Publications by Year: 2013

2013
Ali T, Kokotos G, Magrioti V, Bone RN, Mobley JA, Hancock W, Ramanadham S. Characterization of FKGK18 as Inhibitor of Group VIA Ca2+-Independent Phospholipase A2: Candidate Drug for Preventing Beta-Cell Apoptosis and Diabetes. PLoS ONE. 2013;8:e71748.Abstract
Ongoing studies suggest an important role for iPLA2β in a multitude of biological processes and it has been implicated in neurodegenerative, skeletal and vascular smooth muscle disorders, bone formation, and cardiac arrhythmias. Thus, identifying an iPLA2β inhibitor that can be reliably and safely used in vivo is warranted. Currently, the mechanism-based inhibitor bromoenol lactone (BEL) is the most widely used to discern the role of iPLA2β in biological processes. While BEL is recognized as a more potent inhibitor of iPLA2 than of cPLA2 or sPLA2, leading to its designation as a “specific” inhibitor of iPLA2, it has been shown to also inhibit non-PLA2 enzymes. A potential complication of its use is that while the S and enantiomers of BEL exhibit preference for cytosol-associated iPLA2β and membrane-associated iPLA2γ, respectively, the selectivity is only 10-fold for both. In addition, BEL is unstable in solution, promotes irreversible inhibition, and may be cytotoxic, making BEL not amenable for in vivo use. Recently, a fluoroketone (FK)-based compound (FKGK18) was described as a potent inhibitor of iPLA2β. Here we characterized its inhibitory profile in beta-cells and find that FKGK18: (a) inhibits iPLA2β with a greater potency (100-fold) than iPLA2γ, (b) inhibition of iPLA2β is reversible, (c) is an ineffective inhibitor of α-chymotrypsin, and (d) inhibits previously described outcomes of iPLA2β activation including (i) glucose-stimulated insulin secretion, (ii) arachidonic acid hydrolysis; as reflected by PGE2 release from human islets, (iii) ER stress-induced neutral sphingomyelinase 2 expression, and (iv) ER stress-induced beta-cell apoptosis. These findings suggest that FKGK18 is similar to BEL in its ability to inhibit iPLA2β. Because, in contrast to BEL, it is reversible and not a non-specific inhibitor of proteases, it is suggested that FKGK18 is more ideal for ex vivo and in vivo assessments of iPLA2β role in biological functions.
Barbayianni E, Magrioti V, Moutevelis-Minakakis P, Kokotos G. Autotaxin inhibitors: A patent review. Expert Opinion on Therapeutic Patents. 2013;23:1123-1132.Abstract
Introduction: Autotaxin (ATX) is a lysophospholipase D enzyme that hydrolyzes lysophosphatidylcholine to lysophosphatidic acid (LPA) and choline. LPA is a bioactive lipid mediator that activates several transduction pathways, and is involved in migration, proliferation and survival of various cells. Thus, ATX is an attractive medicinal target. Areas covered: The aim of this review is to summarize ATX inhibitors, reported in patents from 2006 up to now, describing their discovery and biological evaluation. Expert opinion: ATX has been implicated in various pathological conditions, such as cancer, chronic inflammation, neuropathic pain, fibrotic diseases, etc. Although there is an intensive effort on the discovery of potent and selective ATX inhibitors in order to identify novel medicinal agents, up to now, no ATX inhibitor has reached clinical trials. However, the use of ATX inhibitors seems an attractive strategy for the development of novel medicinal agents, for example anticancer therapeutics.
Magrioti V, Kokotos G. Phospholipase A2 inhibitors for the treatment of inflammatory diseases: A patent review (2010-present). Expert Opinion on Therapeutic Patents. 2013;23:333-344.Abstract
Introduction: Phospholipases A2 have been implicated in various pathological conditions, such as rheumatoid arthritis, cardiovascular diseases, neurological disorders and cancer. The scientific community focuses on the search of potent and selective PLA2 inhibitors of each PLA2 class in order to identify novel medicinal agents. At present, only one lipoprotein-associated PLA2 (LpPLA2) inhibitor has reached Phase III clinical trials for the treatment of atherosclerosis. Areas covered: This review article focuses on the role of the most important PLA2s in inflammatory diseases and other severe pathological conditions presented in patent literature from June 2009 to September 2012. Expert opinion: Even though the role of each PLA2 in different diseases or pathological conditions is not yet definitively identified, the progress in the quest for potent and selective PLA2 inhibitors is exciting and the use of such inhibitors as medicinal agent looks now more promising than ever.
Magrioti V, Nikolaou A, Smyrniotou A, Shah I, Constantinou-Kokotou V, Dennis EA, Kokotos G. New potent and selective polyfluoroalkyl ketone inhibitors of GVIA calcium-independent phospholipase A2. Bioorganic and Medicinal Chemistry. 2013;21:5823-5829.Abstract
Group VIA calcium-independent phospholipase A2 (GVIA iPLA2) has recently emerged as an important pharmaceutical target. Selective and potent GVIA iPLA2 inhibitors can be used to study its role in various neurological disorders. In the current work, we explore the significance of the introduction of a substituent in previously reported potent GVIA iPLA2 inhibitors. 1,1,1,2,2-Pentafluoro-7-(4-methoxyphenyl)heptan-3-one (GK187) is the most potent and selective GVIA iPLA2 inhibitor ever reported with a XI(50) value of 0.0001, and with no significant inhibition against GIVA cPLA2 or GV sPLA2. We also compare the inhibition of two difluoromethyl ketones on GVIA iPLA2, GIVA cPLA2, and GV sPLA2.