Publications

2018
Kostikiadis IN, Methenitis S, Tsoukos A, Veligekas P, Terzis G, Bogdanis GC. The Effect of Short-Term Sport-Specific Strength and Conditioning Training on Physical Fitness of Well-Trained Mixed Martial Arts Athletes. J Sports Sci Med. 2018;17(3):348-358.Abstract
The purpose of the present study was to investigate the effect of a short-term, high-intensity, low-volume Mixed Martial Arts (MMA) specific strength and conditioning training program on performance in national level MMA athletes. Seventeen experienced fighters were divided into two groups: (A) Specific Training Group (STG; n = 10), which followed a specific strength and conditioning program designed according to the demands of MMA competition and (B) Regular Training Group (RTG; n = 7), in which participants followed a regular strength and conditioning program commonly used by MMA athletes. Before and after the four-week training period (3 days per week), body composition, aerobic fitness, strength, power and speed were evaluated. Significant improvements in estimated VO, average power during the 2000 m rowing, bench press, back squat and deadlift 1RM, SJ power, CMJ height power, medicine ball throw velocity, 10 m sprint and 2 m take down speed and fat-free mass were found only in the STG (3.7 to 22.2%; p < 0.05; Hedge's g = -0.42 - 4.1). No significant changes were found for the RTG (p = 0.225 to 0.811). Significant differences between the groups were found for almost all post-training assessments (p < 0.05; Hedge's g = 0.25 - 1.45) as well as for the percentage changes from pre to post training (p < 0.05; Hedge's g: 0.25 - 1.45). Significant relationships were found between percentage changes in fat-free mass, endurance capacity, muscle strength/power and speed (r: -0.475 to 0.758; p < 0.05). These results suggest that a high-intensity low-volume strength and conditioning training intervention designed according to the demands of MMA competition may result in significant performance improvements for well-trained fighters.
Tsoukos A, Veligekas P, Brown LE, Terzis G, Bogdanis GC. Delayed Effects of a Low-Volume, Power-Type Resistance Exercise Session on Explosive Performance. J Strength Cond Res. 2018;32(3):643-650.Abstract
Tsoukos, A, Veligekas, P, Brown, LE, Terzis, G, and Bogdanis, GC. Delayed effects of a low-volume, power-type resistance exercise session on explosive performance. J Strength Cond Res 32(3): 643-650, 2018-This study examined the delayed effects of a power-type training session on explosive performance. Seventeen well-trained male power and team sport athletes (age: 22.7 ± 5.5 years, height: 181 ± 8 cm, body mass: 80.7 ± 8.6 kg, body fat: 9.2 ± 1.7%, 1 repetition maximum (1RM) half-squat: 163 ± 29 kg) performed 4 sessions (2 experimental and 2 control) 1 week apart in a randomized and counterbalanced order. Explosive performance was assessed before, 24 and 48 hours after a low-volume, power-type training session (5 × 4 jump squats at 40% 1RM with 3 minutes rest), as well as before and after 24 and 48 hours of rest (control). Dependent variables were as follows: countermovement jump (CMJ), reactive strength index (RSI) during a drop jump, leg press maximum isometric force, and rate of force development (RFD) at 3 time windows: 0-100, 0-200, and 0-300 milliseconds. Analysis of variance revealed no changes in the control conditions. In contrast after training, CMJ was improved by 5.1 ± 1.0% and 3.0 ± 1.0% at 24 and 48 hours, respectively, compared with baseline. The RSI improved by 10.7 ± 2.1% only at 24 hours. The RFD increased at all time windows at 24 hours (range of improvement: 9.7 ± 3.4% to 18.3 ± 4.1%, p < 0.01). However, at 48 hours, improvement was only seen in RFD0-100 (9.8 ± 3.1%, p < 0.01). These findings suggest that a low-volume, power-type training session results in delayed enhancement of explosive muscle performance, which is greatest at 24 hours after the activity. Athletes are advised to perform power-type training 1 day before competition or a high-quality training session to improve their performances.
Methenitis S, Stasinaki A-N, Zaras N, Spengos K, Karandreas N, Terzis G. Intramuscular fiber conduction velocity and muscle fascicle length in human vastus lateralis. Appl Physiol Nutr Metab. 2018.Abstract
Muscle fascicle length and muscle fibre conduction velocity are thought to be important parameters for power performance. It might be expected that faster muscle fibre conduction velocities would compensate for longer fascicle lengths to increase the speed of action potential propagation along the elongated fibres. However, the relationship between muscle fascicle length and muscle fibre conduction velocity (MFCV) remains unknown. The aim of the present study was to explore the relationship between average vastus lateralis MFCV and average fascicle length. In seventeen moderately-trained healthy male physical education students (age 23.4 ± 3.1 years, body height 178 ± 5.5 cm, body mass 82.7 ± 6.9 kg, BMI 24.6 ± 1.5 kg∙m-2) resting MFCV was measured with intramuscular microelectrodes while muscle architecture was evaluated with ultrasonography. Fascicle length was highly correlated with total MFCV (r: 0.923, p = 0.000), maximum MFCV (r: 0.949, p = 0.000), and MFCV of the fastest (r: 0.709, p = 0.001), but not of the slowest fibres (r: 0.131, p = 0.616). No significant correlations were also found between vastus lateralis thickness or fascicle angle with any of MFCV parameters (r: 0.145 - 0.430; R2 < 0.130; p > 0.05). These data indicate that average MFCV is associated with average fascicle length in vastus lateralis muscle in different individuals. It seems that participants with longer fascicle lengths have also higher muscle fibre conduction velocities.
Methenitis S, Karandreas N, Terzis G. Reliability of resting intramuscular fiber conduction velocity evaluation. Scand J Med Sci Sports. 2018;28(1):48-56.Abstract
Characterization of the least number of muscle fibers analyzed for a quick and reliable, evaluation of intramuscular fiber conduction velocity (MFCV) is of importance for sport scientists. The aim of this study was to evaluate the reliability of vastus lateralis' intramuscular MFCV measuring either 25 or 50 different muscle fibers per participant, as well as to compare intramuscular MFCV measured in 25 (C ), 50 (C ), or 140 (C ) muscle fibers. Resting vastus lateralis' MFCV was measured in 21 young healthy males (age 22.1±2.4 years) using intramuscular microelectrodes in different days. Test-retest reliability of MFCV's parameters was calculated for C and C , while MFCV was compared among C , C , and C . Significant differences of MFCV parameters were observed between C condition and those of C and C . The differences in MFCV values between conditions C and C were non-significant. A close correlation was found for MFCV between C and C (r=0.884-0.988, P=.000). All reliability measures of MFCV measured with 50 fibers were high (eg, ICC=0.813-0.980, P=.000), in contrast to C (eg, ICC=0.023-0.580 P>.05). In conclusion, an average of 50 different fibers per subject is sufficient to provide a quick and reliable intramuscular evaluation of vastus lateralis MFCV.
Stavrinou PS, Bogdanis GC, Giannaki CD, Terzis G, Hadjicharalambous M. High-intensity Interval Training Frequency: Cardiometabolic Effects and Quality of Life. Int J Sports Med. 2018;39(3):210-217.Abstract
The effects of high intensity interval training (HIIT) frequency on cardiometabolic health and quality of life were examined in 35 healthy inactive adults (age: 31.7±2.6 yrs, VOpeak: 32.7±7.4 ml·: kg ·: min). Participants were randomly assigned to a control (CON) and two training groups, which performed 10×60-s cycling at ~83% of peak power, two (HIIT-2) or three times per week (HIIT-3) for eight weeks. Compared with CON, both training regimes resulted in similar improvements in VOpeak (HIIT-2: 10.8%, p=0.048, HIIT-3: 13.6%, p=0.017), waist circumference (HIIT-2: -1.4 cm, p=0.048, HIIT-3: -2.4 cm, p=0.028), thigh cross-sectional area (HIIT-2: 11.4 cm, p=0.001, HIIT-3: 9.3 cm, p=0.001) and the physical health component of quality of life (HIIT-2: 8.4, p=0.001, HIIT-3: 12.2, p=0.001). However, HIIT-3 conferred additional health-related benefits by reducing total body and trunk fat percentage (p<0.05, compared with CON), total cholesterol and low-density lipoprotein-cholesterol (p<0.02, compared with CON) and by improving the mental component of quality of life (p=0.045, compared with CON). In conclusion, performing HIIT only twice per week is effective in promoting cardiometabolic health-related adaptations and quality of life in inactive adults. However, higher HIIT frequency is required for an effect on fat deposits, cholesterol and mental component of well-being.
Bogdanis GC, Tsoukos A, Methenitis SK, Selima E, Veligekas P, Terzis G. Effects of low volume isometric leg press complex training at two knee angles on force-angle relationship and rate of force development. Eur J Sport Sci. 2018:1-9.Abstract
This study compared knee angle-specific neuromuscular adaptations after two low-volume isometric leg press complex training programmes performed at different muscle lengths. Fifteen young males were divided into two groups and trained three times per week for 6 weeks. One group (n = 8) performed 5-7 sets of 3 s maximum isometric leg press exercise, with 4 min recovery, with knee angle at 85° ± 2° (longer muscle-tendon unit length; L-MTU). The other group (n = 7) performed the same isometric training at a knee angle of 145° ± 2° (180°= full extension; shorter muscle-tendon unit length; S-MTU). During the recovery after each set of isometric exercise, participants performed two CMJ every minute, as a form of complex training. Maximum isometric force (MIF) and rate of force development (RFD) were measured over a wide range of knee angles. Countermovement jump (CMJ) performance and maximum half-squat strength (1RM) were also assessed. Training at S-MTU induced a large increase of MIF (22-58%, p < 0.02) and RFD (18-43%, p < 0.05 to 0.001) at knee angles close to the training angle and resulted in a 14° ± 9° shift of the force vs. knee joint angle relationship towards extended knee joint angles (p = 0.001). In contrast, training at L-MTU, resulted in a moderate and similar (≈12.3%, p = 0.028) improvement of force at all knee angles. CMJ performance and 1RM were equally increased in both groups after training by 10.4% ± 8.3% and 7.8% ± 4.7% (p < 0.001), respectively. Low-volume maximal isometric leg-press complex training at S-MTU causes angle-specific adaptations in isometric strength and RFD, while dynamic muscle performance is independent of muscle length during training.
Bogdanis GC, Tsoukos A, Brown LE, Selima E, Veligekas P, Spengos K, Terzis G. Muscle Fiber and Performance Changes after Fast Eccentric Complex Training. Med Sci Sports Exerc. 2018;50(4):729-738.Abstract
INTRODUCTION: The purpose of this study was to examine the effects of a short-term fast eccentric and ballistic complex training program on muscle power, rate of force development (RFD), muscle fiber composition, and cross-sectional area (CSA). METHODS: Sixteen male physical education students were randomly assigned to either a training group (TG, n = 8) or a control group (n = 8). The TG followed a 6-wk low volume training program, including fast eccentric squat training with an individually optimized load of 74% ± 7% of maximal half-squat strength (1RM) twice per week and a ballistic training session with loaded (30% 1RM) and unloaded jump squats, once per week, all combined with unloaded plyometric jumps. RESULTS: Half squat 1RM was increased in the TG from 1.87 ± 0.28 to 2.14 ± 0.31 kg per kilogram body mass (14.4% ± 9.3%, P = 0.01). The percentage of types I, IIA, and IIX fibers were similar in the two groups at pretesting and did not change after the intervention period (P = 0.53-0.89). Muscle fiber CSA increased in all fiber types by 8.3% to 11.6% (P = 0.02 to 0.001) in TG only. Countermovement jump height and peak power measured at five different external loads (0%-65% of 1RM) only increased in the TG by approximately 20% to 36% (P < 0.01) and approximately 16% to 22% (P < 0.01), respectively. Peak ground reaction force during jump squats remained unchanged in both groups, whereas RFD increased in the TG only (40%-107%, P = 0.001). CONCLUSIONS: A combination of low-volume fast eccentric and ballistic jump squat training with plyometric jumps in a strength-power potentiation complex format, induced substantial increases in peak leg muscle power, RFD, and maximal strength, accompanied by gains in CSA of all muscle fiber types, without a reduction in fast twitch fiber composition.
