Publications by Year: 2021

2021
Tsakmakidis KL, Baskourelos K, Stefański T. Topological, nonreciprocal, and multiresonant slow light beyond the time-bandwidth limit. Appl. Phys. Lett. [Internet]. 2021;119:190501 . Publisher's VersionAbstract
Topologically protected transport has recently emerged as an effective means to address a recurring problem hampering the field of slow light for the past two decades: its keen sensitivity to disorders and structural imperfections. With it, there has been renewed interest in efforts to overcome the delay-time-bandwidth limitation usually characterizing slow-light devices, on occasion thought to be a fundamental limit. What exactly is this limit, and what does it imply? Can it be overcome? If yes, how could topological slow light help, and in what systems? What applications might be expected by overcoming the limit? Our Perspective here attempts addressing these and other related questions while pointing to important new functionalities both for classical and quantum devices that overcoming the limit can enable.
Almpanis E, Zouros GP, Tsakmakidis KL. Active THz metasurfaces for compact isolation. J. Opt. Soc. Am. B [Internet]. 2021;38(9):C191-C197. Publisher's VersionAbstract
Metasurfaces constitute an emerging technology, allowing for compact manipulation of all degrees of freedom of an incident lightwave. A key ongoing challenge in the design of these structures is how to allow for energy-efficient dynamic (active) operation, particularly for the polarization of incident light, which other standard devices typically cannot efficiently act upon. Here, we present a quasi-two-dimensional magneto-optic metasurface capable of simultaneously high-contrast on/off operation, as well as rotation of the polarization angle of a linearly polarized wave—that is, without converting the incident linear polarization to elliptical, which is normally particularly challenging. Furthermore, the device’s operation is broadband, with a bandwidth of around 5 µm, and can be conveniently manipulated using an external magnetic bias. Our findings, corroborated using two different full-wave simulation approaches, may allow for functional metasurfaces operating in the terahertz (THz) regime, giving rise to robust, energy-efficient, and high-dynamic-range broadband isolation, to be used for a wealth of optoelectronic and communication applications.
Tsakmakidis KL. Stopped-light nanolasing in optical magic-angle graphene. Nature Nanotechnol. [Internet]. 2021. Publisher's VersionAbstract
An optical analogue of magic-angle twisted graphene bilayer gives rise to rigorously stopped light, which coupled with gain allows for a new type of a nanolaser with remarkable figures of merit.
Benetou MI, Tsakmakidis KL. Multifunctional plasmonic metasurface demultiplexer and wavelength-polarization controllable beam splitter. J. Opt. Soc. Am. B [Internet]. 2021;38:C50-C57. Publisher's VersionAbstract
We report the experimental realization of a multifunctional microscale plasmonic metasurface capable of sampling a light beam and performing five functionalities, while allowing high direct transmission and maintenance of the properties of the input light beam. The plasmonic metasurface integrates light-to-surface-plasmon coupling, two-channel wavelength demultiplexing with a channel spacing smaller than 44 nm, wavelength and polarization controllable beam splitting of a monochromatic, single polarization signal, and four-level polarization and wavelength-polarization demultiplexing in an all-in-one structure. Such a device can play a key role for on-chip adaptable integrated circuits for parallel signal processing, communications, and nondestructive sensing.
