Publications

2026
Pilala KM, Koroneou S, Papadimitriou MA, Panoutsopoulou K, Soureas K, Giagkos GC, Levis P, Linardoutsos D, Stravodimos K, Avgeris M, Scorilas A. Loss of METTL3 m6A methyltransferase results in short-term progression and poor treatment outcome of bladder cancer patients. International Journal of Cancer 2026;158:763-774.Abstract
Bladder cancer (BlCa) exhibits a highly heterogeneous molecular landscape and treatment response, underlining the pressing need for personalized prognosis. N6-methyladenosine (m6A) constitutes the most abundant RNA modification, modulates RNA biology/metabolism, and maintains cellular homeostasis, with its dysregulation involved in cancer initiation and progression. Herein, we evaluated the clinical value of METTL3 m6A methyltransferase, the main catalytic component of m6A methylation machinery, in improving BlCa patients' risk stratification and prognosis. The screening cohort of the study included 213 patients. The UROMOL (n = 535) was analyzed as a validation cohort for non-muscle-invasive BlCa (NMIBC), while the TCGA-BLCA (n = 412) and Mariathasan et al. (n = 348) cohorts were analyzed for muscle-invasive BlCa (MIBC). Disease recurrence/progression and patients' mortality were assessed as clinical endpoints for NMIBC and MIBC, respectively. Internal validation of Cox regression models was conducted using bootstrap analysis, while the clinical utility for patient prognosis was evaluated through decision curve analysis. Reduced METTL3 expression was correlated with muscle-invasive disease and tumors of advanced stage. Loss of METTL3 expression at diagnosis was strongly associated with higher risk of short-term progression (HR = 2.903, 95% CI: 1.303-6.464, p = 0.006) to invasive stages in NMIBC and with worse survival of MIBC patients (HR = 1.908, 95% CI: 1.020-3.567, p = 0.042). Consistently, validation cohorts confirmed the poor treatment outcomes in patients exhibiting loss of METTL3. Finally, METTL3-fitted multivariate models improved risk stratification and offered superior clinical benefit for NMIBC and MIBC prognostication compared to clinically established disease markers. Overall, loss of METTL3 expression correlates with inferior treatment outcomes in BlCa, driving more accurate risk stratification and ameliorating patients' prognosis in BlCa.
2025
Rampias T, Goutas A, Karagiannis D, Kanaki Z, Makri A, Hoxhallari L, Koukouzeli FE, Paraskevopoulou V, Tsouraki D, Paschalidis N, Avgeris M, Scorilas A, Klinakis A. KMT2C inactivation leads to PTEN downregulation and tolerance to DNA damage during cell cycle progression. NPJ Precision Oncology 2025;9:336.Abstract
Uncontrolled proliferation, resistance to apoptosis, inability to maintain genome integrity, and, recently, epigenetic reprogramming are all hallmarks of cancer. A number of gene expression and cell signaling networks control these-often-interconnected processes, while the study of their deregulation is in the forefront of cancer research for decades. Here we present data from cells and patients indicating that KMT2C, one of the most frequently mutated proteins in solid malignancies, is involved in all these processes. Its loss, a bad prognosis marker in bladder cancer, is associated with activation of the PI3K/PDK/AKT oncogenic/antiapoptotic axis, and tolerance to DNA damage during cell cycle progression. On the other hand, these cells suffer from mitotic stress that can be therapeutically exploited. Treatment with a PLK1 inhibitor showed high efficacy in vivo, and was associated with mitotic catastrophe and cellular senescence, providing evidence that targeting genes that promote mitotic progression could be a promising therapeutic approach in the subset of tumors with KMT2C loss.
Soureas K, Malandrakis P, Papadimitriou MA, Minopoulos C, Ntanasis-Stathopoulos I, Liacos CI, Gavriatopoulou M, Kastritis E, Dimopoulos MA, Scorilas A, Avgeris M, Terpos E. Refining precision prognostics in multiple myeloma: loss of miR-221/222 cluster in CD138+ plasma cells results in short-term progression and worse treatment outcome. Blood Cancer Journal 2025;15:41.Abstract
The persistence of high relapse rates and therapy resistance continues to challenge the effective management of multiple myeloma (MM). The identification of novel MM-specific molecular markers could ameliorate risk-stratification tools and accurately identify high-risk patients towards personalized prognosis and therapy. miRNA-seq analysis of CD138+ plasma cells (n = 24) unveiled miR-221-3p and miR-222-3p (miR-221/222 cluster) as the most downregulated miRNAs in R-ISS III compared to R-ISS I/II patients. Subsequently, miR-221/222 levels were quantified by RT-qPCR in CD138+ plasma cells of our screening cohort (n = 141), assessing patients' mortality and disease progression as clinical endpoints. Internal validation was performed by bootstrap analysis, while clinical benefit was estimated by decision curve analysis. Kryukov et al. (n = 149) and Aass et al. (n = 86) served as institutional-independent validation cohorts. Loss of miR-221/222 cluster was strongly associated with patients' short-term progression and poor overall survival, which was confirmed by Kryukov et al. and Aass et al. validation cohorts. Intriguingly, miR-221/222-fitted multivariate models offered superior risk-stratification within R-ISS staging and risk-based cytogenetics. Moreover, miR-221/222 loss could effectively discriminate optimal 1st-line treatment responders with inferior treatment outcome. Our study identified the loss of miR-221/222 cluster as a powerful independent predictor of patients' post-treatment progression, ameliorating prognosis and supporting precision medicine in MM.
Damianaki A, Marmarinos A, Avgeris M, Gourgiotis D, Vlachopapadopoulou EA, Charakida M, Tsolia M, Kossiva L. Lifestyle and Biochemical Parameters That May Hamper Immune Responses in Pediatric Patients After Immunization with the BNT162b2 mRNA COVID-19 Vaccine. Diseases 2025;13Abstract
BACKGROUND: The aim of this study was to evaluate whether increased body mass index (BMI) and biochemical and lifestyle parameters linked to obesity and smoke exposure disrupt immune responses of children and adolescents following vaccination with the mRNA BNT162b2 vaccine. METHODS: A prospective, single-center, cohort study was conducted. Participants were assigned to receive two doses of the mRNA vaccine. Anti-SARS-CoV-2 IgG and neutralizing antibodies (AB) were measured before vaccination (T0) and 14 days after the second dose (T1). BMI and biochemical parameters were evaluated at T0. A questionnaire on lifestyle characteristics was filled in. RESULTS: IgG optical density (OD) ratio at T1 was lower in the overweight-obese group regardless of COVID-19 disease positive history [p = 0.028 for the seronegative group, p = 0.032 for the seropositive group]. Neutralizing AB were lower in overweight-obese participants in the seronegative group at T1 [p = 0.008]. HDL, fasting glucose/insulin ratio (FGIR), C-reactive protein (CRP), HBA1c, uric acid, and smoke exposure were significantly correlated with BMI [p = 0.006, p < 0.001, p < 0.001, p = 0.006, p = 0.009, p < 0.001, respectively]. The main biochemical parameters that were inversely correlated with IgG and neutralizing AB titers at T1 were uric acid [p = 0.018, p = 0.002], FGIR [p = 0.001, p = 0.008] and HBA1C [p = 0.027, p = 0.038], while smoke exposure negatively affected the humoral immune responses at T0 in the convalescent group [p = 0.004, p = 0.005]. CONCLUSIONS: Current data suggests that uric acid, insulin resistance (IR), and smoke exposure could adversely affect the immune responses in overweight-obese vaccinated children, highlighting the need for actions to enhance the protection of this particular subgroup.
Pilala KM, Panoutsopoulou K, Papadimitriou MA, Soureas K, Scorilas A, Avgeris M. Exploring the methyl-verse: Dynamic interplay of epigenome and m6A epitranscriptome. Molecular Therapy 2025;33:447-464.Abstract
The orchestration of dynamic epigenetic and epitranscriptomic modifications is pivotal for the fine-tuning of gene expression. However, these modifications are traditionally examined independently. Recent compelling studies have disclosed an interesting communication and interplay between m6A RNA methylation (m6A epitranscriptome) and epigenetic modifications, enabling the formation of feedback circuits and cooperative networks. Intriguingly, the interaction between m6A and DNA methylation machinery, coupled with the crosstalk between m6A RNA and histone modifications shape the transcriptional profile and translational efficiency. Moreover, m6A modifications interact also with non-coding RNAs, modulating their stability, abundance, and regulatory functions. In the light of these findings, m6A imprinting acts as a versatile checkpoint, linking epigenetic and epitranscriptomic layers toward a multilayer and time-dependent control of gene expression and cellular homeostasis. The scope of the present review is to decipher the m6A-coordinated circuits with DNA imprinting, chromatin architecture, and non-coding RNAs networks in normal physiology and carcinogenesis. Ultimately, we summarize the development of innovative CRISPR-dCas engineering platforms fused with m6A catalytic components (m6A writers or erasers) to achieve transcript-specific editing of m6A epitranscriptomes that can create new insights in modern RNA therapeutics.
Xagorari M, Marmarinos A, Doganis D, Nikita M, Magkou E, Sfetsiori AE, Baka M, Kossiva L, Pasparaki S, Soldatou A, Tsolia M, Scorilas A, Gourgiotis D, Avgeris M. NEAT1 lncRNA overexpression results in short-term progression and poor treatment outcome in childhood B-ALL. British Journal of Haematology 2025;207:2475-2485.Abstract
Childhood acute lymphoblastic leukaemia (chALL) remains the most prevalent malignancy in children and adolescents. Improving risk stratification and providing personalized prognosis and treatment remain major clinical challenges. Herein, we analysed the clinical utility of NEAT1 lncRNA for the prognosis and prediction of treatment outcome of childhood B-cell precursor ALL (chB-ALL). NEAT1_1 isoform was quantified in bone marrow samples of chB-ALL patients at diagnosis (n = 160) and at the end of induction (n = 108) of ALL-BFM protocol, and in age-matched healthy children (n = 68). Relapse and death served as clinical end-points for survival analysis. Bootstrap analysis was performed for internal validation and decision curve analysis assessed the clinical net benefit for chB-ALL prognosis. Our analysis showed that chB-ALL patients with NEAT1 overexpression at diagnosis are at significantly higher risk for progression (HR = 2.957, 95% CI: 1.122-7.790, p = 0.011) and worse survival (HR = 5.832, 95% CI: 1.259-27.01, p = 0.012), independently of clinicopathological and treatment data. Moreover, NEAT1-fitted multivariate models resulted in improved risk stratification compared to the conventional disease markers of white blood cells, bone marrow response and minimal residual disease, while decision curve analysis highlighted the superior clinical net benefit for chB-ALL prognosis. In conclusion, NEAT1 overexpression constitutes a powerful, independent predictor of poor treatment outcomes and disease progression of chB-ALL, providing refined stratification of patient's risk.