2017
Tsitkanou S, Spengos K, Stasinaki A-N, Zaras N, Bogdanis G, Papadimas G, Terzis G. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy. Scand J Med Sci Sports. 2017;27(11):1317-1327.Abstract
Aim of the study was to investigate whether high-intensity interval cycling performed immediately after resistance training would inhibit muscle strength increase and hypertrophy expected from resistance training per se. Twenty-two young men were assigned into either resistance training (RE; N = 11) or resistance training plus high-intensity interval cycling (REC; N = 11). Lower body muscle strength and rate of force development (RFD), quadriceps cross-sectional area (CSA) and vastus lateralis muscle architecture, muscle fiber type composition and capillarization, and estimated aerobic capacity were evaluated before and after 8 weeks of training (2 times per week). Muscle strength and quadriceps CSA were significantly and similarly increased after both interventions. Fiber CSA increased significantly and similarly after both RE (type I: 13.6 ± 3.7%, type IIA: 17.6 ± 4.4%, type IIX: 23.2 ± 5.7%, P < 0.05) and REC (type I: 10.0 ± 2.7%, type IIA: 14.8 ± 4.3% type IIX: 20.8 ± 6.0%, P < 0.05). In contrast, RFD decreased and fascicle angle increased (P < 0.05) only after REC. Capillary density and estimated aerobic capacity increased (P < 0.05) only after REC. These results suggest that high-intensity interval cycling performed after heavy-resistance exercise may not inhibit resistance exercise-induced muscle strength/hypertrophy after 2 months of training, while it prompts aerobic capacity and muscle capillarization. The addition of high-intensity cycling after heavy-resistance exercise may decrease RFD partly due to muscle architectural changes.
Karampatsos GP, Korfiatis PG, Zaras ND, Georgiadis GV, Terzis GD. Acute Effect of Countermovement Jumping on Throwing Performance in Track and Field Athletes During Competition. J Strength Cond Res. 2017;31(2):359-364.Abstract
Karampatsos, GP, Korfiatis, PG, Zaras, ND, Georgiadis, GV, and Terzis, GD. Acute effect of countermovement jumping on throwing performance in track and field athletes during competition. J Strength Cond Res 32(1): 359-364, 2017-The purpose of the study was to investigate whether performing 3 consecutive countermovement jumps (CMJs) just before an attempt enhances performance in track and field throwers during competition. Twelve shot putters, 8 hammer throwers, 9 discus throwers, and 3 javelin throwers of both sexes participated in the study. They performed 3 maximal CMJs 85 ± 12 seconds before the second, fourth, and sixth attempt during 3 different official competitions of national level. Maximal strength (1 repetition maximum [1RM]) in squat and bench press was measured 1 week after the competition. Mean throwing performance was significantly higher after the CMJs intervention (2.66 ± 4.3%, range of increase 0.02-18.98%, p = 0.0001). Similarly, maximum throwing performance was significantly higher after the CMJs (2.76 ± 3.29%, range of increase 0.09-13.93%, p = 0.0009). All but 2 athletes increased their best performance after the CMJs. The percentage increase in performance was similar between sexes (male athletes 2.56 ± 3.01%; female athletes 3.06 ± 3.76%, p = 0.677), but it was higher for the "lighter throws" (discus and javelin throw: 4.66 ± 4.11%) compared with the "heavier throws" (shot and hammer throw: 1.62 ± 2.04%, p = 0.008). The percentage increase in performance was not significantly correlated with 1RM squat or bench press, anthropometric characteristics, and personal best performance. These results suggest that performing 3 CMJs approximately 1 minute before an attempt may increase track and field throwing performance during competition.
Methenitis S, Spengos K, Zaras N, Stasinaki A-N, Papadimas G, Karampatsos G, Arnaoutis G, Terzis G. Fiber Type Composition And Rate Of Force Development In Endurance And Resistance Trained Individuals. J Strength Cond Res. 2017.Abstract
The purpose of the study was to investigate the relationship between muscle fiber composition and the rate of force development (RFD) in well-trained individuals with different training background. Thirty-eight young males with different training background participated: 9 endurance runners, 10 power-trained, 9 strength-trained, and 10 sedentary. They performed maximal isometric leg press for the measurement of RFD. Body composition (dual x-ray absorptiometry) and vastus lateralis fiber type composition was also evaluated. When all participants were examined as a group, moderate correlations were found between the percent of type II muscle fibers and RFD between 100-600ms (r: 0.321 - 0.497, p<0.05). The correlation coefficients were higher for the cross-sectional area (CSA) and the %CSA of type II and IIx muscle fibers (r: 0.599 - 0.847, p<0.001). For the power group, RFD up to 250ms was highly correlated with % type IIx muscle fibers and type IIx fiber CSA (r: 0.670 - 0.826, p<0.05), as well as with %CSA of type IIx fibers (r: 0.714 - 0.975, p<0.05). Significant correlations were found between the relative RFD (·kg lower extremities lean mass) and CSA-%CSA of type II and IIx fibers for the power group (r: 0.676 - 0.903, p<0.05). No significant correlations were found between muscle morphology and RFD for the other groups. In conclusion, the present data suggest that there is a strong link between the type IIx muscle fibers and early RFD and relative RFD in power-trained participants. Type II fibers seem to be moderately linked with RFD in non-power-trained individuals.
Draganidis D, Chondrogianni N, Chatzinikolaou A, Terzis G, Karagounis LG, Sovatzidis A, Avloniti A, Lefaki M, Protopapa M, Deli CK, et al. Protein ingestion preserves proteasome activity during intense aseptic inflammation and facilitates skeletal muscle recovery in humans. Br J Nutr. 2017;118(3):189-200.Abstract
The ubiquitin-proteasome system (UPS) is the main cellular proteolytic system responsible for the degradation of normal and abnormal (e.g. oxidised) proteins. Under catabolic conditions characterised by chronic inflammation, the UPS is activated resulting in proteolysis, muscle wasting and impaired muscle function. Milk proteins provide sulphur-containing amino acid and have been proposed to affect muscle inflammation. However, the response of the UPS to aseptic inflammation and protein supplementation is largely unknown. The aim of this study was to investigate how milk protein supplementation affects UPS activity and skeletal muscle function under conditions of aseptic injury induced by intense, eccentric exercise. In a double-blind, cross-over, repeated measures design, eleven men received either placebo (PLA) or milk protein concentrate (PRO, 4×20 g on exercise day and 20 g/d for the following 8 days), following an acute bout of eccentric exercise (twenty sets of fifteen eccentric contractions at 30°/s) on an isokinetic dynamometer. In each trial, muscle biopsies were obtained from the vastus lateralis muscle at baseline, as well as at 2 and 8 d post exercise, whereas blood samples were collected before exercise and at 6 h, 1 d, 2 d and 8 d post exercise. Muscle strength and soreness were assessed before exercise, 6 h post exercise and then daily for 8 consecutive days. PRO preserved chymotrypsin-like activity and attenuated the decrease of strength, facilitating its recovery. PRO also prevented the increase of NF-κB phosphorylation and HSP70 expression throughout recovery. We conclude that milk PRO supplementation following exercise-induced muscle trauma preserves proteasome activity and attenuates strength decline during the pro-inflammatory phase.
Bogdanis GC, Tsoukos A, Kaloheri O, Terzis G, Veligekas P, Brown LE. Comparison between Unilateral and Bilateral Plyometric Training on Single and Double Leg Jumping Performance and Strength. J Strength Cond Res. 2017.Abstract
This study compared the effects of unilateral and bilateral plyometric training on single and double-leg jumping performance, maximal strength and rate of force development (RFD). Fifteen moderately trained subjects were randomly assigned to either a unilateral (U, n=7) or bilateral group (B, n=8). Both groups performed maximal effort plyometric leg exercises two times per week for 6 weeks. The B group performed all exercises with both legs, while the U group performed half the repetitions with each leg, so that total exercise volume was the same. Jumping performance was assessed by countermovement jumps (CMJ) and drop jumps (DJ), while maximal isometric leg press strength and RFD were measured before and after training for each leg separately and both legs together. CMJ improvement with both legs was not significantly different between U (12.1±7.2%) and B (11.0±5.5%) groups. However, the sum of right and left leg CMJ only improved in the U group (19.0±7.1%, p<0.001) and was unchanged in the B group (3.4±8.4%, p=0.80). Maximal isometric leg press force with both legs was increased similarly between groups (B: 20.1±6.5%, U: 19.9±6.2%). However, the sum of right and left leg maximal force increased more in U compared to B group (23.8±9.1% vs. 11.9±6.2%, p=0.009, respectively). Similarly, the sum of right and left leg RFD0-50 and RFD0-100 were improved only in the U group (34-36%, p<0.01). Unilateral plyometric training was more effective at increasing both single and double-leg jumping performance, isometric leg press maximal force and RFD when compared to bilateral training.
2016
Zaras ND, Stasinaki A-NE, Methenitis SK, Krase AA, Karampatsos GP, Georgiadis GV, Spengos KM, Terzis GD. Rate of Force Development, Muscle Architecture, and Performance in Young Competitive Track and Field Throwers. J Strength Cond Res. 2016;30(1):81-92.Abstract
The rate of force development (RFD) is an essential component for performance in explosive activities, although it has been proposed that muscle architectural characteristics might be linked with RFD and power performance. The purpose of the study was to investigate the relationship between RFD, muscle architecture, and performance in young track and field throwers. Twelve young track and field throwers completed 10 weeks of periodized training. Before (T1) and after (T2) training performance was evaluated in competitive track and field throws, commonly used shot put tests, isometric leg press RFD, 1 repetition maximum (1RM) strength as well as vastus lateralis architecture and body composition. Performance in competitive track and field throwing and the shot put test from the power position increased by 6.76 ± 4.31% (p < 0.001) and 3.58 ± 4.97% (p = 0.019), respectively. Rate of force development and 1RM strength also increased (p ≤ 0.05). Vastus lateralis thickness and fascicle length increased by 5.95 ± 7.13% (p = 0.012) and 13.41 ± 16.15% (p = 0.016), respectively. Significant correlations were found at T1 and T2, between performance in the shot put tests and both RFD and fascicle length (p ≤ 0.05). Close correlations were found between RFD, muscle thickness, and fascicle length (p ≤ 0.05). Significant correlations were found between the % changes in lean body mass and the % increases in RFD. When calculated together, the % increase in muscle thickness and RFD could predict the % increase in shot put throw test from the power position (p = 0.019). These results suggest that leg press RFD may predict performance in shot put tests that are commonly used by track and field throwers.
Botonis PG, Toubekis AG, Terzis GD, Geladas ND, Platanou TI. Performance Decrement and Skill Deterioration During a Water Polo Game are Linked With the Conditioning Level of the Athletes. J Strength Cond Res. 2016;30(4):1033-41.Abstract
The aim of the study was to examine whether physical and technical performance deterioration after a water polo game is related to the athletes' conditioning level. Blood lactate concentration was measured during a 5 × 200-m incremental swimming test in 10 male water polo athletes to calculate the velocities corresponding to 4.0, 5.0, and 10.0 mmol·L lactate concentration (V4, V5, and V10, respectively) and define their conditioning level. All athletes participated in 5 competitive water polo games. Before (Pre), at half time (Mid), and after (Post) the first 2 games, handgrip strength and repeated sprint ability (8 × 20-m) were measured. Pre and Post the next 2 games, ball throwing velocity, shooting accuracy, and 400-m swim were evaluated. Pre, Mid, and Post the last game, the eggbeater kick test was performed. Handgrip strength, repeated sprint ability, 400-m swim performance, and ball shooting accuracy decreased after the game (8.4 ± 6.2%, 6.3 ± 3.4%, 7.0 ± 4.1%, and 20.3 ± 23.4%, respectively, p ≤ 0.05). V4, V5, and V10 were not significantly correlated with changes in physical or technical performance after the game. Performance in 400-m swim correlated with V4 and V5 whereas changes in 400-m swim Pre-Post, correlated with changes in ball shooting accuracy and throwing velocity (r = 0.73 and r = 0.80, p ≤ 0.05). These data suggest that V4, V5, and V10 may not correlate with performance decline in water polo. Interestingly, the 400-m swim test is connected with the decline in repeated sprints, ball shooting accuracy, and throwing velocity after a water polo game in well-trained athletes.
