The effects of aging, physical training, and a single bout of exercise on mitochondrial protein expression in human skeletal muscle.

Citation:

Bori Z, Zhao Z, Koltai E, Fatouros IG, Jamurtas AZ, Douroudos II, Terzis G, Chatzinikolaou A, Sovatzidis A, Draganidis D, et al. The effects of aging, physical training, and a single bout of exercise on mitochondrial protein expression in human skeletal muscle. Exp Gerontol. 2012;47(6):417-24.

Abstract:

Aging results in a significant decline in aerobic capacity and impaired mitochondrial function. We have tested the effects of moderate physical activity on aerobic capacity and a single bout of exercise on the expression profile of mitochondrial biogenesis, and fusion and fission related genes in skeletal muscle of human subjects. Physical activity attenuated the aging-associated decline in VO2 max (p<0.05). Aging increased and a single exercise bout decreased the expression of nuclear respiratory factor-1 (NRF1), while the transcription factor A (TFAM) expression showed a strong relationship with VO(2max) and increased significantly in the young physically active group. Mitochondrial fission representing FIS1 was induced by regular physical activity, while a bout of exercise decreased fusion-associated gene expression. The expression of polynucleotide phosphorylase (PNPase) changed inversely in young and old groups and decreased with aging. The A2 subunit of cyclic AMP-activated protein kinase (AMPK) was induced by a single bout of exercise in skeletal muscle samples of both young and old subjects (p<0.05). Our data suggest that moderate levels of regular physical activity increases a larger number of mitochondrial biogenesis-related gene expressions in young individuals than in aged subjects. Mitochondrial fission is impaired by aging and could be one of the most sensitive markers of the age-associated decline in the adaptive response to physical activity.