The Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS): Beyond guidelines

Citation:

Charalabidis A, Sfouni M, Bergstrom C, Macheras P. The Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS): Beyond guidelines. INTERNATIONAL JOURNAL OF PHARMACEUTICS. 2019;566:264-281.

Abstract:

The recent impact of the Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS) on relevant scientific advancements is discussed. The major advances associated with the BCS concern the extensive work on dissolution of poorly absorbed BCS class II drugs in nutritional liquids (e.g. milk, peanut oil) and biorelevant media for the accurate prediction of the rate and the extent of oral absorption. The use of physiologically based pharmacokinetic (PBPK) modeling as predictive tool for bioavailability is also presented. Since recent dissolution studies demonstrate that the two mechanisms (diffusion- and reaction-limited dissolution) take place simultaneously, the neglected reaction-limited dissolution models are discussed, regarding the biopharmaceutical classification of drugs. Solubility- and dissolution-enhancing formulation strategies based on the supersaturation principle to enhance the extent of drug absorption, along with the applications of the BDDCS to the understanding of disposition phenomena are reviewed. Finally, recent classification systems relevant either to the BCS or the BDDCS are presented. These include: i) a model independent approach based on %metabolism and the fulfilment (or not) of the current regulatory dissolution criteria, ii) the so called AB Gamma system, a continuous version of the BCS, and iii) the so-called Extended Clearance Classification System (ECCS). ECCS uses clearance concepts (physicochemical properties and membrane permeability) to classify compounds and differentiates from BDDCS by bypassing the measure of solubility (based on the assumption that since it inter-correlates with lipophilicity, it is not directly relevant to clearance mechanisms or elimination).