Publications

2015
Diamantakos P, Velkou A, Killday BK, Gimisis T, Melliou E, Magiatis P. Oleokoronal and Oleomissional: New major phenolic ingredients of extra virgin olive oil. Olivae [Internet]. 2015;122:22–32. Publisher's VersionAbstract
abstract extra virgin olive oil contains significant quantities of polar phenolic ingredients. The large majority is made up of esters of tyrosol or hydroxytyrosol with secoiridoid derivatives from oleuropein or ligstroside. in the current study we describe a number of new or incompletely characterized forms of ligstroside and oleuropein aglycons. two of them which are stable enolic forms are described for the first time as real olive oil ingredients although their presence in olive oil had been postulated. to minimize the confusion with the complicated names of the agly-con isomers we propose the names oleokoronal and oleomissional for the two ingredients. after screening 2000 samples of olive oil from most major varieties we were able to identify samples of olive oil in which oleokoronal and oleomissional were the major phenolic ingredients and could be used as starting material for their isolation. interestingly, during normal or reversed phase chromatography both compounds were transformed to the known forms of monoaldehydic closed ring aglycons, which offers an explanation as to why those compounds had not been identified so far. Their real presence in olive oil was confirmed by direct nMr observation without the use of any solvent.
2014
Zoidou E, Magiatis P, Melliou E, Constantinou M, Haroutounian S, Skaltsounis A-L. Oleuropein as a bioactive constituent added in milk and yogurt. Food Chem. 2014;158:319-24.Abstract
Oleuropein is a bioactive natural product from olives known to display a broad variety of health beneficial properties. However its presence in most edible olives is lowered due to debittering. In this respect, we envisaged the incorporation of oleuropein into dairy products (cow’s milk and yogurt) aiming to produce novel functional foods. Additionally, an analytical method for the monitoring of oleuropein in milk and yogurt was also developed and validated. Oleuropein was not affected during heat treatment of milk, while during the milk fermentation process it was not hydrolysed by the produced acids. Oleuropein was not metabolised by lactic acid bacteria, did not inhibit their growth and its stability in the final products was proven. The novel products displayed same taste, colour and texture as the conventional ones. Results herein indicate that oleuropein can be added as an active ingredient in milk and yogurt preparations to provide two novel functional dairy products.
Nikolantonaki M, Magiatis P, Waterhouse AL. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones. Food Chem. 2014;163:61-7.Abstract
Quinones are central intermediates in wine oxidation that can degrade the quality of wine by reactions with varietal thiols, such as 3-sulfanylhexanol, decreasing desirable aroma. Protection by wine preservatives (sulphur dioxide, glutathione, ascorbic acid and model tannin, phloroglucinol) was assessed by competitive sacrificial reactions with 4-methyl-1,2-benzoquinone, quantifying products and ratios by HPLC-UV-MS. Regioselectivity was assessed by product isolation and identification by NMR spectroscopy. Nucleophilic addition reactions compete with two electron reduction of quinones by sulphur dioxide or ascorbic acid, and both routes serve as effective quenching pathways, but minor secondary products from coupled redox reactions between the products and reactants are also observed. The wine preservatives were all highly reactive and thus all very protective against 3-sulfanylhexanol loss to the quinone, but showed only additive antioxidant effects. Confirmation of these reaction rates and pathways in wine is needed to assess the actual protective action of each tested preservative.
Mousouri E, Melliou E, Magiatis P. Isolation of Megaritolactones and Other Bioactive Metabolites from ’Megaritiki’ Table Olives and Debittering Water. J Agric Food Chem. 2014.Abstract
’Megaritiki’ is an olive cultivar widely used in Greece for the production of low polyphenol olive oil and table olives. To investigate possible metabolic differentiation in comparison with other varieties, the composition of ’Megaritiki’ olive fruits and wastewaters from the debittering procedure was studied. Moreover, the recovery of bioactive metabolites from wastewater using adsorption resin was studied to exploit this byproduct. Metabolites in fruits and wastewaters were monitored using NMR spectroscopy. The major constituents of wastewater were hydroxytyrosol-4-O-glucoside, 11-methyl-oleoside, hydroxytyrosol, and tyrosol but not oleuropein. Furthermore, wastewater afforded rengyoxide and rengyoside B, which are for the first time isolated from olives. The final edible olives, besides hydroxytyrosol and tyrosol, contained rengyoxide and cleroindicin C, which are the first isolated from the species, haleridone for the first time isolated from edible olives, and four metabolites, which are the first reported as natural products, megaritodilactone, megaritolactonic acid, methyl ester of megaritolactonic acid B, and megaritolactonol.