Terzis G, Spengos K, Methenitis S, Aagaard P, Karandreas N, Bogdanis G. Early phase interference between low-intensity running and power training in moderately trained females. Eur J Appl Physiol. 2016;116(5):1063-73.Abstract
PURPOSE: The aim of the study was to investigate the effects of low-intensity running performed immediately after lower-body power-training sessions on power development. METHODS: Twenty young females participated in 6 weeks, 3/week, of either lower body power training (PT) or lower body power training followed by 30 min of low-intensity running (PET) eliciting 60-70 % of maximal heart rate. The following were measured before and after the training period: counter-movement jump, isometric leg press force and rate of force development (RFD), half squat 1-RM, vastus lateralis fiber type composition and cross sectional area, resting intramuscular fiber conduction velocity (MFCV), and heart rate during the modified Bruce treadmill test. RESULTS: Counter-movement jump height and peak power increased after PT (10.7 ± 6.2 and 12.9 ± 18.7 %, p < 0.05) but not after PET (3.4 ± 7.6 and 5.11 ± 10.94 %, p > 0.05). Maximum isometric force, RFD, and half squat 1-RM increased similarly in both groups. Muscle fiber type composition was not altered in either group. Muscle fiber cross sectional area increased only after PT (17.5 ± 17.4, 14.5 ± 10.4, 20.36 ± 11.3 %, in type I, IIA, and IIX fibers, respectively, p < 0.05). Likewise, mean MFCV increased with PT only (before: 4.53 ± 0.38 m s(-1), after: 5.09 ± 0.39 m s(-1), p = 0.027). Submaximal heart rate during the Bruce treadmill test remained unchanged after PT but decreased after PET. CONCLUSION: These results suggest that low-intensity running performed after lower-body power training impairs the exercise-induced adaptation in stretch-shortening cycle jumping performance (vertical jump height, peak power), during the first 6 weeks of training, which may be partially linked to inhibited muscle fiber hypertrophy and muscle fiber conduction velocity.
Methenitis SK, Zaras ND, Spengos KM, Stasinaki A-NE, Karampatsos GP, Georgiadis GV, Terzis GD. Role of Muscle Morphology in Jumping, Sprinting, and Throwing Performance in Participants With Different Power Training Duration Experience. J Strength Cond Res. 2016;30(3):807-17.Abstract
The aim of the study was to examine the correlation between muscle morphology and jumping, sprinting, and throwing performance in participants with different power training duration experience. Thirty-six power-trained young men were assigned to 3 groups according to the length of their power training: less experienced (<1 year), moderately experienced (1-3 years), and experienced (4-7 years). All participants performed countermovement and squat jumps, 60-m sprint, and shot throws twice. Lean body mass (LBM) was evaluated with dual-energy x-ray absorptiometry and thigh muscle cross-sectional area (CSA) with anthropometry. The vastus lateralis architecture and fiber type composition were evaluated with ultrasonography and muscle biopsies, respectively. When all subjects were considered as 1 group (n = 36), jumping performance was correlated with LBM, fascicle length, and type II fiber CSA; sprinting performance was correlated with estimated thigh muscle CSA alone; and shot throwing was correlated with LBM and type I, IIA fiber CSA. In the least experienced group, the LBM of the lower extremities was the most significant contributor for power performance, whereas in the moderately experienced group, the LBM, architectural properties, and type II fiber percentage CSA were the most significant contributors. For the experienced group, fascicle length and type II fiber percentage CSA were the most significant factors for power performance. These data suggest that jumping performance is linked with muscle morphology, regardless of strength or power training. The vastus lateralis muscle morphology could only partially explain throwing performance, whereas it cannot predict sprinting performance. Power performance in experienced participants rely more on the quality of the muscle tissue rather than the quantity.
Methenitis S, Terzis G, Zaras N, Stasinaki A-N, Karandreas N. Intramuscular fiber conduction velocity, isometric force and explosive performance. J Hum Kinet. 2016;51:93-101.Abstract
Conduction of electrical signals along the surface of muscle fibers is acknowledged as an essential neuromuscular component which is linked with muscle force production. However, it remains unclear whether muscle fiber conduction velocity (MFCV) is also linked with explosive performance. The aim of the present study was to investigate the relationship between vastus lateralis MFCV and countermovement jumping performance, the rate of force development and maximum isometric force. Fifteen moderately-trained young females performed countermovement jumps as well as an isometric leg press test in order to determine the rate of force development and maximum isometric force. Vastus lateralis MFCV was measured with intramuscular microelectrodes at rest on a different occasion. Maximum MFCV was significantly correlated with maximum isometric force (r = 0.66, p < 0.01), nevertheless even closer with the leg press rate of force development at 100 ms, 150 ms, 200 ms, and 250 ms (r = 0.85, r = 0.89, r = 0.91, r = 0.92, respectively, p < 0.01). Similarly, mean MFCV and type II MFCV were better correlated with the rate of force development than with maximum isometric leg press force. Lower, but significant correlations were found between mean MFCV and countermovement jump power (r = 0.65, p < 0.01). These data suggest that muscle fiber conduction velocity is better linked with the rate of force development than with isometric force, perhaps because conduction velocity is higher in the larger and fastest muscle fibers which are recognized to contribute to explosive actions.
Krase AA, Papadimas GK, Terzis GD. Functional capacity in a late-onset Pompe disease patient: Effect of enzyme replacement therapy and exercise training. Ann Indian Acad Neurol. 2016;19(3):423-4.
Tsoukos A, Bogdanis GC, Terzis G, Veligekas P. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability. J Strength Cond Res. 2016;30(8):2250-7.Abstract
Tsoukos, A, Bogdanis, GC, Terzis, G, and Veligekas, P. Acute improvement of vertical jump performance after isometric squats depends on knee angle and vertical jumping ability. J Strength Cond Res 30(8): 2250-2257, 2016-This study examined the acute effects of maximum isometric squats at 2 different knee angles (90 or 140°) on countermovement jump (CMJ) performance in power athletes. Fourteen national-level male track and field power athletes completed 3 main trials (2 experimental and 1 control) in a randomized and counterbalanced order 1 week apart. Countermovement jump performance was evaluated using a force-plate before and 15 seconds, 3, 6, 9, and 12 minutes after 3 sets of 3 seconds maximum isometric contractions with 1-minute rest in between, from a squat position with knee angle set at 90 or 140°. Countermovement jump performance was improved compared with baseline only in the 140° condition by 3.8 ± 1.2% on the 12th minute of recovery (p = 0.027), whereas there was no change in CMJ height in the 90° condition. In the control condition, there was a decrease in CMJ performance over time, reaching -3.6 ± 1.2% (p = 0.049) after 12 minutes of recovery. To determine the possible effects of baseline jump performance on subsequent CMJ performance, subjects were divided into 2 groups ("high jumpers" and "low jumpers"). The baseline CMJ values of "high jumpers" and "low jumpers" differed significantly (CMJ: 45.1 ± 2.2 vs. 37.1 ± 3.9 cm, respectively, p = 0.001). Countermovement jump was increased only in the "high jumpers" group by 5.4 ± 1.4% (p = 0.001) and 7.4 ± 1.2% (p = 0.001) at the knee angles of 90 and 140°, respectively. This improvement was larger at the 140° angle (p = 0.049). Knee angle during isometric squats and vertical jumping ability are important determinants of the acute CMJ performance increase observed after a conditioning activity.
Siasos G, Athanasiou D, Terzis G, Stasinaki A, Oikonomou E, Tsitkanou S, Kolokytha T, Spengos K, Papavassiliou AG, Tousoulis D. Acute effects of different types of aerobic exercise on endothelial function and arterial stiffness. Eur J Prev Cardiol. 2016;23(14):1565-72.Abstract
BACKGROUND: Chronic aerobic exercise training is associated with improved endothelial function and arterial stiffness and favourable long-term cardiovascular effects. DESIGN: We investigated the acute effects of continuous moderate intensity aerobic exercise (CAE) and high intensity interval aerobic exercise (hIAE) on endothelial function and arterial stiffness in healthy participants. METHODS: Twenty healthy men were recruited to this cross-over study. They participated in two exercise sessions: (a) CAE, volume at 50% of maximum aerobic work for 30 minutes; and (b) hIAE, interval maximum aerobic work for 30 minutes. Endothelial function was evaluated by flow-mediated dilation in the brachial artery. The carotid femoral pulse wave velocity and the femoral dorsalis pedis pulse wave velocity were measured as indices of central aortic and peripheral arterial stiffness. Measurements were carried out before and immediately after each exercise session. RESULTS: There was no statistically significant difference in the baseline measurements before CAE and hIAE with respect to flow-mediated dilation, the carotid femoral pulse wave velocity and the femoral dorsalis pedis pulse wave velocity (p = NS). Both CAE and hIAE significantly improved the flow-mediated dilation compared with baseline (p < 0.001). Similarly, the femoral dorsalis pedis pulse wave velocity was improved after CAE and hIAE (p < 0.005), whereas the carotid femoral pulse wave velocity was not significantly affected (p = NS). CONCLUSION: Both CAE and hIAE can favourably affect endothelial function, suggesting another cardioprotective effect of acute exercise. These types of aerobic exercise have a different impact on the central and peripheral arterial stiffness.
Methenitis S, Karandreas N, Spengos K, Zaras N, Stasinaki A-N, Terzis G. Muscle Fiber Conduction Velocity, Muscle Fiber Composition, and Power Performance. Med Sci Sports Exerc. 2016;48(9):1761-71.Abstract
PURPOSE: The aim of this study was to explore the relationship between muscle fiber conduction velocity (MFCV), fiber type composition, and power performance in participants with different training background. METHODS: Thirty-eight young males with different training background participated: sedentary (n = 10), endurance runners (n = 9), power trained (n = 10), and strength trained (n = 9). They performed maximal countermovement jumps (CMJ) and maximal isometric leg press for the measurement of the rate of force development (RFD). Resting vastus lateralis MFCV was measured with intramuscular microelectrodes on a different occasion, whereas muscle fiber type and cross-sectional area (CSA) of vastus lateralis were evaluated through muscle biopsies 1wk later. RESULTS: MFCV, CMJ power, RFD, and % CSA of type II and type IIx fibers were higher for the power-trained group (P < 0.001). No difference was found between sedentary participants and endurance runners in these variables, but both of these groups performed worse than strength/power participants. Close correlations were found between MFCV and fiber CSA as well as the % CSA of all fiber types as well as with RFD and CMJ power (r = 0.712-0.943, P < 0.005). Partial correlations revealed that the % CSA of IIx fibers dictates a large part of the correlation between MFCV and RFD, power performance. Significant models for the prediction of the % CSA of type IIa and type II as well as the CSA of all muscle fibers based upon MFCV, RFD, and CMJ were revealed (P = 0.000). CONCLUSION: MFCV is closely associated with muscle fiber % CSA. RFD and jumping power are associated with the propagation of the action potentials along the muscle fibers. This link is regulated by the size and the distribution of type II, and especially type IIx muscle fibers.
