for public health purposes. The SPREAD program systematically collects data to gain insight into TDR occurring in Europe since 2001. METHODS: Demographic, clinical, and virological data from 4140 antiretroviral-naive human immunodeficiency virus (HIV)-infected individuals from 26 countries who were newly diagnosed between 2008 and 2010 were analyzed. Evidence of TDR was defined using the WHO list for surveillance of drug resistance mutations. Prevalence of TDR was assessed over time by comparing the results to SPREAD data from 2002 to 2007. Baseline susceptibility to antiretroviral drugs was predicted using the Stanford HIVdb program version 7.0. RESULTS: The overall prevalence of TDR did not change significantly over time and was 8.3% (95% confidence interval, 7.2%-9.5%) in 2008-2010. The most frequent indicators of TDR were nucleoside reverse transcriptase inhibitor (NRTI) mutations (4.5%), followed by nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations (2.9%) and protease inhibitor mutations (2.0%). Baseline mutations were most predictive of reduced susceptibility to initial NNRTI-based regimens: 4.5% and 6.5% of patient isolates were predicted to have resistance to regimens containing efavirenz or rilpivirine, respectively, independent of current NRTI backbones. CONCLUSIONS: Although TDR was highest for NRTIs, the impact of baseline drug resistance patterns on susceptibility was largest for NNRTIs. The prevalence of TDR assessed by epidemiological surveys does not clearly indicate to what degree susceptibility to different drug classes is affected.
Foley BT, Leitner T, Paraskevis D, Peeters M. Primate immunodeficiency virus classification and nomenclature: Review. Infect Genet Evol. 2016;46:150-158.Abstract
The International Committee for the Taxonomy and Nomenclature of Viruses does not rule on virus classifications below the species level. The definition of species for viruses cannot be clearly defined for all types of viruses. The complex and interesting epidemiology of Human Immunodeficiency Viruses demands a detailed and informative nomenclature system, while at the same time it presents challenges such that many of the rules need to be flexibly applied or modified over time. This review outlines the nomenclature system for primate lentiviruses and provides an update on new findings since the last review was written in 2000.
Nikolopoulos GK, Pavlitina E, Muth SQ, Schneider J, Psichogiou M, Williams LD, Paraskevis D, Sypsa V, Magiorkinis G, Smyrnov P, et al. A network intervention that locates and intervenes with recently HIV-infected persons: The Transmission Reduction Intervention Project (TRIP). Sci Rep. 2016;6:38100.Abstract
Early treatment, soon after infection, reduces HIV transmissions and benefits patients. The Transmission Reduction Intervention Project (TRIP) evaluated a network intervention to detect individuals recently infected (in the past 6 months). TRIP was conducted in Greece (2013-2015) and focused on drug injector networks. Based on HIV status, testing history, and the results of an assay to detect recent infections, TRIP classified drug injector "Seeds" into groups: Recent Seeds (RS), and Control Seeds with Long-term HIV infection (LCS). The network members of RS and LCS were traced for two steps. The analysis included 23 RS, 171 network members of the RS, 19 LCS, and 65 network members of the LCS. The per-seed number of recents detected in the network of RS was 5 times the number in the network of LCS (Ratio RS vs. LCS: 5.23; 95% Confidence Interval (CI): 1.54-27.61). The proportion of recents among HIV positives in the network of RS (27%) was approximately 3 times (Ratio RS vs. LCS: 3.30; 95% CI: 1.04-10.43) that in the network of LCS (8%). Strategic network tracing that starts with recently infected persons could support public health efforts to find and treat people early in their HIV infection.
Paraskevis D, Ayouba A, Peeters M. Editorial. Infect Genet Evol. 2016;46:149.
Vasylyeva TI, Friedman SR, Lourenco J, Gupta S, Hatzakis A, Pybus OG, Katzourakis A, Smyrnov P, Karamitros T, Paraskevis D, et al. Reducing HIV infection in people who inject drugs is impossible without targeting recently-infected subjects. AIDS. 2016;30(18):2885-2890.Abstract
OBJECTIVE: Although our understanding of viral transmission among people who inject drugs (PWID) has improved, we still know little about when and how many times each injector transmits HIV throughout the duration of infection. We describe HIV dynamics in PWID to evaluate which preventive strategies can be efficient. DESIGN: Due to the notably scarce interventions, HIV-1 spread explosively in Russia and Ukraine in 1990s. By studying this epidemic between 1995 and 2005, we characterized naturally occurring transmission dynamics of HIV among PWID. METHOD: We combined publicly available HIV pol and env sequences with prevalence estimates from Russia and Ukraine under an evolutionary epidemiology framework to characterize HIV transmissibility between PWID. We then constructed compartmental models to simulate HIV spread among PWID. RESULTS: In the absence of interventions, each injector transmits on average to 10 others. Half of the transmissions take place within 1 month after primary infection, suggesting that the epidemic will expand even after blocking all the post-first month transmissions. Primary prevention can realistically target the first month of infection, and we show that it is very efficient to control the spread of HIV-1 in PWID. Treating acutely infected on top of primary prevention is notably effective. CONCLUSION: As a large proportion of transmissions among PWID occur within 1 month after infection, reducing and delaying transmissions through scale-up of harm reduction programmes should always form the backbone of HIV control strategies in PWID. Growing PWID populations in the developing world, where primary prevention is scarce, constitutes a public health time bomb.