Karkoula E, Skantzari A, Melliou E, Magiatis P. Quantitative Measurement of Major Secoiridoid Derivatives in Olive Oil Using qNMR. Proof of the Artificial Formation of Aldehydic Oleuropein and Ligstroside Aglycon Isomers. J Agric Food Chem. 2014.Abstract
A previously developed method for measurement of oleocanthal and oleacein in olive oil by quantitative (1)H NMR was expanded to include the measurement of the monoaldehydic forms of oleuropein and ligstroside aglycons. The method was validated and applied to the study of 340 monovarietal Greek and Californian olive oils from 23 varieties and for a 3-year period. A wide variation concerning the concentrations of all four secoiridoids was recorded. The concentration of each one ranged from nondetectable to 711 mg/kg and the sum of the four major secoiridoids (named as D3) ranged from nondetectable to 1534 mg/kg. Examination of the NMR profile of the olive oil extract before and after contact with normal or reversed stationary chromatography phase proved the artificial formation of the 5S,8S,9S aldehydic forms of oleuropein and ligstroside aglycon isomers during chromatography. Finally, methyl elenolate was identified for the first time as a minor constituent of olive oil.
Mousouri E, Melliou E, Magiatis P. Isolation of megaritolactones and other bioactive metabolites from ’Megaritiki’ table olives and debittering water. Journal of Agricultural and Food Chemistry [Internet]. 2014;62:660-667. WebsiteAbstract
’Megaritiki’ is an olive cultivar widely used in Greece for the production of low polyphenol olive oil and table olives. To investigate possible metabolic differentiation in comparison with other varieties, the composition of ’Megaritiki’ olive fruits and wastewaters from the debittering procedure was studied. Moreover, the recovery of bioactive metabolites from wastewater using adsorption resin was studied to exploit this byproduct. Metabolites in fruits and wastewaters were monitored using NMR spectroscopy. The major constituents of wastewater were hydroxytyrosol-4-O-glucoside, 11-methyl-oleoside, hydroxytyrosol, and tyrosol but not oleuropein. Furthermore, wastewater afforded rengyoxide and rengyoside B, which are for the first time isolated from olives. The final edible olives, besides hydroxytyrosol and tyrosol, contained rengyoxide and cleroindicin C, which are the first isolated from the species, haleridone for the first time isolated from edible olives, and four metabolites, which are the first reported as natural products, megaritodilactone, megaritolactonic acid, methyl ester of megaritolactonic acid B, and megaritolactonol. © 2014 American Chemical Society.
Nikolantonaki M a, Magiatis P b, Waterhouse AL a. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones. Food Chemistry [Internet]. 2014;163:61-67. WebsiteAbstract
Quinones are central intermediates in wine oxidation that can degrade the quality of wine by reactions with varietal thiols, such as 3-sulfanylhexanol, decreasing desirable aroma. Protection by wine preservatives (sulphur dioxide, glutathione, ascorbic acid and model tannin, phloroglucinol) was assessed by competitive sacrificial reactions with 4-methyl-1,2-benzoquinone, quantifying products and ratios by HPLC-UV-MS. Regioselectivity was assessed by product isolation and identification by NMR spectroscopy. Nucleophilic addition reactions compete with two electron reduction of quinones by sulphur dioxide or ascorbic acid, and both routes serve as effective quenching pathways, but minor secondary products from coupled redox reactions between the products and reactants are also observed. The wine preservatives were all highly reactive and thus all very protective against 3-sulfanylhexanol loss to the quinone, but showed only additive antioxidant effects. Confirmation of these reaction rates and pathways in wine is needed to assess the actual protective action of each tested preservative. © 2014 Elsevier Ltd. All rights reserved.
b Zoidou E a, Magiatis P b, Melliou E b, Constantinou M b, Haroutounian S c, Skaltsounis A-L b. Oleuropein as a bioactive constituent added in milk and yogurt. Food Chemistry [Internet]. 2014;158:319-324. WebsiteAbstract
Oleuropein is a bioactive natural product from olives known to display a broad variety of health beneficial properties. However its presence in most edible olives is lowered due to debittering. In this respect, we envisaged the incorporation of oleuropein into dairy products (cow’s milk and yogurt) aiming to produce novel functional foods. Additionally, an analytical method for the monitoring of oleuropein in milk and yogurt was also developed and validated. Oleuropein was not affected during heat treatment of milk, while during the milk fermentation process it was not hydrolysed by the produced acids. Oleuropein was not metabolised by lactic acid bacteria, did not inhibit their growth and its stability in the final products was proven. The novel products displayed same taste, colour and texture as the conventional ones. Results herein indicate that oleuropein can be added as an active ingredient in milk and yogurt preparations to provide two novel functional dairy products. © 2014 Published by Elsevier Ltd.