Siasos G, Athanasiou D, Terzis G, Stasinaki A, Oikonomou E, Tsitkanou S, Dimitropoulos S, Kolokytha T, Tzirogiannis K, Giannaki A, et al. The Acute Impact of Different Types of Aerobic Exercise on Arterial Wave Reflections and Inflammation. Cardiology. 2016;135(2):81-6.Abstract
OBJECTIVES: Whilst physical activity is linked to cardiovascular health, it has lately been recognized that different types of exercise exert diverse effects on the cardiovascular system. Therefore, we investigated the acute effects of continuous moderate-intensity aerobic exercise (CAE) and high-intensity interval aerobic exercise (hIAE) on arterial function and inflammation. METHODS: Twenty healthy men (mean age 22.6 ± 3.3 years) were recruited in this crossover study. Each of the 20 volunteers participated in two separate sessions (hIAE and CAE). The augmentation index (AIx) of aortic pressure waveforms and serum levels of interleukin-17 (IL-17) were measured before and after each exercise session. RESULTS: There were no significant differences in baseline hemodynamic and inflammatory measurements before CAE and hIAE. Compared to baseline, AIx was significantly improved after CAE (p = 0.04), while there was no significant change after hIAE (p = 0.65). Serum levels of IL-17 were significantly elevated after CAE (p = 0.042), while hIAE had no significant effect on IL-17 levels (p = 0.47). Interestingly, there was an inverse association between the elevation of IL-17 levels and the AIx improvement after CAE (p = 0.05). CONCLUSION: These findings provide additional evidence concerning the cardiovascular effects of different types of exercise training through modification of peripheral hemodynamics and the inflammatory process.
2015
Stasinaki A-N, Gloumis G, Spengos K, Blazevich AJ, Zaras N, Georgiadis G, Karampatsos G, Terzis G. Muscle Strength, Power, and Morphologic Adaptations After 6 Weeks of Compound vs. Complex Training in Healthy Men. J Strength Cond Res. 2015;29(9):2559-69.Abstract
The aim of the study was to compare the effects of compound vs. complex resistance training on strength, high-speed movement performance, and muscle composition. Eighteen young men completed compound (strength and power sessions on alternate days) or complex training (strength and power sets within a single session) 3 times per week for 6 weeks using bench press, leg press, Smith machine box squat, and jumping exercises. Pre- and posttraining, jumping and throwing performance and maximum bench press, leg press, and Smith machine box squat strength were evaluated. The architecture of vastus lateralis and gastrocnemius muscle was assessed using ultrasound imaging. Vastus lateralis morphology was assessed from muscle biopsies. Jumping (4 ± 3%) and throwing (9 ± 8%) performance increased only with compound training (p < 0.02). Bench press (5 vs. 18%), leg press (17 vs. 28%), and Smith machine box squat (27 vs. 35%) strength increased after both compound and complex training. Vastus lateralis thickness and fascicle angle and gastrocnemius fascicle angle were increased with both compound and complex training. Gastrocnemius fascicle length decreased only after complex training (-11.8 ± 9.4%, p = 0.006). Muscle fiber cross-sectional areas increased only after complex training (p ≤ 0.05). Fiber type composition was not affected by either intervention. These results suggest that short-term strength and power training on alternate days is more effective for enhancing lower-limb and whole-body power, whereas training on the same day may induce greater increases in strength and fiber hypertrophy.
Wright CR, Brown EL, Della Gatta PA, Fatouros IG, Karagounis LG, Terzis G, Mastorakos G, Michailidis Y, Mandalidis D, Spengos K, et al. Regulation of Granulocyte Colony-Stimulating Factor and Its Receptor in Skeletal Muscle is Dependent Upon the Type of Inflammatory Stimulus. J Interferon Cytokine Res. 2015;35(9):710-9.Abstract
The cytokine granulocyte colony-stimulating factor (G-CSF) binds to its receptor (G-CSFR) to stimulate hematopoietic stem cell mobilization, myelopoiesis, and the production and activation of neutrophils. In response to exercise-induced muscle damage, G-CSF is increased in circulation and G-CSFR has recently been identified in skeletal muscle cells. While G-CSF/G-CSFR activation mediates pro- and anti-inflammatory responses, our understanding of the role and regulation in the muscle is limited. The aim of this study was to investigate, in vitro and in vivo, the role and regulation of G-CSF and G-CSFR in skeletal muscle under conditions of muscle inflammation and damage. First, C2C12 myotubes were treated with lipopolysaccharide (LPS) with and without G-CSF to determine if G-CSF modulates the inflammatory response. Second, the regulation of G-CSF and its receptor was measured following eccentric exercise-induced muscle damage and the expression levels we investigated for redox sensitivity by administering the antioxidant N-acetylcysteine (NAC). LPS stimulation of C2C12 myotubes resulted in increases in G-CSF, interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNFα) messenger RNA (mRNA) and an increase in G-CSF, IL-6, and MCP-1 release from C2C12 myotubes. The addition of G-CSF following LPS stimulation of C2C12 myotubes increased IL-6 mRNA and cytokine release into the media, however it did not affect MCP-1 or TNFα. Following eccentric exercise-induced muscle damage in humans, G-CSF levels were either marginally increased in circulation or remain unaltered in skeletal muscle. Similarly, G-CSFR levels remained unchanged in response to damaging exercise and G-CSF/G-CSFR did not change in response to NAC. Collectively, these findings suggest that G-CSF may cooperate with IL-6 and potentially promote muscle regeneration in vitro, whereas in vivo aseptic inflammation induced by exercise did not change G-CSF and G-CSFR responses. These observations suggest that different models of inflammation produce a different G-CSF response.
2014
Bogdanis GC, Tsoukos A, Veligekas P, Tsolakis C, Terzis G. Effects of muscle action type with equal impulse of conditioning activity on postactivation potentiation. J Strength Cond Res. 2014;28(9):2521-8.Abstract
This study investigated the effects of muscle action type during conditioning activity (half-squat) on subsequent vertical jump performance. Fourteen track and field athletes (relative half-squat of 2.3 ± 0.3 times their body weight) completed 4 main trials in a randomized and counterbalanced order 5-7 days apart: (a) concentric (CON) half-squats: 7.5 ± 1.2 repetitions against 90% of 1 repetition maximum (1RM), (b) eccentric (ECC) half-squats: 9.3 ± 1.5 repetitions against 70% of 1RM, and (c) 3 sets of 3-second maximal isometric (ISO) half-squats, (d) a control (CTRL) trial, where subjects rested for 10 minutes. The number of repetitions in CON and ECC was adjusted so that the impulse of the vertical ground reaction force was similar to ISO. Countermovement vertical jump (CMJ) performance was evaluated for 21 minutes after each main trial. Countermovement vertical jump performance in ISO was higher than CTRL from the second to the 10th minute of recovery, whereas CMJ performance in ECC was higher than CTRL from the sixth and 10th minute of recovery. Analysis of the peak individual responses revealed an increase in CMJ performance compared with baseline only in ISO (3.0 ± 1.2%; p = 0.045), whereas no significant increases were observed in ECC and CON. Peak CMJ performance for all subjects in ISO and ECC was achieved within 2-10 minutes after the conditioning muscle actions. Isometric were more effective than CON and ECC muscle actions in increasing explosive leg performance when the impulse of the ground reaction force of the conditioning exercise was equated.
Vafiadaki E, Arvanitis DA, Papalouka V, Terzis G, Roumeliotis TI, Spengos K, Garbis SD, Manta P, Kranias EG, Sanoudou D. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation. FEBS J. 2014;281(14):3261-79.Abstract
Muscle lim protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, whereas aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically, it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/cofilin-2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components, including α-actinin, T-cap and MLP. The findings of the present study unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, as well as in differentiated striated muscles as a contributor to sarcomeric integrity.
Vontzalidis A, Terzis G, Manta P. Increased dysferlin expression in Duchenne muscular dystrophy. Anal Quant Cytopathol Histpathol. 2014;36(1):15-22.Abstract
OBJECTIVE: To investigate dysferlin expression in muscle biopsies from patients with Duchenne muscular dystrophy (DMD). Dysferlin is known to have a role in the process of membrane fusion and muscle membrane repair in skeletal muscle fibers. STUDY DESIGN: We analyzed 20 muscle biopsy samples of DMD patients with immunohistochemical techniques to determine the expression of dysferlin. Immunoblotting was performed to assess dysferlin abundance in dystrophic muscle. RESULTS: Dysferlin showed various immunostaining patterns in dystrophic muscle, including reduced, normal, or enhanced sarcolemmal expression and intracellular immunostaining of the protein. Immunoblotting revealed that dysferlin was upregulated in 15 out of the 20 samples (75%). The abundance of the protein was analogous to the number of fibers with enhanced sarcolemmal expression of the protein. CONCLUSION: These data suggest that although dysferlin is not an integral part of the dystrophin-glycoprotein complex, its expression is altered in Duchenne muscular dystrophy.
Zaras ND, Stasinaki A-NE, Krase AA, Methenitis SK, Karampatsos GP, Georgiadis GV, Spengos KM, Terzis GD. Effects of tapering with light vs. heavy loads on track and field throwing performance. J Strength Cond Res. 2014;28(12):3484-95.Abstract
The purpose of the study was to investigate the effects of power training with light vs. heavy loads during the tapering phases of a double periodized training year on track and field throwing performance. Thirteen track and field throwers aged 16-26 years followed 8 months of systematic training for performance enhancement aiming at 2 tapering phases during the winter and the spring competition periods. Athletes performed tapering with 2 different resistance training loads (counterbalanced design): 7 athletes used 30% of 1 repetition maximum (1RM) light-load tapering (LT), and 6 athletes used the 85% of 1RM heavy-load tapering (HT), during the winter tapering. The opposite was performed at the spring tapering. Before and after each tapering, throwing performance, 1RM strength, vertical jumping, rate of force development (RFD), vastus lateralis architecture, and rate of perceived exertion were evaluated. Throwing performance increased significantly by 4.8 ± 1.0% and 5.6 ± 0.9% after LT and HT, respectively. Leg press 1RM and squat jump power increased more after HT than LT (5.9 ± 3.2% vs. -3.4 ± 2.5%, and 5.1 ± 2.4% vs. 0.9 ± 1.4%, respectively, p ≤ 0.05). Leg press RFD increased more in HT (38.1 ± 16.5%) compared with LT (-2.9 ± 6.7%), but LT induced less fatigue than HT (4.0 ± 1.5 vs. 6.7 ± 0.9, p ≤ 0.05). Muscle architecture was not altered after either program. These results suggest that performance increases similarly after tapering with LT or HT in track and field throwers, but HT leads to greater increases in strength, whole body power, and RFD.
Patel MS, Natanek SA, Stratakos G, Pascual S, Martínez-Llorens J, Disano L, Terzis G, Hopkinson NS, Gea J, Vogiatzis I, et al. Vastus lateralis fiber shift is an independent predictor of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;190(3):350-2.