Karaviti D, Charakida M, Dimopoulou D, Marmarinos A, Papadaki M, Maritsi D, Spyridis N, Avgeris M, Gourgiotis D, Tsolia M. Long-term Effects of SARS-CoV-2 Infection on Children's Vasculature. Pediatr Infect Dis J 2025;44:792-797.Abstract
BACKGROUND: While long coronavirus disease 2019 (COVID-19) is linked to prolonged vascular dysfunction in adults, research in children remains poor. In this study, we assessed vascular health in children infected with severe acute respiratory syndrome coronavirus 2 about 6.8 months postinfection, comparing them with healthy controls. METHODS: Two hundred twenty-three children were assessed and divided into group 1, which included children with a positive disease history and group 2, which consisted of healthy controls. Anthropometric measurements, lipid profile, biomarkers (interleukin-6, C-reactive protein, tumor necrosis factor-alpha and soluble intracellular adhesion molecule) and long COVID symptoms were assessed, along with pulse wave velocity (PWV) measurements and carotid intima-media thickness (cIMT) to evaluate aortic stiffness. RESULTS: Children in group 1 were older (mean age: 10.8 +/- 3.2 years vs. 8.5 +/- 2.8 years, P < 0.001) and had higher body mass index (20.3 +/- 5.6 kg/m 2 vs. 18.4 +/- 3.5 kg/m 2 , P < 0.001). PWV was increased in group 1 (5.02 +/- 0.7 m/s vs. 4.7 +/- 0.6, P < 0.001). However, vascular differences between the groups disappeared after adjusting for age, body mass index, and blood pressure. Soluble intracellular adhesion molecule-1 levels were elevated in children with a history of moderate/severe COVID-19 infection compared with controls (555.8 +/- 113.2 ng/mL vs. 428 +/- 42.6 ng/mL, P < 0.001). Cholesterol levels, inflammatory markers and cIMT were comparable between groups. Long COVID symptoms were reported mainly by participants of group 1 [34 (23.6%) vs. 3 (3.8%), P < 0.001]. CONCLUSIONS: This study demonstrates insights into the long-term effects of COVID-19 infection in children. Evidence of endothelial activation without structural arterial changes was found. Persistent inflammation postinfection was absent, yet approximately one-quarter of the participants experienced long COVID symptoms, indicating potential differences in the pathophysiology of postacute COVID-19 infection in childhood.
Foutadakis S, Soureas K, Roupakia E, Besta S, Avgeris M, Kolettas E. Identification of Oncogene-Induced Senescence-Associated MicroRNAs. Methods Mol Biol 2025;2906:189-213.Abstract
Cellular senescence, a state of permanent cell cycle arrest, recapitulates the aging process at the cellular level. It can be triggered by intrinsic or extrinsic factors including telomere shortening (replicative senescence) and in response to various types of stresses such as oncogenic stress (oncogene-induced senescence, OIS). Senescence has been detected in vitro and in premalignant lesions in mice and humans expressing mutant oncogenes. MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression at the posttranscriptional level, and have been involved in both replicative senescence and OIS. Several methods have been used to identify miRNAs and compare their expression in normal versus oncogene-induced senescent cells, as well as to analyze their role and their targets in senescence. Here, we describe several methods that can be employed to identify miRNAs in cells undergoing OIS, including miRNA-sequencing, RT-qPCR-based detection and quantification of miRNAs and Nanostring miRNA analysis (nCounter miRNA Expression Assay). Moreover, we perform a meta-analysis of studies employing the above methodologies, pinpoint miRNAs with consistent expression changes across senescence models, and predict their target genes and the pathways in which they partake.
2024
Soureas K, Papadimitriou MA, Malandrakis P, Papanota AM, Adamopoulos PG, Ntanasis-Stathopoulos I, Liacos CI, Gavriatopoulou M, Sideris DC, Kastritis E, Dimopoulos MA, Scorilas A, Terpos E, Avgeris M. Small RNA-seq and clinical evaluation of tRNA-derived fragments in multiple myeloma: Loss of mitochondrial i-tRF(HisGTG) results in patients' poor treatment outcome. British Journal of Haematology 2024;204:1790-1800.Abstract
Despite the substantial progress in multiple myeloma (MM) therapy nowadays, treatment resistance and disease relapse remain major clinical hindrances. Herein, we have investigated tRNA-derived fragment (tRF) profiles in MM and precursor stages (smoldering MM/sMM; monoclonal gammopathy of undetermined significance/MGUS), aiming to unveil potential MM-related tRFs in ameliorating MM prognosis and risk stratification. Small RNA-seq was performed to profile tRFs in bone marrow CD138(+) plasma cells, revealing the significant deregulation of the mitochondrial internal tRF(HisGTG) (mt-i-tRF(HisGTG)) in MM versus sMM/MGUS. The screening cohort of the study consisted of 147 MM patients, and mt-i-tRF(HisGTG) levels were quantified by RT-qPCR. Disease progression was assessed as clinical end-point for survival analysis, while internal validation was performed by bootstrap and decision curve analyses. Screening cohort analysis highlighted the potent association of reduced mt-i-tRF(HisGTG) levels with patients' bone disease (p = 0.010), osteolysis (p = 0.023) and with significantly higher risk for short-term disease progression following first-line chemotherapy, independently of patients' clinical data (HR = 1.954; p = 0.036). Additionally, mt-i-tRF(HisGTG)-fitted multivariate models led to superior risk stratification of MM patients' treatment outcome and prognosis compared to disease-established markers. Notably, our study highlighted mt-i-tRF(HisGTG) loss as a powerful independent indicator of post-treatment progression of MM patients, leading to superior risk stratification of patients' treatment outcome.
Adamopoulos PG, Diamantopoulos MA, Boti MA, Zafeiriadou A, Galani A, Kostakis M, Markou A, Sideris DC, Avgeris M, Thomaidis NS, Scorilas A. Spike-Seq: An amplicon-based high-throughput sequencing approach for the sensitive detection and characterization of SARS-CoV-2 genetic variations in environmental samples. Sci Total Environ 2024;914:169747.Abstract
Ever since the outbreak of COVID-19 disease in Wuhan, China, different variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified. Wastewater-based epidemiology (WBE), an approach that has been successfully applied in numerous case studies worldwide, offers a cost-effective and rapid way for monitoring trends of SARS-Cov-2 in the community level without selection bias. Despite being a gold-standard procedure, WBE is a challenging approach due to the sample instability and the moderate efficiency of SARS-CoV-2 concentration in wastewater. In the present study, we introduce Spike-Seq, a custom amplicon-based approach for the S gene sequencing of SARS-CoV-2 in wastewater samples, which enables not only the accurate identification of the existing Spike-related genetic markers, but also the estimation of their frequency in the investigated samples. The implementation of Spike-Seq involves the combination of nested PCR-based assays that efficiently amplify the entire nucleotide sequence of the S gene and next-generation sequencing, which enables the variant detection and the estimation of their frequency. In the framework of the current work, Spike-Seq was performed to investigate the mutational profile of SARS-CoV-2 in samples from the Wastewater Treatment Plant (WWTP) of Athens, Greece, which originated from multiple timepoints, ranging from March 2021 until July 2022. Our findings demonstrate that Spike-Seq efficiently detected major genetic markers of B.1.1.7 (Alpha), B.1.617.2 (Delta) as well as B.1.1.529 (Omicron) variants in wastewater samples and provided their frequency levels, showing similar variant distributions with the published clinical data from the National Public Health organization. The presented approach can prove to be a useful tool for the detection of SARS-CoV-2 in challenging wastewater samples and the identification of the existing genetic variants of S gene.
Papadimitriou MA, Pilala KM, Panoutsopoulou K, Levis P, Kotronopoulos G, Kanaki Z, Loules G, Zamanakou M, Linardoutsos D, Sideris DC, Stravodimos K, Klinakis A, Scorilas A, Avgeris M. CDKN2A copy number alteration in bladder cancer: Integrative analysis in patient-derived xenografts and cancer patients. Molecular Therapy Oncology 2024;32:200818.Abstract
Bladder cancer (BlCa) is an extensively heterogeneous disease that leads to great variability in tumor evolution scenarios and lifelong patient surveillance, emphasizing the need for modern, minimally invasive precision medicine. Here, we explored the clinical significance of copy number alterations (CNAs) in BlCa. CNA profiling was performed in 15 patient-derived xenografts (PDXs) and validated in The Cancer Genome Atlas BlCa (TCGA-BLCA; n = 408) and Lindgren et al. (n = 143) cohorts. CDKN2A copy number loss was identified as the most frequent CNA in bladder tumors, associated with reduced CDKN2A expression, tumors of a papillary phenotype, and prolonged PDX survival. The study's screening cohort consisted of 243 BlCa patients, and CDKN2A copy number was assessed in genomic DNA and cell-free DNA (cfDNA) from 217 tumors and 189 pre-treatment serum samples, respectively. CDKN2A copy number loss was correlated with superior disease-free and progression-free survival of non-muscle-invasive BlCa (NMIBC) patients. Moreover, a higher CDKN2A index (CDKN2A/LEP ratio) in pre-treatment cfDNA was associated with advanced tumor stage and grade and short-term NMIBC progression to invasive disease, while multivariate models fitted for CDKN2A index in pre-treatment cfDNA offered superior risk stratification of T1/high-grade and EORTC high-risk patients, enhancing prediction of treatment outcome. CDKN2A copy number status could serve as a minimally invasive tool to improve risk stratification and support personalized prognosis in BlCa.