Karkoula E, Skantzari A, Melliou E, Magiatis P. Quantitative Measurement of Major Secoiridoid Derivatives in Olive Oil Using qNMR. Proof of the Artificial Formation of Aldehydic Oleuropein and Ligstroside Aglycon Isomers. J.Agric. Food Chem. 2014;2014:600-607.Abstract
A previously developed method for measurement of oleocanthal and oleacein in olive oil by quantitative 1H NMR was expanded to include the measurement of the monoaldehydic forms of oleuropein and ligstroside aglycons. The method was validated and applied to the study of 340 monovarietal Greek and Californian olive oils from 23 varieties and for a 3-year period. A wide variation concerning the concentrations of all four secoiridoids was recorded. The concentration of each one ranged from nondetectable to 711 mg/kg and the sum of the four major secoiridoids (named as D3) ranged from nondetectable to 1534 mg/ kg. Examination of the NMR profile of the olive oil extract before and after contact with normal or reversed stationary chromatography phase proved the artificial formation of the 5S,8S,9S aldehydic forms of oleuropein and ligstroside aglycon isomers during chromatography. Finally, methyl elenolate was identified for the first time as a minor constituent of olive oil.
Karkoula E a, Skantzari A a, b Melliou E a, Magiatis P a. Quantitative measurement of major secoiridoid derivatives in olive oil using qNMR. Proof of the artificial formation of aldehydic oleuropein and ligstroside aglycon isomers. Journal of Agricultural and Food Chemistry [Internet]. 2014;62:600-607. WebsiteAbstract
A previously developed method for measurement of oleocanthal and oleacein in olive oil by quantitative 1H NMR was expanded to include the measurement of the monoaldehydic forms of oleuropein and ligstroside aglycons. The method was validated and applied to the study of 340 monovarietal Greek and Californian olive oils from 23 varieties and for a 3-year period. A wide variation concerning the concentrations of all four secoiridoids was recorded. The concentration of each one ranged from nondetectable to 711 mg/kg and the sum of the four major secoiridoids (named as D3) ranged from nondetectable to 1534 mg/kg. Examination of the NMR profile of the olive oil extract before and after contact with normal or reversed stationary chromatography phase proved the artificial formation of the 5S,8S,9S aldehydic forms of oleuropein and ligstroside aglycon isomers during chromatography. Finally, methyl elenolate was identified for the first time as a minor constituent of olive oil. © 2014 American Chemical Society.
2013
Pothou E a, Melliou E b, Skaltsounis A-L b, Liouni M c, Magiatis P b. Investigation of volatile constituents of beer, using resin adsorption and GC/MS, and correlation of 2-(3H)-benzoxazolone with wheat malt. Journal of the American Society of Brewing Chemists [Internet]. 2013;71:35-40. WebsiteAbstract
The volatile constituents of 22 samples of commercial beers (lager, ale, and lambic) were isolated using adsorption resin XAD-4 and analyzed by gas chromatography, using mass-spectrometric detection. The presence of 63 volatile components was examined in each sample. Major common compounds identified in all of the studied samples were 2-methylpropanol (0.77-12.9%), 3-methylbutanol (32.0-55.5%), phenylethanol (18.7- 58.8%), and tyrosol (0.69-5.82%), expressed as TIC percent. Most other components were found in various concentrations but their presence was not uniformly distributed in all the studied beers. One of the minor volatile compounds, 2-(3H)-benzoxazolone, was found only in beers made with wheat malt. Additionally, for the first time, tryptophol acetate was identified as beer constituent. Finally, principal component analysis of the volatile compounds was able to discriminate the group of beers containing wheat. © 2013 American Society of Brewing Chemists, Inc.
b Magiatis P a, Pappas P c, Gaitanis G d, Mexia N a, e Melliou E a, Galanou M c, d Vlachos C c, Stathopoulou K a, Skaltsounis AL a, Marselos M c, et al. Malassezia yeasts produce a collection of exceptionally potent activators of the ah (dioxin) receptor detected in diseased human skin. Journal of Investigative Dermatology [Internet]. 2013;133:2023-2030. WebsiteAbstract
Malassezia yeasts are commensal microorganisms, which under insufficiently understood conditions can become pathogenic. We have previously shown that specific strains isolated from diseased human skin can preferentially produce agonists of the aryl hydrocarbon receptor (AhR), whose activation has been linked to certain skin diseases. Investigation of skin scale extracts from patients with Malassezia-associated diseases demonstrated 10-to 1,000-fold higher AhR-activating capacity than control skin extracts. Liquid chromatography-tandem mass spectrometry analysis of the patients’ extracts revealed the presence of indirubin, 6-formylindolo[3,2-b]carbazole (FICZ), indolo[3,2-b]carbazole (ICZ), malassezin, and pityriacitrin. The same compounds were also identified in 9 out of 12 Malassezia species culture extracts tested, connecting their presence in skin scales with this yeast. Studying the activity of the Malassezia culture extracts and pure metabolites in HaCaT cells by reverse transcriptase real-time PCR revealed significant alterations in mRNA levels of the endogenous AhR-responsive genes Cyp1A1, Cyp1B1, and AhRR. Indirubin-and FICZ-activated AhR in HaCaT and human HepG2 cells with significantly higher, yet transient, potency as compared with the prototypical AhR ligand, dioxin. In loco synthesis of these highly potent AhR inducers by Malassezia yeasts could have a significant impact on skin homeostatic mechanisms and disease development. © 2013 The Society for Investigative Dermatology.