2013
Michailidis Y, Karagounis LG, Terzis G, Jamurtas AZ, Spengos K, Tsoukas D, Chatzinikolaou A, Mandalidis D, Stefanetti RJ, Papassotiriou I, et al. Thiol-based antioxidant supplementation alters human skeletal muscle signaling and attenuates its inflammatory response and recovery after intense eccentric exercise. Am J Clin Nutr. 2013;98(1):233-45.Abstract
BACKGROUND: The major thiol-disulfide couple of reduced glutathione (GSH) and oxidized glutathione is a key regulator of major transcriptional pathways regulating aseptic inflammation and recovery of skeletal muscle after aseptic injury. Antioxidant supplementation may hamper exercise-induced cellular adaptations. OBJECTIVE: The objective was to examine how thiol-based antioxidant supplementation affects skeletal muscle's performance and redox-sensitive signaling during the inflammatory and repair phases associated with exercise-induced microtrauma. DESIGN: In a double-blind, crossover design, 10 men received placebo or N-acetylcysteine (NAC; 20 mg · kg(-1) · d(-1)) after muscle-damaging exercise (300 eccentric contractions). In each trial, muscle performance was measured at baseline, after exercise, 2 h after exercise, and daily for 8 consecutive days. Muscle biopsy samples from vastus lateralis and blood samples were collected before exercise and 2 h, 2 d, and 8 d after exercise. RESULTS: NAC attenuated the elevation of inflammatory markers of muscle damage (creatine kinase activity, C-reactive protein, proinflammatory cytokines), nuclear factor κB phosphorylation, and the decrease in strength during the first 2 d of recovery. NAC also blunted the increase in phosphorylation of protein kinase B, mammalian target of rapamycin, p70 ribosomal S6 kinase, ribosomal protein S6, and mitogen activated protein kinase p38 at 2 and 8 d after exercise. NAC also abolished the increase in myogenic determination factor and reduced tumor necrosis factor-α 8 d after exercise. Performance was completely recovered only in the placebo group. CONCLUSION: Although thiol-based antioxidant supplementation enhances GSH availability in skeletal muscle, it disrupts the skeletal muscle inflammatory response and repair capability, potentially because of a blunted activation of redox-sensitive signaling pathways. This trial was registered at clinicaltrials.gov as NCT01778309.
Papadopoulos C, Terzis G, Papadimas GK, Manta P. OX40-OX40L expression in idiopathic inflammatory myopathies. Anal Quant Cytopathol Histpathol. 2013;35(1):17-26.Abstract
OBJECTIVE: To examine whether both OX40 and its ligand OX40L are expressed in idiopathic inflammatory myopathies and to investigate the types of inflammatory cells expressing OX40L. STUDY DESIGN: Immunohistochemistry was performed in limb muscle specimens from dermatomyositis, polymyositis and inclusion body myositis patients to analyze the expression of OX40 and its ligand OX40L. Double immunofluorescence labeling was performed to clarify the phenotype of inflammatory cells expressing OX40L. RESULTS: OX40 and OX40L expressing cells were observed in all subsets of inflammatory myopathies following a similar pattern of distribution mainly in the perimysium. In polymyositis and inclusion body myositis inflammatory cells expressing the receptors invaded non-necrotic muscle fibers. OX40L expression was also found in endothelial blood cells in all dermatomyositis and some polymyositis specimens. In all subsets of inflammatory myopathies OX40L was expressed by T cells (CD4+ and CD8+), macrophages (CD68+), B cells (CD20+) and myeloid dendritic cells (BDCA1+). Plasmacytoid dendritic cells (BDCA2+) expressing OX40L were found only in dermatomyositis and polymyositis. CONCLUSION: The simultaneous expression of both OX40 and its ligand OX40L in idiopathic inflammatory myopathies suggests that they might participate in disease pathogenesis. Expression of OX40L by different types of cells within the inflamed muscle implies that OX40-OX40L interaction may contribute in disease mechanisms through different pathways.
Zaras N, Spengos K, Methenitis S, Papadopoulos C, Karampatsos G, Georgiadis G, Stasinaki A, Manta P, Terzis G. Effects of Strength vs. Ballistic-Power Training on Throwing Performance. J Sports Sci Med. 2013;12(1):130-7.Abstract
The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05). Muscle fibre Cross Sectional Area (fCSA) increased in all fibre types after Strength training by 19-26% (p < 0.05), while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key pointsBallistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks.In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance.The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before competition, when the strength training load is usually reduced, in order to increase muscle power and shot put performance in novice shot putters.
2012
Terzis G, Karampatsos G, Kyriazis T, Kavouras SA, Georgiadis G. Acute effects of countermovement jumping and sprinting on shot put performance. J Strength Cond Res. 2012;26(3):684-90.Abstract
The purpose of this study was to investigate the acute effects of countermovement jumping and sprinting on shot put performance in experienced shot putters. Ten shot putters (best performance 13.16-20.36 m) participated in the study. After a standard warm-up including jogging, stretching, and 4-6 submaximal puts, they performed 3 shot put attempts with maximum effort, separated with 1.5-minute interval. Three minutes later, they performed 3 maximal consecutive countermovement jumps (CMJs). Immediately after jumping, they performed 3 shot put attempts with maximum effort, separated with a 1.5-minute interval. One week later, they carried out a similar protocol, at similar external conditions, but they performed a bout of 20-m sprinting instead of the CMJs, to potentiate shot put performance. Muscular strength (1 repetition maximum in squat, snatch, bench press, incline bench press) and body composition (dual x-ray absorptiometry) were measured during the same training period (±10 days from the jumping and sprinting protocols). Shot put performance was significantly increased after the CMJs (15.45 ± 2.36 vs. 15.85 ± 2.41 m, p = 0.0003). Similarly, shot put performance was significantly increased after sprinting (15.34 ± 2.41 vs. 15.90 ± 2.46 m, p = 0.0007). The increase in performance after sprinting was significantly higher compared with the increase after jumping (2.64 ± 1.59 vs. 3.74 ± 1.88%, p = 0.02). In conclusion, the results of this study indicate that a standard warm-up protocol followed by 3 maximal bouts of shot put and either 3 consecutive countermovement jumps or a bout of 20-m sprinting induce an acute increase in shot put performance in experienced shot putters.
Bori Z, Zhao Z, Koltai E, Fatouros IG, Jamurtas AZ, Douroudos II, Terzis G, Chatzinikolaou A, Sovatzidis A, Draganidis D, et al. The effects of aging, physical training, and a single bout of exercise on mitochondrial protein expression in human skeletal muscle. Exp Gerontol. 2012;47(6):417-24.Abstract
Aging results in a significant decline in aerobic capacity and impaired mitochondrial function. We have tested the effects of moderate physical activity on aerobic capacity and a single bout of exercise on the expression profile of mitochondrial biogenesis, and fusion and fission related genes in skeletal muscle of human subjects. Physical activity attenuated the aging-associated decline in VO2 max (p<0.05). Aging increased and a single exercise bout decreased the expression of nuclear respiratory factor-1 (NRF1), while the transcription factor A (TFAM) expression showed a strong relationship with VO(2max) and increased significantly in the young physically active group. Mitochondrial fission representing FIS1 was induced by regular physical activity, while a bout of exercise decreased fusion-associated gene expression. The expression of polynucleotide phosphorylase (PNPase) changed inversely in young and old groups and decreased with aging. The A2 subunit of cyclic AMP-activated protein kinase (AMPK) was induced by a single bout of exercise in skeletal muscle samples of both young and old subjects (p<0.05). Our data suggest that moderate levels of regular physical activity increases a larger number of mitochondrial biogenesis-related gene expressions in young individuals than in aged subjects. Mitochondrial fission is impaired by aging and could be one of the most sensitive markers of the age-associated decline in the adaptive response to physical activity.
Papadimas G, Terzis G, Papadopoulos C, Areovimata A, Spengos K, Kavouras S, Manta P. Bone density in patients with late onset Pompe disease. Int J Endocrinol Metab. 2012;10(4):599-603.Abstract
BACKGROUND: Pompe disease is an inherited metabolic disorder characterized by α-glycosidase deficiency, which leads to lysosomal glycogen accumulation in many different tissues. The infantile form is the most severe with a rapidly fatal outcome, while the late onset form has a greater phenotypic variability, characterized by skeletal muscle dysfunction and early respiratory involvement. Bone mineral density (BMD) has been recently reported to be reduced in many patients with both forms of the disease. Enzyme replacement therapy (ERT) is now available with an undefined, impact on BMD in patients with late onset disease. OBJECTIVES: The present study aimed to investigate BMD in patients with late onset form of Pompe disease before and after ERT initiation. PATIENTS AND METHODS: Dual x-ray absorptiometry (DEXA) was examined in four newly diagnosed patients with late onset Pompe disease and in four adults under ERT before and after ERT initiation with a treatment duration of 18 to 36 months. RESULTS: The initial DEXA showed normal total body BMD z-score in all the patients, while L2-L4 and femoral neck BMD was reduced in three and two patients, respectively. After ERT administration, two patients had an improvement in L2-L4 lumbar spine and one patient in femoral neck BMD z-score with values within normal range. CONCLUSIONS: The results suggested that regional BMD may moderately reduce in some patients with the late onset form of Pompe disease, although profound osteopenia was not observed. The improvement of measurements in L2-L4 and femoral neck BMD z-score in some patients with low pre-treatment values after ERT administration needs to be confirmed in larger scale studies.
Terzis G, Krase A, Papadimas G, Papadopoulos C, Kavouras SA, Manta P. Effects of exercise training during infusion on late-onset Pompe disease patients receiving enzyme replacement therapy. Mol Genet Metab. 2012;107(4):669-73.Abstract
Pompe disease is an autosomal recessive disorder caused by the deficiency of acid α-glucosidase resulting in lysosomal accumulation of glycogen and abnormal autophagic function. The late-onset form of the disease is characterized by progressive skeletal and respiratory muscle dysfunction. Enzyme replacement therapy (ERT, Genzyme Corporation, Cambridge, MA, USA) was recently introduced and resulted in significant prolongation of the life expectancy of the patients with the infantile form while the results were less significant for the late-onset form. It has been postulated that the weak influence of ERT in late-onset patients might be due to a non-effective delivery of the recombinant enzyme to the skeletal muscles perhaps due to the relatively low blood flow to the resting skeletal muscles during infusion. Exercise training acutely increases the blood flow to the exercising muscles. Thus, it was hypothesized that exercise training during enzyme infusion might increase the effectiveness of the ERT therapy. Five late-onset Pompe disease patients receiving ERT and following regular exercise training for approximately 10 months, followed a 6-month period of exercise training during infusion of the recombinant enzyme. Before and after this period, body composition, isometric strength and 6 minute walking distance were determined. Analysis of the results revealed that none of these parameters changed significantly after the 6-month intervention period (e.g. 6 minute walking distance before: 532±31 m, vs. after: 527±29 m, P=0.246). These results suggest that exercise training during infusion may not add significant functional changes in late-onset Pompe patients receiving ERT and undergoing regular exercise training.
Terzis G, Kyriazis T, Karampatsos G, Georgiadis G. Muscle strength, body composition, and performance of an elite shot-putter. Int J Sports Physiol Perform. 2012;7(4):394-6.Abstract
PURPOSE: Although muscle mass and strength are thought to be closely related to throwing performance, there are few scientific data about these parameters in elite shot-putters. The purpose of this case report was to present longitudinal data for muscle strength and body composition in relation to performance of an elite male shot-putter. METHODS: A male national champion with the best rotational shot-put performance of 20.36 m (in 2010) was followed from 2003 to 2011 (current age: 29 y). Data regarding body composition (dual X-ray absorptiometry), as well as 1-repetition-maximum muscle strength (bench press, squat, snatch) and rotational shot-put performance, were collected every February for the last 9 y, 4 wk before the national indoor championship event. RESULTS: The athlete's personal-best performances in squat, bench press, and snatch were 175 kg, 210 kg, and 112.5 kg, respectively. His peak total lean body mass was 92.4 kg, bone mineral density 1.55 g/cm2, and lowest body fat 12.9%. His shot-put performance over these 9 years was significantly correlated with 1-repetition-maximum squat strength (r = .93, P < .01), bench press (r = .87, P < .01), and snatch (r = .92, P < .01). In contrast, shot-put performance was not significantly correlated with any of the body-composition parameters. CONCLUSIONS: The results of this case study suggest that elite rotational shot-put performance may not be directly correlated with lean body mass. Instead, it seems that it is closely related with measures of muscle strength.