Dimopoulou D, Charakida M, Marmarinos A, Karaviti D, Avgeris M, Gourgiotis D, Tsolia MN. SARS-CoV-2 Antibody Kinetics in Unvaccinated Hospitalized Children With COVID-19. Pediatr Infect Dis J 2024;43:536-542.Abstract
BACKGROUND: Antibody levels decline a few months post-acute COVID-19, but humoral memory persists in adults. Age and disease severity may affect antibody responses. This study aims to evaluate the presence and durability of antibody responses in children with COVID-19. METHODS: A prospective, single-center study, involving unvaccinated children 0-16 years of age who were hospitalized with COVID-19 between October 2020 and December 2021, was conducted. Serological testing for anti-Spike severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG and neutralizing antibodies was performed at diagnosis and at 1-, 3-, 6- and 12-months post-infection. RESULTS: A total of 65 immunocompetent children were enrolled [mean age (+/-SD): 6.7 (+/-6.4) years; males: 56.9%]. At 3 months, 40/44 (91%) children were seropositive; seropositivity persisted in 22/26 (85%) children at 6 months and in 10/12 (83%) children at 12 months. There was no evidence that age was modifying the prediction of variance of SARS-CoV-2 IgG levels. In contrast, SARS-CoV-2 IgG levels varied with time and disease severity. The association with time was non-linear, so that with increasing time there was a significant reduction in SARS-CoV-2 IgG levels [coef, 0.044 (95% confidence interval CI: 0.061-0.028), P < 0.001]. For each increment of time, the higher disease severity group was associated with 0.9 lower SARS-CoV-2 IgG levels. Everyone varied from the average effect of time with an SD of 0.01, suggesting that individuals may have different trajectories across time. CONCLUSION: Disease severity, but not age, influences antibody titers among children hospitalized with COVID-19. SARS-CoV-2 infection induces durable seroconversion in these children with detectable IgG levels at 1 year after infection.
Papailiou S, Soldatou A, Marmarinos A, Avgeris M, Papathoma E, Sindos M, Georgantzi S, Rodolakis A, Iacovidou N, Gourgiotis D, Tsolia M. Seroprevalence of diphtheria, tetanus and pertussis antibodies and Tdap vaccination in pregnant women in Greece - A cross- sectional study. Vaccine 2024;42:126435.Abstract
OBJECTIVES: We performed a cross- sectional study in two maternity hospitals in Athens, Greece between 2017 and 2019 assessing seroprevalence and Geometric Mean Titres (GMTs) of diphtheria, pertussis and tetanus antibodies in pregnant women and recorded adherence to Greek National Immunization Program (NIP) regarding Tdap vaccination in pregnancy. METHODS: Blood samples were collected from women in labour and anti- diphtheria, tetanus and pertussis toxin IgG antibodies were measured by Elisa kits. Seropositivity was defined as anti-diphtheria and anti- tetanus toxin IgG levels >/=0.1, and anti- pertussis >50 IU/mL. Seroprevalence and GMTs were calculated according to demographic factors. Tdap vaccination before and during pregnancy was self-reported by study participants. RESULTS: We analysed 253 blood samples and paired questionnaires. Seropositivity was 57.7 % for diphtheria. The lowest rate (38.2 %) was observed in the youngest age group (
Pilala KM, Kotronopoulos G, Levis P, Giagkos GC, Stravodimos K, Vassilacopoulou D, Scorilas A, Avgeris M. MIR145 Core Promoter Methylation in Pretreatment Cell-Free DNA: A Liquid Biopsy Tool for Muscle-Invasive Bladder Cancer Treatment Outcome. JCO Precision Oncology 2024;8:e2300414.Abstract
PURPOSE: The lack of personalized management of bladder cancer (BlCa) results in patients' lifelong post-treatment monitoring with invasive interventions, underlying the urgent need for tailored and minimally invasive health care services. On the basis of our previous findings on miR-143/145 cluster methylation in bladder tumors, we evaluated its clinical significance in pretreatment cell-free DNA (cfDNA) of patients with BlCa. MATERIALS AND METHODS: Methylation analysis was performed in our screening cohort (120 patients with BlCa; 20 age-matched healthy donors) by bisulfite-based pyrosequencing. Tumor recurrence/progression for patients with non-muscle-invasive bladder cancer, and progression and mortality for patients with muscle-invasive bladder cancer (MIBC) were used as clinical end point events in survival analysis. Bootstrap analysis was applied for internal validation of Cox regression models and decision curve analysis for assessment of clinical benefit on disease prognosis. RESULTS: Decreased methylation of MIR145 core promoter in pretreatment cfDNA was associated with short-term disease progression (multivariate Cox: hazard ratio [HR], 2.027 [95% CI, 1.157 to 3.551]; P = .010) and poor overall survival (multivariate Cox: HR, 2.098 [95% CI, 1.154 to 3.817]; P = .009) of patients with MIBC after radical cystectomy (RC). Multivariate models incorporating MIR145 promoter methylation in cfDNA with tumor stage clearly ameliorated patients' risk stratification, highlighting superior clinical benefit in MIBC prognostication. CONCLUSION: Reduced pretreatment cfDNA methylation of MIR145 core promoter was markedly correlated with increased risk for short-term progression and worse survival of patients with MIBC after RC and adjuvant therapy, supporting modern personalized and minimally invasive prognosis. Methylation profiling of MIR145 core promoter in pretreatment cfDNA could serve as a minimally invasive and independent predictor of MIBC treatment outcome and emerge as a promising marker for blood-based test in BlCa.
2023
Soureas K, Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Cancer quiescence: non-coding RNAs in the spotlight. Trends in Molecular Medicine 2023;29:843-858.Abstract
Cancer quiescence reflects the ability of cancer cells to enter a reversible slow-cycling or mitotically dormant state and represents a powerful self-protecting mechanism preventing cancer cell 'damage' from hypoxic conditions, nutrient deprivation, immune surveillance, and (chemo)therapy. When stress conditions are restrained, and tumor microenvironment becomes beneficial, quiescent cancer cells re-enter cell cycle to facilitate tumor spread and cancer progression/metastasis. Recent studies have highlighted the dynamic role of regulatory non-coding RNAs (ncRNAs) in orchestrating cancer quiescence. The elucidation of regulatory ncRNA networks will shed light on the quiescence-proliferation equilibrium and, ultimately, pave the way for new treatment options. Herein, we have summarized the ever-growing role of ncRNAs upon cancer quiescence regulation and their impact on treatment resistance and modern cancer therapeutics.
Pagoni M, Cava C, Sideris DC, Avgeris M, Zoumpourlis V, Michalopoulos I, Drakoulis N. miRNA-Based Technologies in Cancer Therapy. Journal of Personalized Medicine 2023;13Abstract
The discovery of therapeutic miRNAs is one of the most exciting challenges for pharmaceutical companies. Since the first miRNA was discovered in 1993, our knowledge of miRNA biology has grown considerably. Many studies have demonstrated that miRNA expression is dysregulated in many diseases, making them appealing tools for novel therapeutic approaches. This review aims to discuss miRNA biogenesis and function, as well as highlight strategies for delivering miRNA agents, presenting viral, non-viral, and exosomic delivery as therapeutic approaches for different cancer types. We also consider the therapeutic role of microRNA-mediated drug repurposing in cancer therapy.
Papasavva M, Amvrosiou S, Pilala KM, Soureas K, Christodoulou P, Ji Y, Stravodimos K, Xu D, Scorilas A, Avgeris M, Christodoulou MI. Deregulated Expression of IL-37 in Patients with Bladder Urothelial Cancer: The Diagnostic Potential of the IL-37e Isoform. Int J Mol Sci 2023;24Abstract
Cellular and molecular immune components play a crucial role in the development and perpetuation of human malignancies, shaping anti-tumor responses. A novel immune regulator is interleukin-37 (IL-37), already shown to be involved in the inflammation associated with the pathophysiology of many human disorders, including cancer. The interplay between tumor and immune cells is of great importance, especially for highly immunogenic tumors such as bladder urothelial carcinoma (BLCA). This study aimed to investigate the potential of IL-37 and its receptor SIGIRR (single immunoglobulin IL-1-related receptor) to serve as prognostic and/or diagnostic markers in patients with BLCA. To this end, a series of bioinformatics tools processing -omics datasets and specifically designed qPCR assays on human BLCA tumors and cancer cell lines were utilized. Bioinformatics analysis revealed that IL-37 levels correlate with BLCA tumor development and are higher in patients with longer overall survival. Furthermore, mutations on SIGIRR are associated with enhanced infiltration of the tumor by regulatory T cells and dendritic cells. Based on the qPCR validation experiments, BLCA epithelial cells express the IL-37c and IL-37e isoforms, while the latter is the predominant variant detected in tumor biopsies, also associated with higher grade and the non-muscle-invasive type. This is the first time, to the best of our knowledge, that IL-37 and SIGIRR levels have been assessed in BLCA tumor lesions, and associations with pathological and survival parameters are described, while a transcript variant-specific signature is indicated to have a diagnostic potential. These data strongly indicate the need for further investigation of the involvement of this cytokine and interconnected molecules in the pathophysiology of the disease and its prospective as a therapeutic target and biomarker for BLCA.
Pateras IS, Williams C, Gianniou DD, Margetis AT, Avgeris M, Rousakis P, Legaki AI, Mirtschink P, Zhang W, Panoutsopoulou K, Delis AD, Pagakis SN, Tang W, Ambs S, Warpman Berglund U, Helleday T, Varvarigou A, Chatzigeorgiou A, Nordstrom A, Tsitsilonis OE, Trougakos IP, Gilthorpe JD, Frisan T. Short term starvation potentiates the efficacy of chemotherapy in triple negative breast cancer via metabolic reprogramming. Journal of Translational Medicine 2023;21:169.Abstract
BACKGROUND: Chemotherapy (CT) is central to the treatment of triple negative breast cancer (TNBC), but drug toxicity and resistance place strong restrictions on treatment regimes. Fasting sensitizes cancer cells to a range of chemotherapeutic agents and also ameliorates CT-associated adverse effects. However, the molecular mechanism(s) by which fasting, or short-term starvation (STS), improves the efficacy of CT is poorly characterized. METHODS: The differential responses of breast cancer or near normal cell lines to combined STS and CT were assessed by cellular viability and integrity assays (Hoechst and PI staining, MTT or H(2)DCFDA staining, immunofluorescence), metabolic profiling (Seahorse analysis, metabolomics), gene expression (quantitative real-time PCR) and iRNA-mediated silencing. The clinical significance of the in vitro data was evaluated by bioinformatical integration of transcriptomic data from patient data bases: The Cancer Genome Atlas (TCGA), European Genome-phenome Archive (EGA), Gene Expression Omnibus (GEO) and a TNBC cohort. We further examined the translatability of our findings in vivo by establishing a murine syngeneic orthotopic mammary tumor-bearing model. RESULTS: We provide mechanistic insights into how preconditioning with STS enhances the susceptibility of breast cancer cells to CT. We showed that combined STS and CT enhanced cell death and increased reactive oxygen species (ROS) levels, in association with higher levels of DNA damage and decreased mRNA levels for the NRF2 targets genes NQO1 and TXNRD1 in TNBC cells compared to near normal cells. ROS enhancement was associated with compromised mitochondrial respiration and changes in the metabolic profile, which have a significant clinical prognostic and predictive value. Furthermore, we validate the safety and efficacy of combined periodic hypocaloric diet and CT in a TNBC mouse model. CONCLUSIONS: Our in vitro, in vivo and clinical findings provide a robust rationale for clinical trials on the therapeutic benefit of short-term caloric restriction as an adjuvant to CT in triple breast cancer treatment.
Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Epi-miRNAs: Modern mediators of methylation status in human cancers. WIREs RNA 2023;14:e1735.Abstract
Methylation of the fundamental macromolecules, DNA/RNA, and proteins, is remarkably abundant, evolutionarily conserved, and functionally significant in cellular homeostasis and normal tissue/organism development. Disrupted methylation imprinting is strongly linked to loss of the physiological equilibrium and numerous human pathologies, and most importantly to carcinogenesis, tumor heterogeneity, and cancer progression. Mounting recent evidence has documented the active implication of miRNAs in the orchestration of the multicomponent cellular methylation machineries and the deregulation of methylation profile in the epigenetic, epitranscriptomic, and epiproteomic levels during cancer onset and progression. The elucidation of such regulatory networks between the miRNome and the cellular methylation machineries has led to the emergence of a novel subclass of miRNAs, namely "epi-miRNAs" or "epi-miRs." Herein, we have summarized the existing knowledge on the functional role of epi-miRs in the methylation dynamic landscape of human cancers and their clinical utility in modern cancer diagnostics and tailored therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Galani A, Markou A, Dimitrakopoulos L, Kontou A, Kostakis M, Kapes V, Diamantopoulos MA, Adamopoulos PG, Avgeris M, Lianidou E, Scorilas A, Paraskevis D, Tsiodras S, Dimopoulos MA, Thomaidis N. Delta SARS-CoV-2 variant is entirely substituted by the omicron variant during the fifth COVID-19 wave in Attica region. Sci Total Environ 2023;856:159062.Abstract
Wastewater analysis is the most attractive alternative way for the quantification and variant profiling of SARS-CoV-2. Infection dynamics can be monitored by RT-qPCR assays while NGS can provide evidence for the presence of existing or new emerging SARS-CoV-2 variants. Herein, apart from the infection dynamic in Attica since June 1st, 2021, the monitoring of 9 mutations of the omicron and 4 mutations of the delta SARS-CoV-2 variants, utilizing both novel Nested-Seq and RT-PCR, is reported and the substitution of the delta variant (B.1.617.2) by the omicron variant (B.1.1.529) in Attica, Greece within approximately one month is highlighted. The key difference between the two methodologies is discovery power. RT-PCR can only detect known sequences cost-effectively, while NGS is a hypothesis-free approach that does not require prior knowledge to detect novel genes. Overall, the potential of wastewater genomic surveillance for the early discovery and monitoring of variants important for disease management at the community level is underlined. This is the first study, reporting the SARS-CoV-2 infection dynamic for an extended time period and the first attempt to monitor two of the most severe variants with two different methodologies in Greece.
Martzoukou O, Amillis S, Glekas PD, Breyanni D, Avgeris M, Scorilas A, Kekos D, Pachnos M, Mavridis G, Mamma D, Hatzinikolaou DG. Advancing Desulfurization in the Model Biocatalyst Rhodococcus qingshengii IGTS8 via an In Locus Combinatorial Approach. Appl Environ Microbiol 2023;89:e0197022.Abstract
Biodesulfurization poses as an ideal replacement to the high cost hydrodesulfurization of the recalcitrant heterocyclic sulfur compounds, such as dibenzothiophene (DBT) and its derivatives. The increasingly stringent limits on fuel sulfur content intensify the need for improved desulfurization biocatalysts, without sacrificing the calorific value of the fuel. Selective sulfur removal in a wide range of biodesulfurization strains, as well as in the model biocatalyst Rhodococcus qingshengii IGTS8, occurs via the 4S metabolic pathway that involves the dszABC operon, which encodes enzymes that catalyze the generation of 2-hydroxybiphenyl and sulfite from DBT. Here, using a homologous recombination process, we generate two recombinant IGTS8 biocatalysts, harboring native or rearranged, nonrepressible desulfurization operons, within the native dsz locus. The alleviation of sulfate-, methionine-, and cysteine-mediated dsz repression is achieved through the exchange of the native promoter P(dsz), with the nonrepressible P(kap1) promoter. The Dsz-mediated desulfurization from DBT was monitored at three growth phases, through HPLC analysis of end product levels. Notably, an 86-fold enhancement of desulfurization activity was documented in the presence of selected repressive sulfur sources for the recombinant biocatalyst harboring a combination of three targeted genetic modifications, namely, a dsz operon rearrangement, a native promoter exchange, and a dszA-dszB overlap removal. In addition, transcript level comparison highlighted the diverse effects of our genetic engineering approaches on dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. IMPORTANCE Rhodococcus is perhaps the most promising biodesulfurization genus and is able to withstand the harsh process conditions of a biphasic biodesulfurization process. In the present work, we constructed an advanced biocatalyst harboring a combination of three genetic modifications, namely, an operon rearrangement, a promoter exchange, and a gene overlap removal. Our homologous recombination approach generated stable biocatalysts that do not require antibiotic addition, while harboring nonrepressible desulfurization operons that present very high biodesulfurization activities and are produced in simple and low-cost media. In addition, transcript level quantification validated the effects of our genetic engineering approaches on recombinant strains' dsz mRNA ratios and revealed a gene-specific differential increase in mRNA levels. Based on these findings, the present work can pave the way for further strain and process optimization studies that could eventually lead to an economically viable biodesulfurization process.
Panoutsopoulou K, Magkou P, Dreyer T, Dorn J, Obermayr E, Mahner S, van Gorp T, Braicu I, Magdolen V, Zeillinger R, Avgeris M, Scorilas A. tRNA-derived small RNA 3'U-tRF(ValCAC) promotes tumour migration and early progression in ovarian cancer. European Journal of Cancer 2023;180:134-145.Abstract
INTRODUCTION: Despite recent advances in epithelial ovarian cancer (EOC) management, the highly heterogenous histological/molecular tumour background and patients' treatment response obstructs personalised prognosis and therapeutics. Herein, we have studied the role and clinical utility of the novel subclass of tRNA-derived small RNA fragments emerging via 3'-trailer processing of pre-tRNAs (3'U-tRFs) in EOC. METHODS: SK-OV-3 and OVCAR-3 cells were used for in vitro study. Following transfection, cell growth and migration were assessed by CCK8 and wound healing assays, respectively. 3'U-tRFs levels were assessed by reverse transcription quantitative PCR (RT-qPCR), following 3'-end RNA polyadenylation. A screening (OVCAD, n = 100) and institutionally independent validation (TU Munich, n = 103) cohorts were employed for survival analysis using disease progression and patients' death as clinical end-points. Bootstrap analysis was performed for internal validation, and decision curve analysis was used to evaluate clinical benefit on disease prognosis. RESULTS: Following primary clinical assessment, target prediction and gene ontology analyses, the 3'U-tRF(ValCAC) (derived from pre-tRNA(ValCAC)) was highlighted to regulate cell proliferation and adhesion, and to correlate with inferior patients' outcome. 3'U-tRF(ValCAC) transfection of SK-OV-3 and OVCAR-3 cells resulted in significantly increased cell growth and migration, in a dose-dependent manner. Elevated tumour 3'U-tRF(ValCAC) levels were associated with significantly higher risk for early progression and worse survival following first-line platinum-based chemotherapy, independently of patients' clinicopathological data, chemotherapy response, and residual tumour. Interestingly, 3'U-tRF(ValCAC)-fitted multivariate models improved risk stratification and provided superior clinical net benefit in prediction of treatment outcome compared to disease established markers. CONCLUSIONS: 3'U-tRF(ValCAC) promotes tumour cell growth and migration and supports modern risk stratification and prognosis in EOC.
Diamantopoulos MA, Georgoulia KK, Levis P, Kotronopoulos G, Stravodimos K, Kontos CK, Avgeris M, Scorilas A. 28S rRNA-Derived Fragments Represent an Independent Molecular Predictor of Short-Term Relapse in Prostate Cancer. Int J Mol Sci 2023;25Abstract
Prostate cancer (PCa) is a global health concern, being a leading cause of cancer-related mortality among males. Early detection and accurate prognosis are crucial for effective management. This study delves into the diagnostic and prognostic potential of 28S rRNA-derived fragments (rRFs) in PCa. Total RNA extracted from 89 PCa and 53 benign prostate hyperplasia (BPH) tissue specimens. After 3'-end polyadenylation, we performed reverse transcription to create first-strand cDNA. Using an in-house quantitative real-time PCR (qPCR) assay, we quantified 28S rRF levels. Post-treatment biochemical relapse served as the clinical endpoint event for survival analysis, which we validated internally through bootstrap analysis. Our results revealed downregulated 28S rRF levels in PCa compared to BPH patients. Additionally, we observed a significant positive correlation between 28S rRF levels and higher Gleason scores and tumor stages. Furthermore, PCa patients with elevated 28S rRF expression had a significantly higher risk of post-treatment disease relapse independently of clinicopathological data. In conclusion, our study demonstrates, for the first time, the prognostic value of 28S rRF in prostate adenocarcinoma. Elevated 28S rRF levels independently predict short-term PCa relapse and enhance risk stratification. This establishes 28S rRF as a potential novel molecular marker for PCa prognosis.