Karkoula E a, Melliou E b, Magiatis P a. A new method for the estimation of olive oil healthfulness. International News on Fats, Oils and Related Materials [Internet]. 2013;24:266-270. WebsiteAbstract
Several epidemiological studies have shown that the traditional Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, neurodegenerative diseases, and certain kinds of cancer. These appreciable health-promoting properties have been partially correlated with the regular consumption of extra virgin olive oil as the principal source of fat. Olive oil is the most famous agricultural product in the Mediterranean, with a history as old as that region’s civilization. Olive fruits and olive oil not only are delicious but also have been considered as medicines since ancient times.
Myrianthopoulos V a, Kritsanida M a, Gaboriaud-Kolar N a, Magiatis P a, Ferandin Y b, Durieu E b, Lozach O b, Cappel D c, Soundararajan M e, Filippakopoulos P e, et al. Novel inverse binding mode of indirubin derivatives yields improved selectivity for DYRK kinases. ACS Medicinal Chemistry Letters [Internet]. 2013;4:22-26. WebsiteAbstract
DYRK kinases are involved in alternative pre-mRNA splicing as well as in neuropathological states such as Alzheimer’s disease and Down syndrome. In this study, we present the design, synthesis, and biological evaluation of indirubins as DYRK inhibitors with enhanced selectivity. Modifications of the bis-indole included polar or acidic functionalities at positions 5' and 6' and a bromine or a trifluoromethyl group at position 7, affording analogues that possess high activity and pronounced specificity. Compound 6i carrying a 5'-carboxylate moiety demonstrated the best inhibitory profile. A novel inverse binding mode, which forms the basis for the improved selectivity, was suggested by molecular modeling and confirmed by determining the crystal structure of DYRK2 in complex with 6i. Structure-activity relationships were further established, including a thermodynamic analysis of binding site water molecules, offering a structural explanation for the selective DYRK inhibition. © 2012 American Chemical Society.
b Lemonakis N a, Magiatis P b, Kostomitsopoulos N c, d Skaltsounis A-L b, Tamvakopoulos C a. Oral Administration of Chios Mastic Gum or Extracts in Mice: Quantification of Triterpenic Acids by Liquid Chromatography-Tandem Mass Spectrometry. Planta Medica [Internet]. 2013. WebsiteAbstract
Chios mastic gum, the resin obtained as an exudate from the trunk and branches of Pistacia lentiscus L var. chia, is used extensively as a constituent of herbal drugs or functional foods. The oral absorption of its major constituents still remains unclear. In the context of identifying the features of mastic gum that are responsible for either therapeutic effects or effects of nutritional value, a methodology based on high-performance liquid chromatography (HPLC) coupled to tandem mass spectrometry (MS/MS) was developed and applied for the quantification of mastic gum triterpenic acids, 24Z-isomasticadienonic acid (IMNA), and 24Z-isomasticadienolic acid (IMLA) in mouse plasma. The specific compounds were selected based on their biological activity and potential against Helicobacter pylori. Concentrations were determined simultaneously in mouse plasma after oral administration of mastic gum or total mastic extract without polymer (TMEWP) in order to evaluate the role of the natural polymer, poly-β-myrcene, in the absorption process. Following TMEWP administration in mice, circulating IMNA and IMLA plasma levels were significantly higher (approximately 10-fold) in comparison to IMNA and IMLA plasma levels following total mastic gum administration (CMG), suggesting that the polymer plays a critical role in the absorption process. More specifically following TMEWP administration, Cmax plasma values were 3300 ± 859 ng/mL for IMNA and 163 ± 58 ng/mL for IMLA. In comparison, following CMG administration, Cmax plasma values were 329 ± 57 ng/mL for IMNA and 28 ± 8 ng/mL for IMLA.The methodological approaches presented in this study, along with the findings, offer valuable information on the availability of bioactive components following ingestion of mastic and facilitate the uses of mastic either as an ingredient of functional foods or as a herbal drug. © Georg Thieme Verlag KG.