2011
Vogiatzis I, Terzis G, Stratakos G, Cherouveim E, Athanasopoulos D, Spetsioti S, Nasis I, Manta P, Roussos C, Zakynthinos S. Effect of pulmonary rehabilitation on peripheral muscle fiber remodeling in patients with COPD in GOLD stages II to IV. Chest. 2011;140(3):744-752.Abstract
BACKGROUND: In most patients with COPD, rehabilitative exercise training partially reverses the morphologic and structural abnormalities of peripheral muscle fibers. However, whether the degree of improvement in muscle fiber morphology and typology with exercise training varies depending on disease severity remains unknown. METHODS: Forty-six clinically stable patients with COPD classified by GOLD (Global Initiative for Obstructive Lung Disease) as stage II (n = 14), III (n = 18), and IV (n = 14) completed a 10-week comprehensive pulmonary rehabilitation program consisting of high-intensity exercise three times weekly. RESULTS: At baseline, muscle fiber mean cross-sectional area and capillary density did not significantly differ between patients with COPD and healthy control subjects, whereas muscle fiber type I and II proportion was respectively lower (P < .001) and higher (P < .002) in patients with GOLD stage IV compared with healthy subjects and patients with GOLD stages II and III. Exercise training improved, to a comparable degree, functional capacity and the St. George Respiratory Questionnaire health-related quality of life score across all three GOLD stages. Vastus lateralis muscle fiber mean cross-sectional area was increased (P < .001) in all patient groups (stage II: from 4,507 ± 280 μm² to 5,091 ± 271 μm² [14% ± 3%]; stage III: from 3,753 ± 258 μm² to 4,212 ± 268 μm² [14% ± 3%]; stage IV: from 3,961 ± 266 μm² to 4,551 ± 262 μm² [17% ± 5%]), whereas all groups exhibited a comparable reduction (P < .001) in type IIb fiber proportion (stage II: by 6% ± 2%; stage III: by 6% ± 1%; stage IV: by 7% ± 1%) and an increase (P < .001) in capillary to fiber ratio (stage II: from 1.48 ± 0.10 to 1.81 ± 0.10 [23% ± 5%]; stage III: from 1.29 ± 0.06 to 1.56 ± 0.09 [21% ± 5%]; stage IV: from 1.43 ± 0.10 to 1.71 ± 0.13 [18 ± 3%]). The magnitude of changes in the aforementioned variables did not differ across GOLD stages. CONCLUSIONS: Functional capacity and morphologic and typologic adaptations to rehabilitation in peripheral muscle fibers were similar across GOLD stages II to IV. Pulmonary rehabilitation should be implemented in patients at all COPD stages.
Papadimas GK, Terzis G, Methenitis S, Spengos K, Papadopoulos C, Vassilopoulou S, Kavouras S, Michelakakis H, Manta P. Body composition analysis in late-onset Pompe disease. Mol Genet Metab. 2011;102(1):41-3.Abstract
Pompe disease is an inherited metabolic disorder caused by α-glycosidase deficiency. The adult onset form is mainly characterized by progressive proximal muscle weakness and respiratory dysfunction. The aim of the present study is to evaluate body composition in adult patients before and after enzyme replacement therapy (ERT). Body composition was examined at baseline by means of dual x-ray absorptiometry (DXA) in nine adult patients and after different time periods in six of them who received ERT. Total BMD (bone mineral density) was initially mildly decreased in two patients, while femoral neck BMD was decreased in five patients. On the other hand fat mass was increased in the majority of patients, while body mass index (BMI) was high in four. ERT administration did not seem to induce obvious BMD changes in any patient. Conclusively, the greater femoral neck BMD involvement may be attributed to the lower mechanical load applied by the selectively weakened muscles, whereas the increased fat mass may be the result of metabolic and nutritional derangement.
Papadimas GK, Terzis G, Spengos K, Methenitis S, Papadopoulos C, Vassilopoulou S, Manta P. Bone mineral density in adult patients with Pompe disease. Bone. 2011;48(2):417; author reply 418-9.
Terzis G, Dimopoulos F, Papadimas GK, Papadopoulos C, Spengos K, Fatouros I, Kavouras SA, Manta P. Effect of aerobic and resistance exercise training on late-onset Pompe disease patients receiving enzyme replacement therapy. Mol Genet Metab. 2011;104(3):279-83.Abstract
Pompe disease is a rare autosomal recessive disorder characterized by the deficiency of acid α-glycosidase resulting in lysosomal accumulation of glycogen. The late-onset disease form is characterized by progressive skeletal and respiratory muscle dysfunction. In addition to the recently introduced enzyme replacement therapy (ERT), treatments such as protein-enriched diet and exercise training have been proposed, although little is known about their effectiveness on the physical condition of such patients. Aim of the present study was to investigate the effect of exercise training on muscular strength and body composition in five patients with late-onset Pompe disease receiving ERT. All subjects followed a 20 week lasting program of supervised aerobic and progressive resistance exercise training. Before and after the training period, body composition was determined with dual X-ray absorptiometry and isometric muscular strength was measured with a specialized load transducer. Functional capacity was assessed using the 6-min shuttle walk test. A significant increase in muscular strength (15-50% at various body parts, p<0.05) and 6-minute walking distance (203.8 ± 177 m before vs. 248.2 ± 184 m after, p<0.01) was observed after training, whereas total and lower extremities lean body mass did not change significantly. These results suggest that exercise training has a positive effect on muscular strength and functional capacity in patients on ERT with late-onset Pompe disease.
Radak Z, Bori Z, Koltai E, Fatouros IG, Jamurtas AZ, Douroudos II, Terzis G, Nikolaidis MG, Chatzinikolaou A, Sovatzidis A, et al. Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle. Free Radic Biol Med. 2011;51(2):417-23.Abstract
8-Oxo-7,8-dihydroguanine (8-oxoG) accumulates in the genome over time and is believed to contribute to the development of aging characteristics of skeletal muscle and various aging-related diseases. Here, we show a significantly increased level of intrahelical 8-oxoG and 8-oxoguanine-DNA glycosylase (OGG1) expression in aged human skeletal muscle compared to that of young individuals. In response to exercise, the 8-oxoG level was lastingly elevated in sedentary young and old subjects, but returned rapidly to preexercise levels in the DNA of physically active individuals independent of age. 8-OxoG levels in DNA were inversely correlated with the abundance of acetylated OGG1 (Ac-OGG1), but not with total OGG1, apurinic/apyrimidinic endonuclease 1 (APE1), or Ac-APE1. The actual Ac-OGG1 level was linked to exercise-induced oxidative stress, as shown by changes in lipid peroxide levels and expression of Cu,Zn-SOD, Mn-SOD, and SIRT3, as well as the balance between acetyltransferase p300/CBP and deacetylase SIRT1, but not SIRT6 expression. Together these data suggest that that acetylated form of OGG1, and not OGG1 itself, correlates inversely with the 8-oxoG level in the DNA of human skeletal muscle, and the Ac-OGG1 level is dependent on adaptive cellular responses to physical activity, but is age independent.
2010
Kyriazis T, Terzis G, Karampatsos G, Kavouras S, Georgiadis G. Body composition and performance in shot put athletes at preseason and at competition. Int J Sports Physiol Perform. 2010;5(3):417-21.Abstract
PURPOSE: The purpose of the current study was to investigate the relationship between fat-free mass and shot put performance at the beginning of the winter preparation cycle and at the first peak of the season (12 wk later) in well-trained shot-putters using the rotational style. METHODS: Eight national-level shot put athletes followed their individual training programs for a period of 12 wk aiming at the national indoor championship. Shot put performance with the rotational style as well as from the power position was determined before and after this 12 wk period. Body composition was determined before and after the training period with dual x-ray absorptiometry. RESULTS: Shot put from the power position was increased by 3% (P = .03) while shot put with the rotational style was increased by 6.5% (P < .01). Fat-free mass, body fat and bone mineral density were not altered after the training period. The correlation coefficient between fat-free mass and shot put performance from the power position was significant (r = .76 preseason vs r = .66, competition; P < .05). The correlation coefficient between fat-free mass and shot put performance with the rotational style was significant at the beginning of the training period (r = .70, P < .05) but it was decreased to moderate and nonsignificant levels at competition (r = .55, ns). CONCLUSIONS: These results suggest that the increase of fat-free mass might not be the most essential element for competition when the rotational shot put style is involved.
Terzis G, Spengos K, Mascher H, Georgiadis G, Manta P, Blomstrand E. The degree of p70 S6k and S6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume. Eur J Appl Physiol. 2010;110(4):835-43.Abstract
Regular performance of resistance exercise induces an increase in skeletal muscle mass, however, the molecular mechanisms underlying this effect are not yet fully understood. The purpose of the present investigation was to examine acute changes in molecular signalling in response to resistance exercise involving different training volumes. Eight untrained male subjects carried out one, three and five sets of 6 repetition maximum (RM) in leg press exercise in a random order. Muscle biopsies were taken from the vastus lateralis both prior to and 30 min after each training session and the effect on protein signalling was studied. Phosphorylation of Akt was not altered significantly after any of the training protocols, whereas that of the mammalian target of rapamycin was enhanced to a similar extent by training at all three volumes. The phosphorylation of p70S6 kinase (p70(S6k)) was elevated threefold after 3 × 6 RM and sixfold after 5 × 6 RM, while the phosphorylation of S6 was increased 30- and 55-fold following the 3 × 6 RM and 5 × 6 RM exercises, respectively. Moreover, the level of the phosphorylated form of the gamma isoform of p38 MAPK was enhanced three to fourfold following each of the three protocols, whereas phosphorylation of ERK1/2 was unchanged 30 min following exercise. These findings indicate that when exercise is performed in a fasted state, the increase in phosphorylation of signalling molecules such as p70(S6k) and the S6 ribosomal protein in human muscle depends on the exercise volume.
Vogiatzis I, Simoes DCM, Stratakos G, Kourepini E, Terzis G, Manta P, Athanasopoulos D, Roussos C, Wagner PD, Zakynthinos S. Effect of pulmonary rehabilitation on muscle remodelling in cachectic patients with COPD. Eur Respir J. 2010;36(2):301-10.Abstract
It is known that non-cachectic patients with chronic obstructive pulmonary disease (COPD) respond well to pulmonary rehabilitation, but whether cachectic COPD patients are capable of adaptive responses is both important and unknown. 10 cachectic and 19 non-cachectic COPD patients undertook high-intensity cycling training, at the same relative intensity, for 45 min x day(-1), 3 days x week(-1) for 10 weeks. Before and after rehabilitation vastus lateralis muscle biopsies were analysed morphologically and for the expression of muscle remodelling factors (insulin-like growth factor (IGF)-I, myogenic differentiation factor D (MyoD), tumour necrosis factor (TNF)-alpha, nuclear factor (NF)-kappaB and myostatin) and key components of ubiquitin-mediated proteolytic systems (muscle ring finger protein (MURF)-1 and Atrogin-1). Rehabilitation improved peak work-rate and the 6-min walk distance similarly in non-cachectic (18+/-3% and 42+/-13 m, respectively) and cachectic (16+/-2% and 53+/-16 m, respectively) patients, but quality of life only improved in non-cachectic COPD. Mean muscle fibre cross-sectional area increased in both groups, but significantly less in cachectic (7+/-2%) than in non-cachectic (11+/-2%) patients. Both groups equally decreased the proportion of type IIb fibres and increased muscle capillary/fibre ratio. IGF-I mRNA expression increased in both groups, but IGF-I protein levels increased more in non-cachectic COPD. MyoD was upregulated, whereas myostatin was downregulated at the mRNA and protein level only in non-cachectic patients. Whilst rehabilitation had no effect on TNF-alpha expression, it decreased the activation of the transcription factor NF-kappaB in both groups by the same amount. Atrogin-1 and MURF-1 expression were increased in cachectic COPD, but it was decreased in non-cachectic patients. Cachectic COPD patients partially retain the capacity for peripheral muscle remodelling in response to rehabilitation and are able to increase exercise capacity as much as those without cachexia, even if they exhibit both quantitative and qualitative differences in the type of muscle fibre remodelling in response to exercise training.