Mavreli D, Theodora M, Lambrou G, Avgeris M, Papantoniou N, Treager-Synodinos J, Daskalakis G, Kolialexi A. First trimester maternal plasma proteomic changes predictive of spontaneous moderate/late preterm delivery. J Matern Fetal Neonatal Med 2023;36:2232074.Abstract
OBJECTIVE: Identification of differentially expressed proteins (DEPs) in first trimester maternal plasma between pregnant women with a subsequent spontaneous moderate/late Preterm Delivery (sPTD) and women who delivered at term. The sPTD group consisted of women who delivered between 32 degrees (/7) and 36(6/7 )weeks of gestation. METHODS: Isobaric tags for relative and absolute quantification (iTRAQ) coupled with LC-MS/MS was used for the analysis of five first trimester maternal plasma samples obtained from women with a subsequent moderate/late preterm sPTD and five women with term deliveries. Enzyme-linked immunosorbent assay (ELISA) was further applied in an independent cohort of 29 sPTD cases and 29 controls to verify the expression levels of selected proteins. RESULTS: 236 DEPs, mainly linked to coagulation and complement cascade, were identified in first trimester maternal plasma obtained from the sPTD group. Decreased levels of selected proteins, namely, VCAM-1, SAA, and Talin-1, were further confirmed using ELISA, highlighting their potential as candidate predictive biomarkers for sPTD at32 degrees (/7) and 36(6/7 )weeks of gestation. CONCLUSION: First trimester maternal plasma proteomic analysis revealed protein changes associated with subsequent moderate/late preterm sPTD.
Papadimitriou MA, Soureas K, Papanota AM, Tsiakanikas P, Adamopoulos PG, Ntanasis-Stathopoulos I, Malandrakis P, Gavriatopoulou M, Sideris DC, Kastritis E, Avgeris M, Dimopoulos MA, Terpos E, Scorilas A. miRNA-seq identification and clinical validation of CD138+ and circulating miR-25 in treatment response of multiple myeloma. Journal of Translational Medicine 2023;21:245.Abstract
BACKGROUND: Despite significant advancements in multiple myeloma (MM) therapy, the highly heterogenous treatment response hinders reliable prognosis and tailored therapeutics. Herein, we have studied the clinical utility of miRNAs in ameliorating patients' management. METHODS: miRNA-seq was performed in bone marrow CD138+ plasma cells (PCs) of 24 MM and smoldering MM (sMM) patients to analyze miRNAs profile. CD138+ and circulating miR-25 levels were quantified using in house RT-qPCR assays in our screening MM/sMM cohort (CD138+ plasma cells n = 167; subcohort of MM peripheral plasma samples n = 69). Two external datasets (Kryukov et al. cohort n = 149; MMRF CoMMpass study n = 760) served as institutional-independent validation cohorts. Patients' mortality and disease progression were assessed as clinical endpoints. Internal validation was performed by bootstrap analysis. Clinical benefit was estimated by decision curve analysis. RESULTS: miRNA-seq highlighted miR-25 of CD138+ plasma cells to be upregulated in MM vs. sMM, R-ISS II/III vs. R-ISS I, and in progressed compared to progression-free patients. The analysis of our screening cohort highlighted that CD138+ miR-25 levels were correlated with short-term progression (HR = 2.729; p = 0.009) and poor survival (HR = 4.581; p = 0.004) of the patients; which was confirmed by Kryukov et al. cohort (HR = 1.878; p = 0.005) and MMRF CoMMpass study (HR = 1.414; p = 0.039) validation cohorts. Moreover, multivariate miR-25-fitted models contributed to superior risk-stratification and clinical benefit in MM prognostication. Finally, elevated miR-25 circulating levels were correlated with poor survival of MM patients (HR = 5.435; p = 0.021), serving as a potent non-invasive molecular prognostic tool. CONCLUSIONS: Our study identified miR-25 overexpression as a powerful independent predictor of poor treatment outcome and post-treatment progression, aiding towards modern non-invasive disease prognosis and personalized treatment decisions.
Papadimitriou MA, Levis P, Kotronopoulos G, Stravodimos K, Avgeris M, Scorilas A. Preoperative Cell-Free DNA (cfDNA) in Muscle-Invasive Bladder Cancer Treatment Outcome. Clinical Chemistry 2023;69:399-410.Abstract
BACKGROUND: Tumor heterogeneity and lack of personalized prognosis leads to bladder cancer (BlCa) patients' lifelong surveillance with invasive interventions, highlighting the need for modern minimally invasive tools for disease management. Herein, we have evaluated the clinical utility of preoperative serum cell-free DNA (cfDNA) in ameliorating patients' risk-stratification and prognosis. METHODS: cfDNA was purified from 190 preoperative BlCa patients and 26 healthy individuals' serum samples and quantified by 2 assays: an in-house quantitative real-time PCR (qPCR) assay using LEP as reference control and a direct fluorometric assay using Qubit HS dsDNA. Capillary electrophoresis was performed in 31 samples for cfDNA fragment profiling. Tumor relapse/progression and metastasis/death were used as clinical endpoints for non-muscle-invasive bladder cancer and muscle-invasive bladder cancer (MIBC), respectively. RESULTS: cfDNA profiling by capillary electrophoresis highlighted that total and fragment-related cfDNA levels were significantly increased in BlCa and associated with advance disease stages. Evaluation of cfDNA levels by both Qubit/qPCR displayed highly consistent results (rs = 0.960; P < 0.001). Higher cfDNA was correlated with MIBC and stronger risk for early metastasis (Qubit:hazard ratio [HR] = 3.016, P = 0.009; qPCR:HR = 2.918, P = 0.004) and poor survival (Qubit:HR = 1.898, P = 0.042; qPCR:HR = 1.888, P = 0.026) of MIBC patients. Multivariate cfDNA-fitted models led to superior risk stratification and net benefit for MIBC prognosis compared to disease established markers. CONCLUSIONS: Elevated preoperative cfDNA levels are strongly associated with higher risk for short-term metastasis and poor outcome of MIBC, supporting modern noninvasive disease prognosis and management.
Panoutsopoulou K, Liu Y, Avgeris M, Dreyer T, Dorn J, Magdolen V, Scorilas A. Repression of miR-146a in predicting poor treatment outcome in triple-negative breast cancer. Clinical Biochemistry 2023;114:43-51.Abstract
OBJECTIVES: In the era of precision medicine, the highly aggressive and heterogenous triple-negative breast cancer (TNBC) is still characterized by limited options to support personalized prognosis and guide therapeutic interventions. Thereafter, the aim of the present study has been the thorough evaluation of miR-146a as a novel molecular indicator of TNBC prognosis and treatment outcome, utilizing four independent TNBC cohorts. DESIGN & METHODS: miR-146a levels were clinically evaluated in our screening (n = 122) and three external validation TNBC cohorts (de Rinaldis et al. 2013, n = 114; Jezequel et al. 2015, n = 107; TCGA, n = 180). Analysis of miR-146a and validated gene targets was performed in Jezequel et al. and TCGA validation cohorts. Patients' survival, recurrence and metastasis were determined as clinical endpoints for the survival analysis. Internal validation was performed by bootstrap analysis and clinical net benefit was evaluated by decision curve analysis. RESULTS: Reduction of miR-146a is strongly associated with patients' poor survival and can predict post-treatment disease early-recurrence, independently of tumor size, lymph node status, histological grade and patients' age. The analysis of the external validation cohorts corroborated the unfavorable nature of miR-146a repression regarding patients' survival and, strikingly, unveiled the ability of miR-146a to predict TNBC metastasis. Combined assessment of miR-146a levels and lymph node status resulted in superior risk-stratification of TNBC patients and higher clinical benefit regarding disease prognosis and post-treatment outcome. Ultimately, miR-146a was negatively associated with EGFR and SOX2 expression in TNBC. CONCLUSIONS: miR-146a evaluation could ameliorate personalized prognosis and support precision medicine decisions in TNBC.
Liu Y, Gong W, Panoutsopoulou K, Singer-Cornelius T, Augustin K, Bronger H, Kiechle M, Dorn J, Scorilas A, Avgeris M, Magdolen V, Dreyer T. Association of high miR-27a, miR-206, and miR-214 expression with poor patient prognosis and increased chemoresistance in triple-negative breast cancer. Am J Cancer Res 2023;13:2471-2487.Abstract
Triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype, associated with early metastasis and recurrence as well as poor patient outcome. TNBC does not or weakly respond to hormonal or HER2-targeted therapies. Therefore, there is a strong need to identify other potential molecular targets for TNBC therapy. Micro-RNAs play important roles in the post-transcriptional regulation of gene expression. Thus, micro-RNAs, displaying an association between elevated expression and poor patient prognosis, may represent candidates for such novel tumor targets. In the present study, we evaluated the prognostic impact of miR-27a, miR-206, and miR-214 in TNBC via qPCR in tumor tissue (n=146). In univariate Cox regression analysis, elevated expression of all three analyzed micro-RNAs was significantly associated with shortened disease-free survival (hazard ratio [HR] for miR-27a: 1.85, P=0.038; miR-206: 1.83, P=0.041; miR-214: 2.06, P=0.012). In multivariable analysis, the micro-RNAs remained independent biomarkers for disease-free survival (HR for miR-27a: 1.99, P=0.033; miR-206: 2.14, P=0.018; miR-214: 2.01, P=0.026). Furthermore, our results suggest that elevated levels of these micro-RNAs are linked to enhanced resistance to chemotherapy. Based on the association of high expression levels with shortened patient survival and increased chemoresistance, miR-27a, miR-206, and miR-214 may represent novel molecular targets for TNBC.