Stathopoulou K a, Valianou L b, Skaltsounis A-L a, Karapanagiotis I b, Magiatis P a. Structure elucidation and chromatographic identification of anthraquinone components of cochineal (Dactylopius coccus) detected in historical objects. Analytica Chimica Acta [Internet]. 2013;804:264-272. WebsiteAbstract
Cochineal is one of the most well known organic red dyes. Dactylopius coccus Costa (Dactylopiidae) is a scale insect that is used as the source of the dye known as Mexican cochineal. Although cochineal is today a natural food colorant (E120) and although it has been used in art objects (textiles and paintings) for centuries, its exact chemical consistency is not well clarified except for carminic acid which is the major component and kermesic and flavokermesic acids. Several minor components (typically less than 5% of the colouring material) remained unknown or partially studied, although their presence has been reported in numerous analytical works related to art objects. Chemical investigation of the methanol extract of the dried insects, after subsequent HPLC chromatographic separations, led to the isolation and structure elucidation of six new anthraquinones, along with the known compounds carminic acid, kermesic acid and flavokermesic acid. The new compounds formerly described as DCII and DCIII, were found to be the 2 C-glucoside of flavokermesic acid and 4-aminocarminic acid, respectively, while DCIV and DCVII were found to be the α/β C-glucofuranosides of kermesic acid, and were studied as a mixture due to equilibrium. In addition, 3 O-glucoside of flavokermesic acid (DCOFK), and 3,4-dideoxycarminic acid (DDCA) were identified. The structures of the new compounds were elucidated on the basis of their NMR and MS data. Finally, the new compounds were detected in silk dyed with cochineal, lake pigment and, furthermore, in historical objects of the cultural heritage (icon and textile) using LC-DAD and LC-MS. © 2013 Elsevier B.V.
Brennan JC a, Denison MS a, Holstege DM b, Magiatis P c, Dallas JL d, Gutierrez EG e, Soshilov AA a, Millam JR f. 2,3-cis-2R,3R-(-)-epiafzelechin-3-O-p-coumarate, a novel flavan-3-ol isolated from Fallopia convolvulus seed, is an estrogen receptor agonist in human cell lines. BMC Complementary and Alternative Medicine [Internet]. 2013;13. WebsiteAbstract
Background: The plant genus Fallopia is well-known in Chinese traditional medicine and includes many species that contain bioactive compounds, namely phytoestrogens. Consumption of phytoestrogens may be linked to decreased incidence of breast and prostate cancers therefore discovery of novel phytoestrogens and novel sources of phytoestrogens is of interest. Although phytoestrogen content has been analyzed in the rhizomes of various Fallopia sp., seeds of a Fallopia sp. have never been examined for phytoestrogen presence.Methods: Analytical chemistry techniques were used with guidance from an in vitro estrogen receptor bioassay (a stably transfected human ovarian carcinoma cell line) to isolate and identify estrogenic components from seeds of Fallopia convolvulus. A transiently transfected human breast carcinoma cell line was used to characterize the biological activity of the isolated compounds on estrogen receptors (ER) α and β.Results: Two compounds, emodin and the novel flavan-3-ol, (-)-epiafzelechin-3-O-p-coumarate (rhodoeosein), were identified to be responsible for estrogenic activity of F. convolvulus seed extract. Absolute stereochemistry of rhodoeosein was determined by 1 and 2D NMR, optical rotation and circular dichroism. Emodin was identified by HPLC/DAD, LC/MS/MS, and FT/ICR-MS. When characterizing the ER specificity in biological activity of rhodoeosein and emodin, rhodoeosein was able to exhibit a four-fold greater relative estrogenic potency (REP) in breast cells transiently-transfected with ERβ as compared to those transfected with ERα, and emodin exhibited a six-fold greater REP in ERβ-transfected breast cells. Cell type-specific differences were observed with rhodoeosein but not emodin; rhodoeosein produced superinduction of reporter gene activity in the human ovarian cell line (> 400% of maximum estradiol [E2] induction) but not in the breast cell line.Conclusion: This study is the first to characterize the novel flavan-3-ol compound, rhodoeosein, and its ability to induce estrogenic activity in human cell lines. Rhodoeosein and emodin may have potential therapeutic applications as natural products activating ERβ, and further characterization of rhodoeosein is necessary to evaluate its selectivity as a cell type-specific ER agonist. © 2013 Brennan et al.; licensee BioMed Central Ltd.
