Debris Management in the Area Affected by the 6 February 2023 Kahramanmaraş (Türkiye) Earthquakes: Highlighting Correct and Incorrect Responses for Effective Disaster Risk Reduction

Citation:

Mavroulis S, Mavroulis M, Vassilakis E, Argyropoulos I, Carydis P, Lekkas E. Debris Management in the Area Affected by the 6 February 2023 Kahramanmaraş (Türkiye) Earthquakes: Highlighting Correct and Incorrect Responses for Effective Disaster Risk Reduction. In: 76th Geological Congress of Türkiye, "Disaster Resilient Cities". Ankara, Türkiye; 2024.

Date Presented:

April 15-19

Abstract:

The largest part of earthquake debris is generated by the collapse during the strong ground motion and the urgent demolition of severely damaged structures during the emergency response and recovery. One of the first and most significant actions during the response and recovery phases is the management of the disaster debris. It constitutes one of the most important challenges for all involved in disaster management, as it poses significant hazards to both the environment and the public health in the affected area. The hazards are attributed to the occurrence of hazardous materials in collapse and demolition debris.Many such challenges and related hazards emerged in the southeastern Türkiye in early February 2023, when two major earthquakes of magnitude 7.8 and 7.5 struck a densely built-up area comprising 11 provinces with many large urban centers such as large cities and towns and extensive rural areas with countless villages.The synergy of the strong ground motion combined with the generation of extensive primary effects, such as coseismic surface ruptures, and the triggering of secondary effects, including liquefaction and landslides among others, resulted in tens of thousands of totally and partially collapsed buildings and large parts of residential areas being flattened. This fact led to a volume of debris considered as the largest since the 1994 Northridge earthquake, an earthquake debris volume difficult to manage even in organized countries.During post-event field surveys conducted by the authors in the affected area, several disposal sites set up in the most affected provinces were detected and checked for suitability. The field surveys comprised the deployment of Unmanned Aircraft Systems (UAS) in the disaster field and the use of satellite imagery back in the laboratory for assessing properties of sites and their surrounding areas as well as for monitoring implemented debris management activities. It is concluded that all sites had characteristics that did not allow them to be classified as safe sites for earthquake debris treatment and disposal. This is mainly attributed to their proximity to areas, where thousands of people live and work on a daily basis. As regards the environmental impact, these sites were operating within or close to surface water bodies. This situation reveals a rush for rapid debris removal and recovery resulting in serious omissions in the preparation of disaster management plans and concessions in their implementation. In this context, effective debris management measures are also proposed: (i) sorting of hazardous materials, (ii) appropriate treatment for chemicals and heavy metals, (iii) 3R (reuse, reduce, recycle) activities, (iv) systematic monitoring of environmental parameters and hazardous substances, (v) storage in sites with safe operation standards, (vi) strict application of international best practices and procedures for limiting asbestos adverse effects on public health.