Mohammadi E, Tittl A, Tsakmakidis KL, Raziman TV, Curto AG. Dual nanoresonators for ultrasensitive chiral detection. ACS Photonics [Internet]. 2021. Publisher's VersionAbstract
The discrimination of enantiomers is crucial in biochemistry. However, chiral sensing faces significant limitations due to inherently weak chiroptical signals. Nanophotonics is a promising solution to enhance sensitivity thanks to increased optical chirality maximized by strong electric and magnetic fields. Metallic and dielectric nanoparticles can separately provide electric and magnetic resonances. Here we propose their synergistic combination in hybrid metal–dielectric nanostructures to exploit their dual character for superchiral fields beyond the limits of single particles. For optimal optical chirality, in addition to maximization of the resonance strength, the resonances must spectrally coincide. Simultaneously, their electric and magnetic fields must be parallel and π/2 out of phase and spatially overlap. We demonstrate that the interplay between the strength of the resonances and these optimal conditions constrains the attainable optical chirality in resonant systems. Starting from a simple symmetric nanodimer, we derive closed-form expressions elucidating its fundamental limits of optical chirality. Building on the trade-offs of different classes of dimers, we then suggest an asymmetric dual dimer based on realistic materials. These dual nanoresonators provide strong and decoupled electric and magnetic resonances together with optimal conditions for chiral fields. Finally, we introduce more complex dual building blocks for a metasurface with a record 300-fold enhancement of local optical chirality in nanoscale gaps, enabling circular dichroism enhancement by a factor of 20. By combining analytical insight and practical designs, our results put forward hybrid resonators to increase chiral sensitivity, particularly for small molecular quantities.
Zouros GP, Kolezas GD, Almpanis E, Tsakmakidis KL. Three-dimensional giant invisibility to superscattering enhancement induced by Zeeman-split modes. ACS Photonics [Internet]. 2021. Publisher's VersionAbstract
We report that the fundamental three-dimensional (3-D) scattering single-channel limit can be exceeded in magneto-optical assisted systems by inducing non-degenerate magnetoplasmonic modes. In addition, we propose a 3-D active (magnetically assisted) forward-superscattering to invisibility switch, functioning at the same operational wavelength. Our structure is composed of a high-index dielectric core coated by indium antimonide (InSb), a semiconductor whose permittivity tensorial elements may be actively manipulated by an external magnetic bias B0. In the absence of B0, InSb exhibits isotropic epsilon-near-zero (ENZ) and plasmonic behavior above and below its plasma frequency, respectively, a frequency band which can be utilized for attaining invisibility using cloaks with permittivity less than that of free space. With realistic B0 magnitudes as high as 0.17 T, the gyroelectric properties of InSb enable the lift of mode degeneracy, and the induction of Zeeman-split type magnetoplasmonic modes that beat the fundamental single-channel limit. Moreover, we show that chains of such particles, where each one operates in its superscattering regime, enable giant off-to-on enhancement in scattering efficiency, as well as unprecedentedly high forward scattering. These all-in-one designs allow for the implementation of functional and readily tunable optical devices.
Benetou MI, Tsakmakidis KL. Light-Alignment Controllable Beam Splitter and Vectorial Displacement Sensor in the Stopped-Light Regime of Plasmonic Metasurfaces. ACS Photonics [Internet]. 2021;8:296-306. WebsiteAbstract
We report the experimental realization of periodically perforated plasmonic metasurfaces capable of integrating several key functionalities, such as light-to-surface plasmon coupling, controllable beam-splitting, wavelength filtering and routing, high resolution differential wavelength measurement, and vectorial displacement sensing. The plasmonic metasurfaces operate at telecom wavelengths, at the vicinity of the eigenmode crossing points where zero group velocity is experienced, and their functionality parameters, such as sensitivity to misalignment, prong angular separation, power ratio, polarization, and bandwidth, can be adjusted by designing the boundary shape and by conveniently manipulating their alignment with the illuminating light beam. In the same context, a circular plasmonic metasurface could also serve as a vectorial displacement sensor capable of monitoring simultaneously the magnitude and direction of the displacement between its center and that of the illuminating beam. The compact, easily controllable, and all-in-one nature of our devices can enable on-chip integrated circuits with adaptable functionality for applications in sensing and optical signal processing. © 2020 American Chemical Society.