2012
Liu L a, Kritsanida M b, Magiatis P b, Gaboriaud N b, Wang Y a, Wu J a, Buettner R a, Yang F a, Nam S a, Skaltsounis L b, et al. A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Cancer Biology and Therapy [Internet]. 2012;13:1255-1261. WebsiteAbstract
STAT3 and Akt signaling have been validated as potential molecular targets for treatment of cancers including melanoma. These small molecule inhibitors of STAT3 or Akt signaling are promising for developing anti-melanoma therapeutic agents. MLS-2438, a novel 7-bromoindirubin, a derivative of the natural product indirubin, was synthesized with a bromo-group at the 7-position on one indole ring and a hydrophilic group at the 3’-position on the other indole ring. We tested the anticancer activity of MLS-2438 and investigated its mechanism of action in human melanoma cell lines. Here, we show that MLS-2438 inhibits viability and induces apoptosis of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Several pro-apoptotic Bcl-2 family proteins are involved in the MLS-2438 mediated apoptosis. MLS-2438 inhibits Src kinase activity in vitro and phosphorylation of JAK2, Src, STAT3 and Akt in cultured cancer cells. In contrast to the decreased phosphorylation levels of JAK2, Src, STAT3 and Akt, phosphorylation levels of the MAP K (Erk1/2) signaling protein were not reduced in cells treated with MLS-2438. These results demonstrate that MLS-2438, a novel natural product derivative, is a Src inhibitor and potentially regulates kinase activity of JAK2 and Akt in cancer cells. Importantly, MLS-2438 suppressed tumor growth with low toxicity in a mouse xenograft model of human melanoma. Our findings support further development of MLS-2438 as a potential small-molecule therapeutic agent that targets both STAT3 and Akt signaling in human melanoma cells. © 2012 Landes Bioscience.
Grougnet R a, Magiatis P b, Laborie H b, Lazarou D c, Papadopoulos A c, Skaltsounis A-L b. Sesamolinol glucoside, disaminyl ether, and other lignans from sesame seeds. Journal of Agricultural and Food Chemistry [Internet]. 2012;60:108-111. WebsiteAbstract
The application of a procedure based on XAD-4 adsorption resin permitted the obtainment of an enriched polyphenolic extract from Sesamum indicum seeds. Chemical analysis of the obtained extract led to the identification of 12 lignans. Among them, 2 lignans, (+)-sesamolinol-4'-O-β-d-glucoside and disaminyl ether, are reported for the first time as natural compounds. Their structure has been determined by spectroscopic methods, mainly by the application of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) techniques [heteronuclear multiple-quantum coherence (HMQC), heteronuclear multiple-bond correlation (HMBC), and nuclear Overhauser effect spectrometry (NOESY)] and mass spectroscopy. The isolated compounds were evaluated for their antimutagenic activity. Among the tested lignans, the most active lignan was found to be sesamolin, followed by sesamolinol and samin, against H2O2. Additionally, some of the tested lignans showed desmutagenic activity against benzo[a]pyrene (BaP). © 2011 American Chemical Society.
Karkoula E a, Skantzari A a, b Melliou E a, Magiatis P a. Direct measurement of oleocanthal and oleacein levels in olive oil by quantitative 1H NMR. Establishment of a new index for the characterization of extra virgin olive oils. Journal of Agricultural and Food Chemistry [Internet]. 2012;60:11696-11703. WebsiteAbstract
A new method for direct measurement of the oleocanthal and oleacein levels in olive oil by quantitative 1H NMR was developed. The method was applied to the study of 175 monovarietal commercial Greek and California olive oil samples. The main findings were as follows: (1) There was a significant variation concerning the concentrations of oleocanthal and oleacein among the studied samples. Their concentrations ranged from nondetectable to 355 mg/kg and their sum (index D1) from 0 to 501 mg/kg. (2) There are olive varieties that independent of geographic origin and harvest time produce oil that contains both compounds in low levels. (3) There is a positive correlation of a high level of oleocanthal and oleacein in olive oils with the early time of harvest. Although there is a need for more extensive study, a new index for the characterization of extra virgin olive oils, which is a combination of D1 = oleocanthal + oleacein level and D2 = oleocanthal/oleacein ratio, seems to be very useful. © 2012 American Chemical Society.