Gianniou DD, Sklirou AD, Papadimitriou M-A, Pilala K-M, Stravodimos K, Avgeris M, Scorilas A, Trougakos IP. Evaluation of the Small Heat Shock Protein Family Members HSPB2 and HSPB3 in Bladder Cancer Prognosis and Progression. Int J Mol Sci 2023;24(3):2609.Abstract
Bladder cancer (BlCa) represents the sixth most commonly diagnosed type of male malignancy. Due to the clinical heterogeneity of BlCa, novel markers would optimize treatment efficacy and improve prognosis. The small heat shock proteins (sHSP) family is one of the major groups of molecular chaperones responsible for the maintenance of proteome functionality and stability. However, the role of sHSPs in BlCa remains largely unknown. The present study aimed to examine the association between HSPB2 and HSPB3 expression and BlCa progression in patients, and to investigate their role in BlCa cells. For this purpose, a series of experiments including reverse transcription-quantitative PCR, Western blotting, MTT assay and flow cytometry were performed. Initial analyses revealed increased vs. human transitional carcinoma cells, expression levels of the HSPB2 and HSPB3 genes and proteins in high grade BlCa cell lines. Therefore, we then evaluated the clinical significance of the HSPB2 and HSPB3 genes expression levels in bladder tumor samples and matched adjusted normal bladder specimens. Total RNA from 100 bladder tumor samples and 49 paired non-cancerous bladder specimens were isolated, and an accurate SYBR-Green based real-time quantitative polymerase chain reaction (qPCR) protocol was developed to quantify HSPB2 and HSPB3 mRNA levels in the two cohorts of specimens. A significant downregulation of the HSPB2 and HSPB3 genes expression was observed in bladder tumors as compared to matched normal urothelium; yet, increased HSPB2 and HSPB3 levels were noted in muscle-invasive (T2–T4) vs. superficial tumors (TaT1), as well as in high-grade vs. low-grade tumors. Survival analyses highlighted the significantly higher risk for post-treatment disease relapse in TaT1 patients poorly expressing HSPB2 and HSPB3 genes; this effect tended to be inverted in advanced disease stages (muscle-invasive tumors) indicating the biphasic impact of HSPB2, HSPB3 genes in BlCa progression. The pro-survival role of HSPB2 and HSPB3 in advanced tumor cells was also evident by our finding that HSPB2, HSPB3 genes expression silencing in high grade BlCa cells enhanced doxorubicin toxicity. These findings indicate that the HSPB2, HSPB3 chaperone genes have a likely pro-survival role in advanced BlCa; thus, they can be targeted as novel molecular markers to optimize treatment efficacy in BlCa and to limit unnecessary interventions.
2022
Mavreli D, Theodora M, Avgeris M, Papantoniou N, Antsaklis P, Daskalakis G, Kolialexi A. First Trimester Maternal Plasma Aberrant miRNA Expression Associated with Spontaneous Preterm Birth. Int J Mol Sci 2022;23Abstract
Spontaneous Preterm Delivery (sPTD) is one of the leading causes of perinatal mortality and morbidity worldwide. The present case-control study aims to detect miRNAs differentially expressed in the first trimester maternal plasma with the view to identify predictive biomarkers for sPTD, between 320/7 and 366/7 weeks, that will allow for timely interventions for this serious pregnancy complication. Small RNA sequencing (small RNA-seq) of five samples from women with a subsequent sPTD and their matched controls revealed significant down-regulation of miR-23b-5p and miR-125a-3p in sPTD cases compared to controls, whereas miR-4732-5p was significantly overexpressed. Results were confirmed by qRT-PCR in an independent cohort of 29 sPTD cases and 29 controls. Statistical analysis demonstrated that miR-125a is a promising early predictor for sPTL (AUC: 0.895; 95% CI: 0.814-0.972; p < 0.001), independent of the confounding factors tested, providing a useful basis for the development of a novel non-invasive predictive test to assist clinicians in estimating patient-specific risk.
Galani A, Aalizadeh R, Kostakis M, Markou A, Alygizakis N, Lytras T, Adamopoulos PG, Peccia J, Thompson DC, Kontou A, Karagiannidis A, Lianidou ES, Avgeris M, Paraskevis D, Tsiodras S, Scorilas A, Vasiliou V, Dimopoulos MA, Thomaidis NS. SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissions. Sci Total Environ 2022;804:150151.Abstract
We measured SARS-CoV-2 RNA load in raw wastewater in Attica, Greece, by RT-qPCR for the environmental surveillance of COVID-19 for 6 months. The lag between RNA load and pandemic indicators (COVID-19 hospital and intensive care unit (ICU) admissions) was calculated using a grid search. Our results showed that RNA load in raw wastewater is a leading indicator of positive COVID-19 cases, new hospitalization and admission into ICUs by 5, 8 and 9 days, respectively. Modelling techniques based on distributed/fixed lag modelling, linear regression and artificial neural networks were utilized to build relationships between SARS-CoV-2 RNA load in wastewater and pandemic health indicators. SARS-CoV-2 mutation analysis in wastewater during the third pandemic wave revealed that the alpha-variant was dominant. Our results demonstrate that clinical and environmental surveillance data can be combined to create robust models to study the on-going COVID-19 infection dynamics and provide an early warning for increased hospital admissions.
Pilala KM, Papadimitriou MA, Panoutsopoulou K, Barbarigos P, Levis P, Kotronopoulos G, Stravodimos K, Scorilas A, Avgeris M. Epigenetic regulation of MIR145 core promoter controls miR-143/145 cluster in bladder cancer progression and treatment outcome. Molecular Therapy Nucleic Acids 2022;30:311-322.Abstract
Owing to its highly heterogeneous molecular landscape, bladder cancer (BlCa) is still characterized by non-personalized treatment and lifelong surveillance. Motivated by our previous findings on miR-143/145 value in disease prognosis, we have studied the underlying epigenetic regulation of the miR-143/145 cluster in BlCa. Expression and DNA methylation of miR-143/145 cluster were analyzed in our screening (n = 162) and The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA; n = 412) cohorts. Survival analysis was performed using tumor relapse and progression as clinical endpoints for non-muscle-invasive bladder cancer (NMIBC; TaT1), while disease progression and patients' death were used for muscle-invasive bladder cancer (MIBC; T2-T4). TCGA-BLCA served as validation cohort. Bootstrap analysis was carried out for internal validation, while decision curve analysis was used to evaluate clinical benefit. TCGA-BLCA and screening cohorts highlighted MIR145 core promoter as the pivotal, epigenetic regulatory region on cluster's expression. Lower methylation of MIR145 core promoter was associated with aggressive disease phenotype, higher risk for NMIBC short-term progression, and poor MIBC survival. MIR145 methylation-fitted multivariate models with established disease markers clearly enhanced patients' risk stratification and prediction of treatment outcome. MIR145 core promoter methylation was identified as a potent epigenetic regulator of miR-143/145 cluster, supporting modern personalized risk stratification and management in BlCa.
Papailiou S, Soldatou A, Marmarinos A, Avgeris M, Papathoma E, Sindos M, Georgantzi S, Rodolakis A, Iacovidou N, Gourgiotis D, Tsolia M. Inadequate protection against measles and rubella among pregnant women in Greece during the last measles outbreak. Journal of Infection 2022;84(6):e95-e97.
Martzoukou O, Glekas PD, Avgeris M, Mamma D, Scorilas A, Kekos D, Amillis S, Hatzinikolaou DG. Interplay between Sulfur Assimilation and Biodesulfurization Activity in Rhodococcus qingshengii IGTS8: Insights into a Regulatory Role of the Reverse Transsulfuration Pathway. mBio 2022;13(4):e0075422.Abstract
Biodesulfurization is a process that selectively removes sulfur from dibenzothiophene and its derivatives. Several natural biocatalysts harboring the highly conserved desulfurization operon dszABC, which is significantly repressed by methionine, cysteine, and inorganic sulfate, have been isolated. However, the available information on the metabolic regulation of gene expression is still limited. In this study, scarless knockouts of the reverse transsulfuration pathway enzyme genes cbs and metB were constructed in the desulfurizing strain Rhodococcus sp. strain IGTS8. We provide sequence analyses and report the enzymes' involvement in the sulfate- and methionine-dependent repression of biodesulfurization activity. Sulfate addition in the bacterial culture did not repress the desulfurization activity of the Deltacbs strain, whereas deletion of metB promoted a significant biodesulfurization activity for sulfate-based growth and an even higher desulfurization activity for methionine-grown cells. In contrast, growth on cysteine completely repressed the desulfurization activity of all strains. Transcript level comparison uncovered a positive effect of cbs and metB gene deletions on dsz gene expression in the presence of sulfate and methionine, but not cysteine, offering insights into a critical role of cystathionine beta-synthase (CbetaS) and MetB in desulfurization activity regulation. IMPORTANCE Precise genome editing of the model biocatalyst Rhodococcus qingshengii IGTS8 was performed for the first time, more than 3 decades after its initial discovery. We thus gained insight into the regulation of dsz gene expression and biocatalyst activity, depending on the presence of two reverse transsulfuration enzymes, CbetaS and MetB. Moreover, we observed an enhancement of biodesulfurization capability in the presence of otherwise repressive sulfur sources, such as sulfate and l-methionine. The interconnection of cellular sulfur assimilation strategies was revealed and validated.
Papadimitriou MA, Papanota AM, Adamopoulos PG, Pilala KM, Liacos CI, Malandrakis P, Mavrianou-Koutsoukou N, Patseas D, Eleutherakis-Papaiakovou E, Gavriatopoulou M, Kastritis E, Avgeris M, Dimopoulos MA, Terpos E, Scorilas A. miRNA-seq and clinical evaluation in multiple myeloma: miR-181a overexpression predicts short-term disease progression and poor post-treatment outcome. British Journal of Cancer 2022;126(1):79-90.Abstract
BACKGROUND: Despite significant advances in multiple myeloma (MM) therapy, disease relapse and treatment resistance remain major obstacles in clinical management. Herein, we have studied the clinical utility of miRNAs in improving patients' risk-stratification and prognosis. METHODS: miRNA-seq was performed in CD138+ plasma cells of MM, smoldering multiple myeloma (sMM) and monoclonal gammopathy of undetermined significance (MGUS) patients. The screening MM cohort consisted of 138 patients. miRNA levels of CD138+ plasma cells were quantified by RT-qPCR following 3'-end RNA polyadenylation. Disease progression and patients' death were used as clinical end-point events. Internal validation was conducted by bootstrap analysis. Clinical net benefit on disease prognosis was assessed by decision curve analysis. Kruykov et al. 2016 served as validation cohort (n = 151). RESULTS: miRNA-seq highlighted miR-181a to be upregulated in MM vs. sMM/MGUS, and R-ISS III vs. I patients. Screening and validation cohorts confirmed the significantly higher risk for short-term progression and worse survival of the patients overexpressing miR-181a. Multivariate models integrating miR-181a with disease established markers led to superior risk-stratification and clinical benefit for MM prognosis. CONCLUSIONS: CD138+ overexpression of miR-181a was strongly correlated with inferior disease outcome and contributed to superior prediction of MM patients early progression, supporting personalised prognosis and treatment decisions.
