Valanti EK, Dalakoura-Karagkouni K, Siasos G, Kardassis D, Eliopoulos AG, Sanoudou D.
Advances in biological therapies for dyslipidemias and atherosclerosis. MetabolismMetabolismMetabolism. 2021;116:154461.
AbstractAtherosclerosis is a multifactorial disease influenced by genetics, lifestyle and environmental factors. Despite therapeutic advances that reduce the risk of cardiovascular events, atherosclerosis-related diseases remain the leading cause of mortality worldwide. Precise targeting of genes involved in lipoprotein metabolism is an emerging approach for atherosclerosis prevention and treatment. This article focuses on the latest developments, clinical potential and current challenges of monoclonal antibodies, vaccines and genome/transcriptome modification strategies, including antisense oligonucleotides, genome/base editing and gene therapy. Multiple lipid lowering biological therapies have already been approved by the FDA with impressive results to date, while many more promising targets are being pursued in clinical trials or pre-clinical animal models.
Sousonis V, Sfakianaki T, Ntalianis A, Nanas I, Kontogiannis C, Aravantinos D, Kapelios C, Katsaros L, Nana M, Sampaziotis D, et al. Intracoronary Administration of Allogeneic Cardiosphere-Derived Cells Immediately Prior to Reperfusion in Pigs With Acute Myocardial Infarction Reduces Infarct Size and Attenuates Adverse Cardiac Remodeling. J Cardiovasc Pharmacol TherJ Cardiovasc Pharmacol TherJ Cardiovasc Pharmacol Ther. 2021;26:88-99.
AbstractBACKGROUND: Allogeneic cardiosphere-derived cells (CDCs) exert cardioprotective effects when administered intracoronarily after reperfusion in animal models of acute myocardial infarction (AMI). The "no-reflow" phenomenon develops rapidly post-reperfusion and may undermine the efficacy of cell therapy, due to poor cell delivery in areas of microvascular obstruction (MVO). We hypothesized that CDC-induced cardioprotection would be enhanced by cell administration prior to reperfusion, when microvasculature is still relatively intact, to facilitate widespread cell delivery within the ischemic area. METHODS AND RESULTS: We studied 81 farm pigs; 55 completed the specified protocols. A dose-optimization study in infarcted pigs demonstrated that the doses of 5 million and 10 million CDCs are the maximum safe doses that can be administered intracoronarily at 5 minutes prior to and at 5 minutes post-reperfusion, respectively, without aggravating MVO. Quantification of acute cell retention by polymerase chain reaction demonstrated that cell delivery prior to reperfusion resulted in higher cardiac cell retention compared to delivery post-reperfusion. We then performed a randomized, placebo-controlled study to assess the long-term efficacy of intracoronary infusion of 5 million allogeneic CDCs, delivered at 5 minutes prior to reperfusion, in a porcine model of AMI. The CDC therapy resulted in decreased scar size, improved regional systolic function, and attenuation of adverse cardiac remodeling (manifested as preserved global systolic function, preserved end-systolic volume, and decreased interstitial fibrosis) compared to placebo at 30 days post-MI. CONCLUSIONS: Dose-optimized intracoronary infusion of allogeneic CDCs prior to reperfusion in a porcine model of AMI is feasible, safe and confers long-term benefits.
Haghighi K, Gardner G, Vafiadaki E, Kumar M, Green LC, Ma J, Crocker JS, Koch S, Arvanitis DA, Bidwell P, et al. Impaired Right Ventricular Calcium Cycling Is an Early Risk Factor in R14del-Phospholamban Arrhythmias. J Pers MedJ Pers MedJ Pers Med. 2021;11.
AbstractThe inherited mutation (R14del) in the calcium regulatory protein phospholamban (PLN) is linked to malignant ventricular arrhythmia with poor prognosis starting at adolescence. However, the underlying early mechanisms that may serve as prognostic factors remain elusive. This study generated humanized mice in which the endogenous gene was replaced with either human wild type or R14del-PLN and addressed the early molecular and cellular pathogenic mechanisms. R14del-PLN mice exhibited stress-induced impairment of atrioventricular conduction, and prolongation of both ventricular activation and repolarization times in association with ventricular tachyarrhythmia, originating from the right ventricle (RV). Most of these distinct electrocardiographic features were remarkably similar to those in R14del-PLN patients. Studies in isolated cardiomyocytes revealed RV-specific calcium defects, including prolonged action potential duration, depressed calcium kinetics and contractile parameters, and elevated diastolic Ca-levels. Ca-sparks were also higher although SR Ca-load was reduced. Accordingly, stress conditions induced after contractions, and inclusion of the CaMKII inhibitor KN93 reversed this proarrhythmic parameter. Compensatory responses included altered expression of key genes associated with Ca-cycling. These data suggest that R14del-PLN cardiomyopathy originates with RV-specific impairment of Ca-cycling and point to the urgent need to improve risk stratification in asymptomatic carriers to prevent fatal arrhythmias and delay cardiomyopathy onset.