Nicolaou KA a, Liapis V b, Evdokiou A b, Constantinou C c, Magiatis P d, Skaltsounis AL d, Koumas L e, Costeas PA e, Constantinou AI a. Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells. Biochemical and Biophysical Research Communications [Internet]. 2012;425:76-82. WebsiteAbstract
Indirubin derivatives gained interest in recent years for their anticancer and antimetastatic properties. The objective of the present study was to evaluate and compare the anticancer properties of the two novel bromo-substituted derivatives 6-bromoindirubin-3’-oxime (6BIO) and 7-bromoindirubin-3’-oxime (7BIO) in five different breast cancer cell lines. Cell viability assays identified that 6BIO and 7BIO are most effective in preventing the proliferation of the MDA-MB-231-TXSA breast cancer cell line from a total of five breast cancer cell lined examined. In addition it was found that the two compounds induce apoptosis via different mechanisms. 6BIO induces caspase-dependent programmed cell death through the intrinsic (mitochondrial) caspase-9 pathway. 7BIO up-regulates p21 and promotes G2/M cell cycle arrest which is subsequently followed by the activation of two different apoptotic pathways: (a) a pathway that involves the upregulation of DR4/DR5 and activation of caspase-8 and (b) a caspase independent pathway. In conclusion, this study provides important insights regarding the molecular pathways leading to cell cycle arrest and apoptosis by two indirubin derivatives that can find clinical applications in targeted cancer therapeutics. © 2012 Elsevier Inc.
Gaitanis G a, Magiatis P b, Hantschke M c, Bassukas ID a, Velegraki A d. The Malassezia genus in skin and systemic diseases. Clinical Microbiology Reviews [Internet]. 2012;25:106-141. WebsiteAbstract
In the last 15 years, the genus Malassezia has been a topic of intense basic research on taxonomy, physiology, biochemistry, ecology, immunology, and metabolomics. Currently, the genus encompasses 14 species. The 1996 revision of the genus resulted in seven accepted taxa: M. furfur, M. pachydermatis, M. sympodialis, M. globosa, M. obtusa, M. restricta, and M. slooffiae. In the last decade, seven new taxa isolated from healthy and lesional human and animal skin have been accepted: M. dermatis, M. japonica, M. yamatoensis, M. nana, M. caprae, M. equina, and M. cuniculi. However, forthcoming multidisciplinary research is expected to show the etiopathological relationships between these new species and skin diseases. Hitherto, basic and clinical research has established etiological links between Malassezia yeasts, pityriasis versicolor, and sepsis of neonates and immunocompromised individuals. Their role in aggravating seborrheic dermatitis, dandruff, folliculitis, and onychomycosis, though often supported by histopathological evidence and favorable antifungal therapeutic outcomes, remains under investigation. A close association between skin and Malassezia IgE binding allergens in atopic eczema has been shown, while laboratory data support a role in psoriasis exacerbations. Finally, metabolomic research resulted in the proposal of a hypothesis on the contribution of Malassezia-synthesized aryl hydrocarbon receptor (AhR) ligands to basal cell carcinoma through UV radiation-induced carcinogenesis. © 2012, American Society for Microbiology. All Rights Reserved.
b Vlachos C a, Schulte BM a, Magiatis P c, Adema GJ a, Gaitanis G b. Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived dendritic cells. British Journal of Dermatology [Internet]. 2012;167:496-505. WebsiteAbstract
Background The aryl hydrocarbon receptor (AhR) is a nuclear receptor and transcriptional regulator with pleiotropic effects. The production of potent AhR ligands by Malassezia yeasts, such as indirubin, indolo[3,2-b]carbazole (ICZ), tryptanthrin and malassezin, has been associated with the pathogenesis of seborrhoeic dermatitis and pityriasis versicolor. Antigen-presenting cells in the skin can encounter microbes in the presence of these bioactive metabolites that could potentially modulate their function. Objectives To study the effects of the aforementioned naturally occurring ligands on AhR activation and Toll-like receptor (TLR)-induced maturation in human monocyte-derived dendritic cells (moDCs). Methods These indoles were screened for AhR activation capacity in moDCs employing CYP1A1 and CYP1B1 induction as read out and for their effects on the function of moDCs after TLR-ligand stimulation. Results Indirubin and ICZ were the most potent AhR ligands and were selected for subsequent experiments. Concurrent exposure of moDCs to indirubin or ICZ together with TLR agonists significantly augmented the AhR-mediated CYP1A1 and CYP1B1 gene expression. Additionally, mature DCs that were subsequently stimulated with AhR ligands showed increased AhR target gene expression. Moreover, these ligands limited TLR-induced phenotypic maturation (CD80, CD83, CD86, MHC II upregulation) of moDCs, reduced secretion of the inflammatory cytokines interleukin (IL)-6 and IL-12, and decreased their ability to induce alloreactive T-lymphocyte proliferation. Conclusions These results demonstrate that AhR agonists of yeast origin are able to inhibit moDC responses to TLR ligands and that moDCs can adapt through increased transcription of metabolizing enzymes such as CYP1A1 and CYP1B1. © 2012 British Association of Dermatologists.
