Abstract:
Mitochondrial dysfunction is a shared hallmark of neurodegenerative disorders, including Alzheimer's disease (AD) and tauopathies among others. Pathological alterations of the microtubule-associated protein Tau can disrupt mitochondrial dynamics, transport, and function, ultimately leading to neuronal toxicity and synaptic deficits. Understanding these processes is crucial for developing therapeutic interventions. The nematode Caenorhabditis elegans serves as a powerful model to study mitochondrial morphology and Tau-induced neurotoxicity due to its well-characterized nervous system and genetic tractability. Here, we describe a robust methodology for assessing mitochondrial morphology, Tau aggregation, and neuronal integrity in a nematode model of tauopathy. By combining confocal laser scanning microscopy and motility assays, we provide a comprehensive framework for investigating mitochondrial deficits. This approach offers valuable insights into the interplay between Tau pathology and mitochondrial dysfunction, thereby advancing our understanding of neurodegenerative mechanisms and potential therapeutic targets.
Publisher's Version