2021
Kanaki Z, Voutsina A, Markou A, Pateras IS, Potaris K, Avgeris M, Makrythanasis P, Athanasiadis EI, Vamvakaris I, Patsea E, Vachlas K, Lianidou E, Georgoulias V, Kotsakis A, Klinakis A. Generation of Non-Small Cell Lung Cancer Patient-Derived Xenografts to Study Intratumor Heterogeneity. Cancers 2021;13Abstract
Recent advances in sequencing technologies have allowed the in-depth molecular study of tumors, even at the single cell level. Sequencing efforts have uncovered a previously unappreciated heterogeneity among tumor cells, which has been postulated to be the driving force of tumor evolution and to facilitate recurrence, metastasis, and drug resistance. In the current study, focused on early-stage operable non-small cell lung cancer, we used tumor growth in patient-derived xenograft (PDX) models in mice as a fast-forward tumor evolution process to investigate the molecular characteristics of tumor cells that grow in mice, as well as the parameters that affect the grafting efficiency. We found that squamous cell carcinomas grafted significantly more efficiently compared with adenocarcinomas. Advanced stage, patient age and primary tumor size were positively correlated with grafting. Additionally, we isolated and characterized circulating tumor cells (CTC) from patients' peripheral blood and found that the presence of CTCs expressing epithelial-to-mesenchymal (EMT) markers correlated with the grafting potential. Interestingly, exome sequencing of the PDX tumor identified genetic alterations in DNA repair and genome integrity genes that were under-represented in the human primary counterpart. In conclusion, through the generation of a PDX biobank of NSCLC, we identified the clinical and molecular properties of tumors that affected growth in mice.
Avgeris M, Marmarinos A, Gourgiotis D, Scorilas A. Jagged Ends of Cell-Free DNA: Rebranding Fragmentomics in Modern Liquid Biopsy Diagnostics. Clinical Chemistry 2021;67:576-578.
Tokas T, Avgeris M, Leotsakos I, Nagele U, Gozen AS. Impact of three-dimensional vision in laparoscopic partial nephrectomy for renal tumors. Turk J Urol 2021;47:144-150.Abstract
OBJECTIVE: To compare three-dimensional (3D) with standard two-dimensional (2D) laparoscopic partial nephrectomy (LPN) with respect to intra- and postoperative outcomes. MATERIAL AND METHODS: Data from 112 patients who underwent transperitoneal LPN from 2012 to 2014 by a single experienced surgeon were collected. Sixty patients (group 1) underwent conventional 2D LPN and 52 patients (group 2) 3D LPN. Perioperative patient, procedure, and tumor data were recorded. The follow-up period was 1-5 years. RESULTS: The two groups had similar patient age (p=0.834) and body mass index (p=0.141). The total laparoscopy time (LT) was shorter in group 2 (119.0 vs. 106.0 min; p=0.009). Warm ischemia times (WITs) were also shorter in group 2 (11.5 vs. 10.0 min; p=0.032). The estimated blood loss (EBL) (350.0 vs. 250.0 mL; p<0.001) and hemoglobin (Hb) decrease (1.55 vs. 1.35 g/dL; p=0.536) were lower in the 3D LPN group. Creatinine (0 vs. 0 g/dL; p=0.610) increase and estimated glomerular filtration rate (eGFR) decrease (0 vs. 0 mL/min/1.73 m(2); p=0.553) did not demonstrate statistically significant differences. Duration of hospitalization (7 vs. 7 days; p=0.099) and complication rates (p=0.559) were similar between the two groups. CONCLUSION: The new-generation 3D laparoscope has a great impact on significant LPN intraoperative parameters, mainly LT, WIT, and EBL. Hb decrease is also in favor of 3D vision, although not dramatically altered. Therefore, 3D LPN appears to be superior to conventional 2D LPNs.
Papanota AM, Tsiakanikas P, Kontos CK, Malandrakis P, Liacos CI, Ntanasis-Stathopoulos I, Kanellias N, Gavriatopoulou M, Kastritis E, Avgeris M, Dimopoulos MA, Scorilas A, Terpos E. A Molecular Signature of Circulating MicroRNA Can Predict Osteolytic Bone Disease in Multiple Myeloma. Cancers 2021;13Abstract
BACKGROUND: Multiple myeloma bone disease (MMBD) constitutes a common and severe complication of multiple myeloma (MM), impacting the quality of life and survival. We evaluated the clinical value of a panel of 19 miRNAs associated with osteoporosis in MMBD. METHODS: miRNAs were isolated from the plasma of 62 newly diagnosed MM patients with or without MMBD. First-strand cDNA was synthesized, and relative quantification was performed using qPCR. Lastly, we carried out extensive biostatistical analysis. RESULTS: Circulating levels of let-7b-5p, miR-143-3p, miR-17-5p, miR-214-3p, and miR-335-5p were significantly higher in the blood plasma of MM patients with MMBD compared to those without. Receiver operating characteristic curve and logistic regression analyses showed that these miRNAs could accurately predict MMBD. Furthermore, a standalone multi-miRNA-based logistic regression model exhibited the best predictive potential regarding MMBD. Two of those miRNAs also have a prognostic role in MM since survival analysis indicated that lower circulating levels of both let-7b-5p and miR-335-5p were associated with significantly worse progression-free survival, independently of the established prognostic factors. CONCLUSIONS: Our study proposes a miRNA signature to facilitate MMBD diagnosis, especially in ambiguous cases. Moreover, we provide evidence of the prognostic role of let-7b-5p and miR-335-5p as non-invasive prognostic biomarkers in MM.
Alygizakis N, Markou AN, Rousis NI, Galani A, Avgeris M, Adamopoulos PG, Scorilas A, Lianidou ES, Paraskevis D, Tsiodras S, Tsakris A, Dimopoulos MA, Thomaidis NS. Analytical methodologies for the detection of SARS-CoV-2 in wastewater: Protocols and future perspectives. Trends in Analytical Chemistry 2021;134:116125.Abstract
In March 2020 the World Health Organization announced a pandemic outbreak. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative pathogen for the coronavirus disease-19 (COVID-19) pandemic. The authorities worldwide use clinical science to identify infected people, but this approach is not able to track all symptomatic and asymptomatic cases due to limited sampling capacity of the testing laboratories. This drawback is eliminated by the Wastewater-Based Epidemiology (WBE) approach. In this review, we summarized the peer-reviewed published literature (available as of September 28, 2020), in the field of WBE. The commonly used steps (sampling, storage, concentration, isolation, detection) of the analytical protocols were identified. The potential limitations of each stage of the protocols and good practices were discussed. Finally, new methods for the efficient detection of SARS-CoV-2 were proposed.
Papanota AM, Karousi P, Kontos CK, Artemaki PI, Liacos CI, Papadimitriou MA, Bagratuni T, Eleutherakis-Papaiakovou E, Malandrakis P, Ntanasis-Stathopoulos I, Gavriatopoulou M, Kastritis E, Avgeris M, Dimopoulos MA, Scorilas A, Terpos E. A Cancer-Related microRNA Signature Shows Biomarker Utility in Multiple Myeloma. Int J Mol Sci 2021;22Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, arising from terminally differentiated B cells, namely plasma cells. miRNAs are small non-coding RNAs that participate in the post-transcriptional regulation of gene expression. In this study, we investigated the role of nine miRNAs in MM. CD138+ plasma cells were selected from bone marrow aspirates from MM and smoldering MM (sMM) patients. Total RNA was extracted and in vitro polyadenylated. Next, first-strand cDNA synthesis was performed using an oligo-dT-adapter primer. For the relative quantification of the investigated miRNAs, an in-house real-time quantitative PCR (qPCR) assay was developed. A functional in silico analysis of the miRNAs was also performed. miR-16-5p and miR-155-5p expression was significantly lower in the CD138+ plasma cells of MM patients than in those of sMM patients. Furthermore, lower levels of miR-15a-5p, miR-16-5p, and miR-222-3p were observed in the CD138+ plasma cells of MM patients with osteolytic bone lesions, compared to those without. miR-125b-5p was also overexpressed in the CD138+ plasma cells of MM patients with bone disease that presented with skeletal-related events (SREs). Furthermore, lower levels of miR-223-3p were associated with significantly worse overall survival in MM patients. In conclusion, we propose a miRNA signature with putative clinical utility in MM.
Panoutsopoulou K, Dreyer T, Dorn J, Obermayr E, Mahner S, Gorp TV, Braicu I, Zeillinger R, Magdolen V, Avgeris M, Scorilas A. tRNA(GlyGCC)-Derived Internal Fragment (i-tRF-GlyGCC) in Ovarian Cancer Treatment Outcome and Progression. Cancers 2021;14Abstract
Epithelial ovarian cancer (EOC) remains a highly-lethal gynecological malignancy, characterized by frequent recurrence, chemotherapy resistance and poor 5-year survival. Identifying novel predictive molecular markers remains an overdue challenge in the disease's clinical management. Herein, in silico analysis of TCGA-OV highlighted the tRNA-derived internal fragment (i-tRF-GlyGCC) among the most abundant tRFs in ovarian tumors, while target prediction and gene ontology (GO) enrichment analysis predicted its implication in key biological processes. Thereafter, i-tRF-GlyGCC levels were quantified in a screening EOC (n = 98) and an institutionally-independent serous ovarian cancer (SOC) validation cohort (n = 100, OVCAD multicenter study). Disease progression and patient death were used as clinical endpoints for the survival analysis. Internal validation was performed by bootstrap analysis and the clinical net benefit was estimated by decision curve analysis. The analysis highlighted the significant association of i-tRF-GlyGCC with advanced FIGO stages, suboptimal debulking and most importantly, with early progression and poor overall survival of EOC patients. The OVCAD validation cohort corroborated the unfavorable predictive value of i-tRF-GlyGCC in EOC. Ultimately, evaluation of i-tRF-GlyGCC with the established/clinically used prognostic markers offered superior patient risk-stratification and enhanced clinical benefit in EOC prognosis. In conclusion, i-tRF-GlyGCC assessment could aid towards personalized prognosis and support precision medicine decisions in EOC.
