Loulas I, Almpanis E, Kouroublakis M, Tsakmakidis KL, Rockstuhl C, Zouros GP.
Electromagnetic multipole theory for two-dimensional photonics. ACS Photonics [Internet]. 2025.
Publisher's VersionAbstractWe develop a full-wave electromagnetic (EM) theory for calculating the multipole decomposition in two-dimensional (2-D) structures consisting of isolated, arbitrarily shaped, inhomogeneous, anisotropic cylinders or a collection of such. To derive the multipole decomposition, we first solve the scattering problem by expanding the scattered electric field in divergenceless cylindrical vector wave functions (CVWFs) with unknown expansion coefficients that characterize the multipole response. These expansion coefficients are then expressed via contour integrals of the vectorial components of the scattered electric field evaluated via an electric field volume integral equation (EFVIE). The kernels of the EFVIE are the products of the tensorial 2-D Green’s function (GF) expansion and the equivalent 2-D volumetric electric and magnetic current densities. We validate the theory using the commercial finite element solver COMSOL Multiphysics. In the validation, we compute the multipole decomposition of the fields scattered from various 2-D structures and compare the results with alternative formulations. Finally, we demonstrate the applicability of the theory to study an emerging photonics application on oligomer-based highly directional switching using active media. This analysis addresses a critical gap in the current literature, where multipole theories exist primarily for three-dimensional (3-D) particles of isotropic materials. Our work enhances the understanding and utilization of the optical properties of 2-D, inhomogeneous, and anisotropic cylindrical structures, contributing to advancements in photonic and meta-optics technologies.
Liu C, Zhao Z, Guo T, Xu J, Deng X, Yuan K, Tang R, Tsakmakidis KL, Hong L.
Robust multimode interference and conversion in topological unidirectional surface magnetoplasmons. Opt. Lett. [Internet]. 2025;50(4):1253-1256.
Publisher's VersionAbstractWe have theoretically investigated surface magnetoplasmons (SMPs) in an yttrium-iron-garnet (YIG) sandwiched waveguide. The dispersion demonstrated that this waveguide can support topological unidirectional SMPs. Based on unidirectional SMPs, magnetically controllable multimode interference (MMI) is verified in both symmetric and asymmetric waveguides. Due to the coupling between the modes along two YIG–air interfaces, the asymmetric waveguide supports a unidirectional even mode within a single-mode frequency range. Moreover, these modes are topologically protected when a disorder is introduced. Utilizing robust unidirectional SMP MMI (USMMI), tunable splitters have been achieved. It has been demonstrated that mode conversion between different modes can be realized. These results provide many degrees of freedom to manipulate topological waves.