Papadimas GK, Terzis G, Papadopoulos C, Spengos K, Manta P. The importance of nutritional status in the prognosis of late onset Pompe disease. Mol Genet Metab. 2010;100(4):389.
Terzis G, Spengos K, Kavouras S, Manta P, Georgiadis G. Muscle fibre type composition and body composition in hammer throwers. J Sports Sci Med. 2010;9(1):104-9.Abstract
Aim of the present study was to describe the muscle fibre type composition and body composition of well-trained hammer throwers. Six experienced hammer throwers underwent the following measurements: one repetition maximum in squat, snatch, and clean, standing broad jump, backward overhead shot throw and the hammer throw. Dual x-ray absorptiometry was used for body composition analysis. Fibre type composition and cross sectional area was determined in muscle biopsy samples of the right vastus lateralis. Eight physical education students served as a control group. One repetition maximum in squat, snatch and clean for the hammer throwers was 245 ± 21, 132 ± 13 and 165 ± 12kg, respectively. Lean body mass was higher in hammer throwers (85.9 ± 3. 9kg vs. 62.7 ± 5.1kg (p < 0.01). The percentage area of type II muscle fibres was 66.1 ± 4% in hammer throwers and 51 ± 8% in the control group (p < 0.05). Hammer throwers had significantly larger type IIA fibres (7703 ± 1171 vs. 5676 ± 1270μm(2), p < 0.01). Hammer throwing performance correlated significantly with lean body mass (r = 0.81, p < 0.05). These data indicate that hammer throwers have larger lean body mass and larger muscular areas occupied by type II fibres, compared with relatively untrained subjects. Moreover, it seems that the enlarged muscle mass of the hammer throwers contributes significantly to the hammer throwing performance. Key pointsWell-trained hammer throwers had increased lean body mass, higher type IIA muscle fibres cross sectional areas, as well as higher bone mineral density, compared to controls.Increased lean body mass was closely related with hammer throwing performance.The relative high percentage of type IIX muscle fibres in vastus lateralis in hammer throwers warrants further investigation.
2009
Kyriazis TA, Terzis G, Boudolos K, Georgiadis G. Muscular power, neuromuscular activation, and performance in shot put athletes at preseason and at competition period. J Strength Cond Res. 2009;23(6):1773-9.Abstract
The aim of this study was to investigate changes in shot put performance, muscular power, and neuromuscular activation of the lower extremities, between the preseason and the competition period, in skilled shot put athletes using the rotational technique. Shot put performance was assessed at the start of the pre-season period as well as after 12 weeks, at the competition period, in nine shot putters. Electromyographic (EMG) activity of the right vastus lateralis muscle was recorded during all shot put trials. Maximum squat strength (1RM) and mechanical parameters during the countermovement jump (CMJ) on a force platform were also determined at pre-season and at competition period. Shot put performance increased 4.7% (p < 0.05), while 1RM squat increased 6.5% (p < 0.025). EMG activity during the delivery phase was increased significantly (p < 0.025) after the training period. Shot put performance was significantly related with muscular power and takeoff velocity during the CMJ, at competition period (r = 0.66, p < 0.05 and 0.70, p < 0.05), but not with maximum vertical force. One RM squat was not related significantly with shot put performance. These results suggest that muscular power of the lower extremities is a better predictor of rotational shot put performance than absolute muscular strength in skilled athletes, at least during the competition period.
Terzis G, Spengos K, Karampatsos G, Manta P, Georgiadis G. Acute effect of drop jumping on throwing performance. J Strength Cond Res. 2009;23(9):2592-7.Abstract
The purpose of the present study was to investigate the acute effect of drop jumping on throwing performance. Eight men and 8 women, moderately trained subjects with basic shot put skills, performed 3 squat underhand front shot throws after a short standard warm-up. Three minutes later they performed 5 maximal consecutive drop jumps from 40 cm. Immediately after the drop jumps, they repeated the squat underhand front shot throws. On another day, their 6 repetition maximum (RM) muscular strength in leg press was assessed. Muscle biopsies were also obtained from vastus lateralis for the determination of fiber-type composition and fiber cross-sectional area. Throwing performance was significantly increased after drop jumping (8.25 +/- 1.1 m vs. 8.63 +/- 1.3 m, p < 0.01). The percentage of type II muscle fiber area was significantly related to the increase in throwing performance after drop jumping (r = 0.76, p < 0.01). The increase in throwing performance was significant in men (8.94 +/- 1 m vs. 9.60 +/- 0.9 m, p < 0.01) but not in women (7.56 +/- 1 m vs. 7.67 +/- 0.9 m, ns). Of note, the percentage of type II fiber area was higher in men than in women (M: 66.4 +/- 13%, F: 50.2 +/- 15%, p < 0.01). Leg press strength (6RM) was moderately related to the increase in throwing performance after drop jumping (r = 0.50, p < 0.05). These results suggest that drop jumping just before a throwing action induces an increase in performance in subjects with a high percentage of type II muscle fiber area and (to a lesser degree) in subjects with enhanced muscular strength.
2008
Terzis G, Spengos K, Manta P, Sarris N, Georgiadis G. Fiber type composition and capillary density in relation to submaximal number of repetitions in resistance exercise. J Strength Cond Res. 2008;22(3):845-50.Abstract
The purpose of this study was to investigate the relationship between skeletal muscle fiber type composition and the maximum number of repetitions performed during submaximal resistance exercise. Twelve young men performed a maximum repetitions test at 85% of 1 repetition maximum (1RM) in the leg press, which was repeated after 1 week. Seven days after the second 85% 1RM test, they performed a maximum repetitions test at 70% of 1RM in the leg press. This test, at 70% 1RM, was repeated 7 days later. One week before the initiation of the testing sessions, a biopsy sample was obtained from the vastus lateralis muscle and analyzed for fiber type distribution, fiber cross-sectional area, and capillary density (capillaries x mm(2)). A low and nonsignificant relationship was found between the fiber type distribution or percent fiber type area and the number of repetitions performed at either 70% or 85% 1RM. Moreover, the number of repetitions performed at 70% or 85% of 1RM was not related significantly with 1RM strength. In contrast, the number of repetitions performed at 70% 1RM was significantly correlated with the number of capillaries per mm(2) of muscle cross-sectional area (r = 0.70; p = 0.01). These results suggest that fiber type composition is not the major biological variable regulating the number of repetitions performed in submaximal resistance exercise. Rather, it seems that submaximal strength performance depends on muscle capillary density, which is linked with the endurance capacity of the muscle tissue.
Terzis G, Stratakos G, Manta P, Georgiadis G. Throwing performance after resistance training and detraining. J Strength Cond Res. 2008;22(4):1198-204.Abstract
The purpose of the present study was to investigate the effect of short-term resistance training and detraining on shot put throwing performance. Eleven young healthy subjects with basic shot put skills participated in 14 weeks of resistance training, which was followed by 4 weeks of detraining. Shot put performance in four field tests was measured before (T1) and after (T2) resistance training and after detraining (T3). At the same time points, one repetition maximum (1RM) was measured in squat, bench press, and leg press. Fat-free mass (FFM) was determined with dual x-ray absorptiometry and muscle biopsies obtained from vastus lateralis for the determination of fiber type composition and cross-sectional area (CSA). 1RM strength increased 22-34% (p < 0.01) at T2 and decreased 4-5% (not significantly different) at T3. Shot put performance increased 6-12% (p < 0.05) after training and remained unaltered after detraining. FFM increased at T2 (p < 0.05) but remained unchanged between T2 and T3. Muscle fiber CSA increased 12-18% (p < 0.05) at T2. Type I muscle fiber CSA was not altered after detraining, but type IIa and IIx fiber CSA was reduced 10-12% (p < 0.05). The percentage of type IIx muscle fibers was reduced after training (T1 = 18.7 +/- 4, T2 = 10.4 +/- 1; p < 0.05), and it was increased at T3 compared with T2 (T3 = 13.7 +/- 1; p < 0.05). These results suggest that shot put performance remains unaltered after 4 weeks of complete detraining in moderately resistance-trained subjects. This might be linked to the concomitant reduction of muscle fiber CSA and increase in the percentage of type IIx muscle fibers.
Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, Mascher H, Blomstrand E. Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol. 2008;102(2):145-52.Abstract
The purpose of the present study was to investigate the possible relationship between a change in Thr(389) phosphorylation of p70S6 kinase (p70(S6k)) after a single resistance training session and an increase in skeletal muscle mass following short-term resistance training. Eight male subjects performed an initial resistance training session in leg press, six sets of 6RM with 2 min between sets. Muscle biopsies were obtained from the vastus lateralis before (T1) and 30 min after the initial training session (T2). Six of these subjects completed a 14-week resistance-training programme, three times per week (nine exercises, six sets, 6RM). A third muscle biopsy was obtained at the end of the 14-week training period (T3). One repetition maximum (1RM) squat, bench press and leg press strength as well as fat-free mass (FFM, with dual energy X-ray absorptiometry) were determined at T1 and T3. The results show that the increase in Thr(389) phosphorylation of p70(S6k) after the initial training session was closely correlated with the percentage increase in whole body FFM (r = 0.89, P < 0.01), FFM(leg) (r = 0.81, P < 0.05), 1RM squat (r = 0.84, P < 0.05), and type IIA muscle fibre cross sectional area (r = 0.82, P < 0.05) after 14 weeks of resistance training. These results may suggest that p70(S6k) phosphorylation is involved in the signalling events leading to an increase in protein accretion in human skeletal muscle following resistance training, at least during the initial training period.
2007
Terzis G, Karampatsos G, Georgiadis G. Neuromuscular control and performance in shot-put athletes. J Sports Med Phys Fitness. 2007;47(3):284-90.Abstract
AIM: The aim of this study was to investigate the relationship between the activation level of certain protagonist muscles of the upper and lower body during the shot-put with the shot-put performance in skilled athletes. METHODS: Eight experienced right-handed shot-putters, performed the shot-put with the linear technique. They also performed a maximum (1RM) squat and a 1RM incline bench-press strength test. Electromyographic (EMG) signals were recorded from the m. quadriceps vastus lateralis (VL), m. gastrocnemius internus, m. pectoralis major (PEC) and the m. triceps brachii (TRI) of the right side during all efforts. The level of EMG during the shot-put was normalized relatively to that measured during the respective maximum strength test. RESULTS: Shot-put performance was significantly correlated with 1RM squat (r=0.76, P<0.05) and 1RM bench-press (r=0.75, P<0.05) as well as with the average EMG from VL and PEC after taking the power position (r=0.91, P<0.01 and r=0.75, P<0.05, respectively). A close negative relationship was also found between shot-put performance and the time to reach peak activation of right TRI during the explosive strike of the throwing arm (r=-0.70, P<0.05). CONCLUSION: These results suggest that, besides the importance of absolute muscle strength, an important parameter for shot-put performance is the level of activation of the VL and the PEC during the delivery phase. Furthermore, these data suggest that the TRI should be activated fast in order to be an effective contributor to the shot-put performance.