Bin-Alam MS, Baxter J, Awan KM, Kiviniemi A, Mamchur Y, Lesina AC, Tsakmakidis KL, Huttunen MJ, Ramunno L, Dolgaleva K. Hyperpolarizability of Plasmonic Meta-Atoms in Metasurfaces. Nano Letters [Internet]. 2021;21:51-59. WebsiteAbstract
Plasmonic metasurfaces are promising as enablers of nanoscale nonlinear optics and flat nonlinear optical components. Nonlinear optical responses of such metasurfaces are determined by the nonlinear optical properties of individual plasmonic meta-atoms. Unfortunately, no simple methods exist to determine the nonlinear optical properties (hyperpolarizabilities) of the meta-atoms hindering the design of nonlinear metasurfaces. Here, we develop the equivalent RLC circuit (resistor, inductor, capacitor) model of such meta-atoms to estimate their second-order nonlinear optical properties, that is, the first-order hyperpolarizability in the optical spectral range. In parallel, we extract from second-harmonic generation experiments the first-order hyperpolarizabilities of individual meta-atoms consisting of asymmetrically shaped (elongated) plasmonic nanoprisms, verified with detailed calculations using both nonlinear hydrodynamic-FDTD and nonlinear scattering theory. All three approaches, analytical, experimental, and computational, yield results that agree very well. Our empirical RLC model can thus be used as a simple tool to enable an efficient design of nonlinear plasmonic metasurfaces. © 2020 American Chemical Society.
Cardea I, Grassani D, Upham J, Schulz SA, Tsakmakidis KL, Brès C-S. Unconventional time-bandwidth performance of resonant cavities with nonreciprocal coupling. Physical Review A [Internet]. 2021;103. WebsiteAbstract
The time-bandwidth limit is a mathematical tenet that affects all reciprocal resonators, stating that the product of the spectral bandwidth that can couple into a resonant system and its characteristic energy decay time is always equal to 1. Here, we develop an analytical and numerical model to show that introducing nonreciprocal coupling to a generalized resonator changes the power balance between the reflected and intracavity fields, which consequently overcomes the time-bandwidth limit of the resonant system. By performing a full evaluation of the time-bandwidth product (TBP) of the modeled resonator, we show that it represents a measure of the increased delay imparted to a light wave, with respect to what the bandwidth of the reciprocal resonant structure would allow to the same amount of in-coupled power. No longer restricted to the value 1, we show that the TBP can instead be used as a figure of merit of the improvement in intracavity power enhancement due to the nonreciprocal coupling. © 2021 American Physical Society.
STEFANSKI TP, BASKOURELOS K, Tsakmakidis KL. Finite-difference time-domain analyses of active cloaking for electrically-large objects. Optics Express. 2021;29:3055-3066.Abstract
Invisibility cloaking devices constitute a unique and potentially disruptive technology, but only if they can work over broad bandwidths for electrically-large objects. So far, the only known scheme that allows for broadband scattering cancellation from an electrically-large object is based on an active implementation where electric and magnetic sources are deployed over a surface surrounding the object, but whose 'switching on' and other characteristics need to be known (determined) a priori, before the incident wave hits the surface. However, until now, the performance (and potentially surprising) characteristics of these devices have not been thoroughly analysed computationally, ideally directly in the time domain, owing mainly to numerical accuracy issues and the computational overhead associated with simulations of electrically-large objects. Here, on the basis of a finite-difference time-domain (FDTD) method that is combined with a perfect (for FDTD's discretized space) implementation of the total-field/scattered-field (TFSF) interface, we present detailed, time- and frequency-domain analyses of the performance and characteristics of active cloaking devices. The proposed technique guarantees the isolation between scattered- and total-field regions at the numerical noise level (around -300 dB), thereby also allowing for accurate evaluations of the scattering levels from imperfect (non-ideal) active cloaks. Our results reveal several key features, not pointed out previously, such as the suppression of scattering at certain frequencies even for imperfect (time-delayed) sources on the surface of the active cloak, the broadband suppression of back-scattering even for imperfect sources and insufficiently long predetermination times, but also the sensitivity of the scheme on the accurate switching on of the active sources and on the predetermination times if broadband scattering suppression from all angles is required for the electrically-large object. © 2021 Optical Society of America.