Gkouskou K, Vasilogiannakopoulou T, Andreakos E, Davanos N, Gazouli M, Sanoudou D, Eliopoulos AG.
COVID-19 enters the expanding network of apolipoprotein E4-related pathologies. Redox BiolRedox BiolRedox Biol. 2021;41:101938.
AbstractCOVID-19 incidence and case fatality rates (CFR) differ among ethnicities, stimulating efforts to pinpoint genetic factors that could explain these phenomena. In this regard, the multiallelic apolipoprotein E (APOE) gene has recently been interrogated in the UK biobank cohort, demonstrating associations of the APOE epsilon4/epsilon4 genotype with COVID-19 severity and mortality. The frequency of the epsilon4 allele and thus the distribution of APOE epsilon4/epsilon4 genotype may differ among populations. We have assessed APOE genotypes in 1638 Greek individuals, based on haplotypes derived from SNP rs7412 and rs429358 and found reduced frequency of epsilon4/epsilon4 compared to the British cohort. Herein we discuss this finding in relation to CFR and hypothesize on the potential mechanisms linking APOE epsilon4/epsilon4 to severe COVID-19. We postulate that the metabolic deregulation ensued by APOE4, manifested by elevated cholesterol and oxidized lipoprotein levels, may be central to heightened pneumocyte susceptibility to infection and to exaggerated lung inflammation associated with the epsilon4/epsilon4 genotype. We also discuss putative dietary and pharmacological approaches for the prevention and management of COVID-19 in APOE epsilon4/epsilon4 individuals.
Gkolfinopoulou C, Soukou F, Dafnis I, Kellici TF, Sanoudou D, Mavromoustakos T, Stratikos E, Chroni A.
Structure-function analysis of naturally occurring apolipoprotein A-I L144R, A164S and L178P mutants provides insight on their role on HDL levels and cardiovascular risk. Cell Mol Life SciCell Mol Life SciCell Mol Life Sci. 2021;78:1523-1544.
AbstractNaturally occurring point mutations in apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), may affect plasma HDL-cholesterol levels and cardiovascular risk. Here, we evaluated the effect of human apoA-I mutations L144R (associated with low HDL-cholesterol), L178P (associated with low HDL-cholesterol and increased cardiovascular risk) and A164S (associated with increased cardiovascular risk and mortality without low HDL-cholesterol) on the structural integrity and functions of lipid-free and lipoprotein-associated apoA-I in an effort to explain the phenotypes of subjects carrying these mutations. All three mutants, in lipid-free form, presented structural and thermodynamic aberrations, with apoA-I[L178P] presenting the greatest thermodynamic destabilization. Additionally, apoA-I[L178P] displayed reduced ABCA1-mediated cholesterol efflux capacity. When in reconstituted HDL (rHDL), apoA-I[L144R] and apoA-I[L178P] were more thermodynamically destabilized compared to wild-type apoA-I, both displayed reduced SR-BI-mediated cholesterol efflux capacity and apoA-I[L144R] showed severe LCAT activation defect. ApoA-I[A164S] was thermodynamically unaffected when in rHDL, but exhibited a series of functional defects. Specifically, it had reduced ABCG1-mediated cholesterol and 7-ketocholesterol efflux capacity, failed to reduce ROS formation in endothelial cells and had reduced capacity to induce endothelial cell migration. Mechanistically, the latter was due to decreased capacity of rHDL-apoA-I[A164S] to activate Akt kinase possibly by interacting with endothelial LOX-1 receptor. The impaired capacity of rHDL-apoA-I[A164S] to preserve endothelial function may be related to the increased cardiovascular risk for this mutation. Overall, our structure-function analysis of L144R, A164S and L178P apoA-I mutants provides insights on how HDL-cholesterol levels and/or atheroprotective properties of apoA-I/HDL are impaired in carriers of these mutations.