Vogiatzis I, Stratakos G, Simoes DCM, Terzis G, Georgiadou O, Roussos C, Zakynthinos S. Effects of rehabilitative exercise on peripheral muscle TNFalpha, IL-6, IGF-I and MyoD expression in patients with COPD. Thorax. 2007;62(11):950-6.Abstract
BACKGROUND: Skeletal muscle wasting commonly occurs in patients with chronic obstructive pulmonary disease (COPD) and has been associated with the presence of systemic inflammation. This study investigated whether rehabilitative exercise training decreases the levels of systemic or local muscle inflammation or reverses the abnormalities associated with muscle deconditioning. METHODS: Fifteen patients with COPD (mean (SE) forced expiratory volume in 1 s 36 (4)% predicted) undertook high-intensity exercise training 3 days/week for 10 weeks. Before and after the training programme the concentration of tumour necrosis factor alpha (TNFalpha), interleukin-6 (IL-6) and C-reactive protein (CRP) in plasma was determined by ELISA, and vastus lateralis mRNA expression of TNFalpha, IL-6, total insulin-like growth factor-I (IGF-I) and its isoform mechanogrowth factor (MGF) and myogenic differentiation factor D (MyoD) were assessed by real-time PCR. Protein levels of TNFalpha, IGF-I and MyoD were measured by Western blotting. RESULTS: Rehabilitation improved peak exercise work rate by 10 (2%) (p = 0.004) and mean fibre cross-sectional area from 4061 (254) microm(2) to 4581 (241) microm(2) (p = 0.001). Plasma inflammatory mediators and vastus lateralis expression of TNFalpha and IL-6 were not significantly modified by training. In contrast, there was a significant increase in mRNA expression of IGF-I (by 67 (22)%; p = 0.044), MGF (by 67 (15)%; p = 0.002) and MyoD (by 116 (30)%; p = 0.001). The increase observed at the mRNA level was also seen at the protein level for IGF-I (by 72 (36)%; p = 0.046) and MyoD (by 67 (21)%; p = 0.012). CONCLUSIONS: Pulmonary rehabilitation can induce peripheral muscle adaptations and modifications in factors regulating skeletal muscle hypertrophy and regeneration without decreasing the levels of systemic or local muscle inflammation.
2006
Terzis G, Stattin B, Holmberg H-C. Upper body training and the triceps brachii muscle of elite cross country skiers. Scand J Med Sci Sports. 2006;16(2):121-6.Abstract
This study aimed at evaluating whether addition of extensive upper body training in well-trained cross country skiers induces an adaptation of the triceps brachii (TB) muscle and whether this affects performance. Muscle biopsies were obtained from TB muscle in six male elite cross country skiers before and after 20 weeks of increased upper body training. The cross-sectional area of type I and IIA fibers increased by 11.3% and 24.0%, respectively, and so did the number of capillaries per fiber (2.3-3.2) (all P<0.05). SDS-polyacrylamide electrophoresis revealed in single fibers that the number of fibers expressing myosin heavy chain (MHC) type I isoform decreased from 68.7% to 60.9% (P<0.05), MHC I/IIA isoform was unaltered, while MHC IIA fibers increased from 21.6% to 35.7% and the 4.8% MHC IIA/IIX disappeared with the training (both P<0.05). Citrate synthase and 3-hydroxyacyl coenzyme A dehydrogenase activities increased by 23.3% and 15.4%, respectively, and double poling 10 km time-trial by 10.4% (all P<0.05). The values for TB are similar to what has been demonstrated for leg muscles after exercise training. The subjects who demonstrated the largest improvement in performance exhibited the largest muscle adaptation, which, in turn, was related to the pre-maximal oxygen uptake.
2005
Vogiatzis I, Terzis G, Nanas S, Stratakos G, Simoes DCM, Georgiadou O, Zakynthinos S, Roussos C. Skeletal muscle adaptations to interval training in patients with advanced COPD. Chest. 2005;128(6):3838-45.Abstract
STUDY OBJECTIVES: To investigate the response to interval exercise (IE) training by looking at changes in morphologic and biochemical characteristics of the vastus lateralis muscle, and to compare these changes to those incurred after constant-load exercise (CLE) training. DESIGN: Randomized, controlled, parallel, two-group study (IE vs CLE training). SETTING: Multidisciplinary, outpatient, hospital-based, pulmonary rehabilitation program. PATIENTS: Nineteen patients with stable advanced COPD (mean +/- SEM FEV1, 40 +/- 4% predicted). INTERVENTIONS: Patients (n = 10) assigned to IE training exercised at a mean intensity of 124 +/- 15% of baseline peak exercise capacity (peak work rate [Wpeak]) with 30-s work periods interspersed with 30-s rest periods for 45 min/d. Patients (n = 9) allocated to CLE training exercised at a mean intensity of 75 +/- 5% Wpeak for 30 min/d. Patients exercised 3 d/wk for 10 weeks. MEASUREMENTS AND RESULTS: Needle biopsies of the right vastus lateralis muscle were performed before and after rehabilitation. After IE training, the cross-sectional areas of type I and IIa fibers were significantly increased (type I before, 3,972 +/- 455 microm2; after, 4,934 +/- 467 microm2 [p = 0.004]; type IIa before, 3,695 +/- 372 microm2; after, 4,486 +/- 346 microm2 [p = 0.008]), whereas the capillary-to-fiber ratio was significantly enlarged (from 1.13 +/- 0.08 to 1.24 +/- 0.07 [p = 0.013]). Citrate synthase activity increased (from 14.3 +/- 1.4 to 20.5 +/- 4.2 micromol/min/g), albeit not significantly (p = 0.097). There was also a significant improvement in Wpeak (by 19 +/- 5%; p = 0.04) and in lactate threshold (by 17 +/- 5%; p = 0.02). The magnitude of changes in all the above variables was not significantly different compared to that incurred after CLE training. During training sessions, however, ratings of dyspnea and leg discomfort, expressed as fraction of values achieved at baseline Wpeak, were significantly lower (p < 0.05) for IE training (73 +/- 9% and 60 +/- 8%, respectively) compared to CLE training (83 +/- 10% and 87 +/- 13%, respectively). CONCLUSIONS: High-intensity IE training is equally effective to moderately intense CLE training in inducing peripheral muscle adaptations; however, IE is associated with fewer training symptoms.
2004
Manta P, Terzis G, Papadimitriou C, Kontou C, Vassilopoulos D. Emerin expression in tubular aggregates. Acta Neuropathol. 2004;107(6):546-52.Abstract
Emerin is an inner nuclear membrane protein that is mutated or not expressed in patients with X-linked Emery-Dreifuss muscular dystrophy (X-EDMD/EMD). Cytoplasmic localization of emerin in cultured cells or tissues has been reported, although this remains a controversial issue. Tubular aggregates (TAs) are pathological structures seen in the sarcoplasm of human skeletal muscle fibers in various disorders. The TAs derive from the sarcoplasmic reticulum (SR) and represent, probably, an adaptive response of the SR to various insults to the muscle fibers. In the present study, we present immunohistochemical evidence of emerin expression in TAs. Muscle biopsies with tubular aggregates from four male, unrelated patients were studied. The percentage of muscle fibers containing TAs varied between 5 and 20%. Routine histochemistry revealed intense reaction of TAs with NADH-TR, AMPDA, and NSE, but not with COX, SDH, myosin ATPase (pH 9.4, 4.3, 4.6), PAS, and Oil red O staining. Immunohistochemical study revealed strong immunostaining of TAs with antibodies against emerin and 7 SERCA2-ATPase. Immunostaining of TAs was also seen with antibodies against heat shock protein and dysferlin, but not with antibodies to lamin A, dystrophin, adhalin, beta, gamma, delta sarcoglycans, and merosin. These results suggest that emerin, an inner nuclear membrane protein, is present at the TAs. The interpretation and significance of this finding is discussed in relation to experimental data suggesting that normal emerin localization at the inner nuclear membrane depends on lamin A and mutations in the N-terminal domain of emerin cause mislocalization of the protein to the sarcoplasmic membranes.
2003
Terzis G, Georgiadis G, Vassiliadou E, Manta P. Relationship between shot put performance and triceps brachii fiber type composition and power production. Eur J Appl Physiol. 2003;90(1-2):10-5.Abstract
It is commonly accepted that shot put performance is mainly determined by the ability of the lower body to produce power. The purpose of the present study was to investigate the relationship between shot put performance and triceps brachii muscle fiber type composition and strength capacity. Thirteen male physical education students were selected to participate in the study based upon their shot put performance after 5 weeks of shot put technique instruction. At the completion of this technique-instruction period, they performed the following tests: shot put with a 6-kg shot, isokinetic torque measurements of the elbow extensors at 0, 0.52, 1.04, 1.57, 2.09, 3.14, and 4.19 rad.s(-1), maximal strength (1 RM) and explosive-throwing bench-press tests, one-arm seated shot put with 1-, 2-, 3-, 4-, 5- and 6-kg shot. Whole-body and dominant upper-arm bioimpedance measurements were used to estimate whole-body and upper-arm muscle mass. Muscle biopsy samples from the long head of the dominant triceps brachii were obtained and analyzed for fiber type composition with ATPase histochemistry. Shot put performance was significantly correlated with type II fiber area ( r=0.70, P<0.01), one-arm seated shot put (range r=0.60 to r=0.79, P<0.05), elbow extensors' isokinetic torque (range r=0.65 to r=0.78, P<0.05), bench-press tests ( r>0.86, P<0.01) and estimated arm muscle cross-sectional area ( r=0.68, P<0.05). These results suggest that fiber type composition and the functional capacity of triceps brachii muscle (e.g., isokinetic torque) explain a part of shot put performance. The magnitude of the correlation coefficients between shot put and the upper-body power tests suggests that other body parts (e.g., lower extremities) may play a significant role in this event.
1999
Pilegaard H, Terzis G, Halestrap A, Juel C. Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle. Am J Physiol. 1999;276(5 Pt 1):E843-8.Abstract
The profiles of the lactate/H+ transporter isoforms [monocarboxylate transporter isoforms (MCT)] MCT1 and MCT4 (formerly MCT3 of Price, N. T., V. N. Jackson, and A. P. Halestrap. Biochem. J. 329: 321-328, 1998) were studied in the soleus, triceps brachii, and vastus lateralis muscles of six male subjects. The fiber-type compositions of the muscles were evaluated from the occurrence of the myosin heavy chain isoforms, and the fibers were classified as type I, IIA, or IIX. The total content of MCT1 and MCT4 was determined in muscle homogenates by Western blotting, and MCT1 and MCT4 were visualized on cross-sectional muscle sections by immunofluorescence microscopy. The Western blotting revealed a positive, linear relationship between the MCT1 content and the occurrence of type I fibers in the muscle, but no significant relation was found between MCT4 content and fiber type. Moreover, the interindividual variation in MCT4 content was much larger than the interindividual variation in MCT1 content in homogenate samples. The immunofluorescence microscopy showed that within a given muscle section, the MCT4 isoform was clearly more abundant in type II fibers than in type I fibers, whereas only minor differences existed in the occurrence of the MCT1 isoform between type I and II fibers. Together the present results indicate that the content of MCT1 in a muscle varies between different muscles, whereas fiber-type differences in MCT1 content are minor within a given muscle section. In contrast, the content of MCT4 is clearly fiber-type specific but apparently quite similar in various muscles.
Andersen JL, Terzis G, Kryger A. Increase in the degree of coexpression of myosin heavy chain isoforms in skeletal muscle fibers of the very old. Muscle Nerve. 1999;22(4):449-54.Abstract
Myosin heavy chain (MHC) isoform composition was determined in 2264 single skeletal muscle fibers from vastus lateralis muscle of a group (n = 12) of very old subjects (average age, 88 years). The number of fibers containing only MHC I, IIA, or IIX was 19.9%, 27.2%, and 0.3%, respectively. Surprisingly, 28.5% of the fibers displayed coexpression of both MHC I and IIA, a phenotype that is present in younger adults in very small percentages. Among these fibers coexpressing MHC I and IIA, the majority had a dominant expression of MHC I. Additionally, a small number of fibers coexpressing MHC I and IIX without any MHC IIA, and fibers co-expressing all three isoforms were observed. Altogether, 52.6% of all fibers examined in these very old subjects coexpressed two or three MHC isoforms. The present study provides evidence that advanced age leads to a significant elevation of skeletal muscle fibers displaying coexpression of two MHC isoforms and that a separation into slow and fast fibers in very old individuals may therefore be somewhat misleading. The clinical significance of the elevated number of fibers coexpressing MHC I and IIA is uncertain.