2011
Paraschos S a, Magiatis P a, Gousia P b, Economou V b, Sakkas H b, Papadopoulou C b, Skaltsounis A-L a. Chemical investigation and antimicrobial properties of mastic water and its major constituents. Food Chemistry [Internet]. 2011;129:907-911. WebsiteAbstract
Mastic water is a commercial flavouring obtained during the steam distillation of mastic resin (the resin of Pistacia lentiscus var. chia) for the production of mastic oil. The mastic water extracts were analysed by GC-MS. The major compounds identified were verbenone, α-terpineol, linalool and trans-pinocarveol. Overall the composition was found to be very different from that of mastic oil. Additional GC-MS revealed the enantiomeric ratio of the chiral constituents of mastic water. The antimicrobial activity of mastic water extract, as well as that of its major constituents, was examined against Escherichia coli, Staphylococcus aureus and Candida spp. including ATCC wild clinical and food-borne strains. Linalool and α-terpineol were found to be the most potent antimicrobial constituents. Finally the stability of mastic water at different temperatures was studied, showing no change in the GC-MS profile of the organic extract for a period of 4 months at storage temperatures up to 4 °C. © 2011 Elsevier Ltd. All rights reserved.
Gaitanis G a, Velegraki A b, Magiatis P c, Pappas P d, Bassukas ID a. Could Malassezia yeasts be implicated in skin carcinogenesis through the production of aryl-hydrocarbon receptor ligands?. Medical Hypotheses [Internet]. 2011;77:47-51. WebsiteAbstract
Malassezia yeasts are found on the skin of all humans and many warm-blooded animals. In vitro they have the ability to synthesize potent ligands (indolo[3,2-b]carbazole, malassezin and indirubin) of the aryl-hydrocarbon receptor (AhR; synonym: dioxin receptor) when the sweat contained l-tryptophan is used as the single nitrogen source. The production of these AhR-ligands has been associated with pathogenic strains of a certain Malassezia species (Malassezia furfur) but recent evidence shows that this property is widely distributed in almost all currently known Malassezia species. AhR is associated with carcinogenesis and the potential connection of these ubiquitous skin symbionts, and putative pathogens, with skin neoplasia should be evaluated mainly focusing on mechanisms related to the distinctive ability of the yeast to produce potent AhR ligands. Hypothesis: Synthesis of available pertinent data show a possible link between Malassezia produced AhR ligands and skin carcinogenesis, particularly of basal cell carcinoma (BCC).BCCs are almost exclusively observed in animal species colonized by Malassezia. In humans and animals there is overlapping in the skin regions colonized by this yeast and affected by BCC. The potent AhR ligands synthesized by pathogenic Malassezia strains could contribute to tumor promotion by: modification of the UV radiation carcinogenesis, alterations in the salvage/survival of initiated tumor cells, inhibition of cell senescence, interaction with vitamin D metabolism, promotion of immune tolerance and finally pro-carcinogenic modulation of cell cycle progression and apoptosis. © 2011 Elsevier Ltd.
b Lemonakis N a, Magiatis P b, Kostomitsopoulos N c, Skaltsounis A-L b, Tamvakopoulos C a. Oral administration of chios mastic gum or extracts in mice: Quantification of triterpenic acids by liquid chromatography-tandem mass spectrometry. Planta Medica [Internet]. 2011;77:1916-1923. WebsiteAbstract
Chios mastic gum, the resin obtained as an exudate from the trunk and branches of Pistacia lentiscus L var. chia, is used extensively as a constituent of herbal drugs or functional foods. The oral absorption of its major constituents still remains unclear. In the context of identifying the features of mastic gum that are responsible for either therapeutic effects or effects of nutritional value, a methodology based on high-performance liquid chromatography (HPLC) coupled to tandem mass spectrometry (MS/MS) was developed and applied for the quantification of mastic gum triterpenic acids, 24Z-isomasticadienonic acid (IMNA), and 24Z-isomasticadienolic acid (IMLA) in mouse plasma. The specific compounds were selected based on their biological activity and potential against Helicobacter pylori. Concentrations were determined simultaneously in mouse plasma after oral administration of mastic gum or total mastic extract without polymer (TMEWP) in order to evaluate the role of the natural polymer, poly - myrcene, in the absorption process. Following TMEWP administration in mice, circulating IMNA and IMLA plasma levels were significantly higher (approximately 10-fold) in comparison to IMNA and IMLA plasma levels following total mastic gum administration (CMG), suggesting that the polymer plays a critical role in the absorption process. More specifically following TMEWP administration, Cmax plasma values were 3300±859ng/mL for IMNA and 163±58ng/mL for IMLA. In comparison, following CMG administration, Cmax plasma values were 329±57ng/mL for IMNA and 28±8ng/mL for IMLA. The methodological approaches presented in this study, along with the findings, offer valuable information on the availability of bioactive components following ingestion of mastic and facilitate the uses of mastic either as an ingredient of functional foods or as a herbal drug. © Georg Thieme Verlag KG Stuttgart - New York.