Xagorari M, Marmarinos A, Kossiva L, Baka M, Doganis D, Servitzoglou M, Tsolia M, Scorilas A, Avgeris M, Gourgiotis D. Overexpression of the GR Riborepressor LncRNA GAS5 Results in Poor Treatment Response and Early Relapse in Childhood B-ALL. Cancers 2021;13Abstract
Glucocorticoids (GCs) remain the cornerstone of childhood acute lymphoblastic leukemia (chALL) therapy, exerting their cytotoxic effects through binding and activating of the glucocorticoid receptor (GR). GAS5 lncRNA acts as a potent riborepressor of GR transcriptional activity, and thus targeting GAS5 in GC-treated chALL could provide further insights into GC resistance and support personalized treatment decisions. Herein, to study the clinical utility of GAS5 in chALL prognosis and chemotherapy response, GAS5 expression was quantified by RT-qPCR in bone marrow samples of chB-ALL patients at diagnosis (n = 164) and at end-of-induction (n = 109), treated with ALL-BFM protocol. Patients' relapse and death were used as clinical end-points for survival analysis. Bootstrap analysis was performed for internal validation, and decision curve analysis assessed the clinical net benefit for chALL prognosis. Our findings demonstrated the elevated GAS5 levels in blasts of chALL patients compared to controls and the significantly higher risk for short-term relapse and poor treatment outcome of patients overexpressing GAS5, independently of their clinicopathological data. The unfavorable prognostic value of GAS5 overexpression was strongly validated in the high-risk/stem-cell transplantation subgroup. Finally, multivariate models incorporating GAS5 levels resulted in superior risk stratification and clinical benefit for chALL prognostication, supporting personalized prognosis and precision medicine decisions in chALL.
Avgeris M, Adamopoulos PG, Galani A, Xagorari M, Gourgiotis D, Trougakos IP, Voulgaris N, Dimopoulos MA, Thomaidis NS, Scorilas A. Novel Nested-Seq Approach for SARS-CoV-2 Real-Time Epidemiology and In-Depth Mutational Profiling in Wastewater. Int J Mol Sci 2021;22Abstract
Considering the lack of effective treatments against COVID-19, wastewater-based epidemiology (WBE) is emerging as a cost-effective approach for real-time population-wide SARS-CoV-2 monitoring. Here, we report novel molecular assays for sensitive detection and mutational/variant analysis of SARS-CoV-2 in wastewater. Highly stable regions of SARS-CoV-2 RNA were identified by RNA stability analysis and targeted for the development of novel nested PCR assays. Targeted DNA sequencing (DNA-seq) was applied for the analysis and quantification of SARS-CoV-2 mutations/variants, following hexamers-based reverse transcription and nested PCR-based amplification of targeted regions. Three-dimensional (3D) structure models were generated to examine the predicted structural modification caused by genomic variants. WBE of SARS-CoV-2 revealed to be assay dependent, and significantly improved sensitivity achieved by assay combination (94%) vs. single-assay screening (30%-60%). Targeted DNA-seq allowed the quantification of SARS-CoV-2 mutations/variants in wastewater, which agreed with COVID-19 patients' sequencing data. A mutational analysis indicated the prevalence of D614G (S) and P323L (RdRP) variants, as well as of the Beta.1.1.7/alpha variant of concern, in agreement with the frequency of Beta.1.1.7/alpha variant in clinical samples of the same period of the third pandemic wave at the national level. Our assays provide an innovative cost-effective platform for real-time monitoring and early-identification of SARS-CoV-2 variants at community/population levels.
Pateras IS, Kotsakis A, Avgeris M, Baliou E, Kouroupakis P, Patsea E, Georgoulias V, Menez-Jamet J, Kinet JP, Kosmatopoulos K. Clinical Activity of an hTERT-Specific Cancer Vaccine (Vx-001) in "Immune Desert" NSCLC. Cancers 2021;13Abstract
BACKGROUND: Tumors can be separated into immunogenic/hot and non-immunogenic/cold on the basis of the presence of tumor-infiltrating lymphocytes (TILs), the expression of PD-L1 and the tumor mutation burden (TMB). In immunogenic tumors, TILs become unable to control tumor growth because their activity is suppressed by different inhibitory pathways, including PD-1/PD-L1. We hypothesized that tumor vaccines may not be active in the immunosuppressive microenvironment of immunogenic/hot tumors while they could be efficient in the immune naive microenvironment of non-immunogenic/cold tumors. METHODS: The randomized phase II Vx-001-201 study investigated the effect of the Vx-001 vaccine as maintenance treatment in metastatic non-small cell lung cancer (NSCLC) patients. Biopsies from 131 (68 placebo and 63 Vx-001) patients were retrospectively analyzed for PD-L1 expression and TIL infiltration. TILs were measured as tumor-associated immune cells (TAICs), CD3-TILs, CD8-TILs and granzyme B-producing TILs (GZMB-TILs). Patients were distinguished into PD-L1(+) and PD-L1(-) and into TIL high and TIL low. FINDINGS: There was no correlation between PD-L1 expression and Vx-001 clinical activity. In contrast, Vx-001 showed a significant improvement of overall survival (OS) vs. placebo in TAIC low (21 vs. 8.1 months, p = 0.003, HR = 0.404, 95% CI 0.219-0.745), CD3-TIL low (21.6 vs. 6.6 months, p < 0.001, HR = 0.279, 95% CI 0.131-0.595), CD8-TIL low (21 vs. 6.6 months, p < 0.001; HR = 0.240, 95% CI 0.11-0.522) and GZMB-TIL low (20.7 vs. 11.1 months, p = 0.011, HR = 0.490, 95% CI 0.278-0.863). Vx-001 did not offer any clinical benefit in patients with TAIC high, CD3-TIL high, CD8-TIL high or GZMB-TIL high tumors. CD3-TIL, CD8-TIL and GZMB-TIL were independent predictive factors of Vx-001 efficacy. CONCLUSIONS: These results support the hypothesis that Vx-001 may be efficient in patients with non-immunogenic/cold but not with immunogenic/hot tumors.
2020
Leontariti M, Avgeris M, Katsarou MS, Drakoulis N, Siatouni A, Verentzioti A, Alexoudi A, Fytraki A, Patrikelis P, Vassilacopoulou D, Gatzonis S, Sideris DC. Circulating miR-146a and miR-134 in predicting drug-resistant epilepsy in patients with focal impaired awareness seizures. Epilepsia 2020;61:959-970.Abstract
OBJECTIVE: Epilepsy is one of the most prevalent neurologic disorders, causing serious psychological problems and reducing quality of life. Although 20 different antiepileptic drugs (AEDs) have been approved by the US Food and Drug Administration (FDA), 30% of patients have drug-resistant epilepsy (DRE). Considering the role of miR-146a and miR-134 in neuroinflammation and dendritic functionality, respectively, the aim of this study was the clinical evaluation of circulating miR-146a and miR-134 as novel noninvasive molecular markers for the prognosis of refractory epilepsy. METHODS: The study included 162 patients with focal impaired awareness seizures. Total RNA was extracted from serum samples spiked with synthetic cel-miR-39-3p for normalization purposes. First-strand complementary DNA (cDNA) synthesis was performed using microRNA-specific stem-loop primers, and hsa-miR-134/146a levels were quantified by quantitative polymerase chain reaction (qPCR). DRE was used as clinical end point event. Internal validation was performed by bootstrap analysis, and decision curve analysis was used to evaluate the clinical benefit on disease prognosis. RESULTS: The circulating levels of both miR-134 and miR-146a were elevated in patients with drug-resistant seizures. The receiver-operating characteristic (ROC) curve and logistic regression analysis demonstrated that patients with increased circulating miR-134/146a levels are at significantly higher risk for developing DRE, independently of temporal lobe sclerosis, epilepsy duration, familial history, age at first seizure, age, body mass index (BMI), smoking behavior, and gender. Finally, decision curve analysis highlighted that the evaluation of circulating miR-134/146a led to superior clinical benefit for DRE prognosis and patients' risk stratification. SIGNIFICANCE: Elevated serum miR-134/146a levels are associated with a higher risk for AED-resistant epilepsy and could constitute novel noninvasive molecular markers to improve disease early prognosis and support precision medicine.
Papadimitriou MA, Avgeris M, Levis P, Papasotiriou EC, Kotronopoulos G, Stravodimos K, Scorilas A. tRNA-Derived Fragments (tRFs) in Bladder Cancer: Increased 5'-tRF-LysCTT Results in Disease Early Progression and Patients' Poor Treatment Outcome. Cancers 2020;12Abstract
The heterogeneity of bladder cancer (BlCa) prognosis and treatment outcome requires the elucidation of tumors' molecular background towards personalized patients' management. tRNA-derived fragments (tRFs), although originally considered as degradation debris, represent a novel class of powerful regulatory non-coding RNAs. In silico analysis of the TCGA-BLCA project highlighted 5'-tRF-LysCTT to be significantly deregulated in bladder tumors, and 5'-tRF-LysCTT levels were further quantified in our screening cohort of 230 BlCa patients. Recurrence and progression for non-muscle invasive (NMIBC) patients, as well as progression and patient's death for muscle-invasive (MIBC) patients, were used as clinical endpoint events. TCGA-BLCA were used as validation cohort. Bootstrap analysis was performed for internal validation and the clinical net benefit of 5'-tRF-LysCTT on disease prognosis was assessed by decision curve analysis. Elevated 5'-tRF-LysCTT was associated with unfavorable disease features, and significant higher risk for early progression (multivariate Cox: HR = 2.368; p = 0.033) and poor survival (multivariate Cox: HR = 2.151; p = 0.032) of NMIBC and MIBC patients, respectively. Multivariate models integrating 5'-tRF-LysCTT with disease established markers resulted in superior risk-stratification specificity and positive prediction of patients' progression. In conclusion, increased 5'-tRF-LysCTT levels were strongly associated with adverse disease outcome and improved BlCa patients' prognostication.
Panoutsopoulou K, Avgeris M, Magkou P, Mavridis K, Dreyer T, Dorn J, Obermayr E, Reinthaller A, Michaelidou K, Mahner S, Vergote I, Loverix L, Braicu I, Sehouli J, Zeillinger R, Magdolen V, Scorilas A. miR-181a overexpression predicts the poor treatment response and early-progression of serous ovarian cancer patients. International Journal of Cancer 2020;147:3560-3573.Abstract
Ovarian cancer (OC) remains a leading cause of gynecological cancer-related death worldwide, characterized by poor 5-year survival. Molecular markers could serve as crucial tools of personalized prognosis and therapy. Herein, we present miR-181a as novel predictor of OC prognosis, using five independent OC cohorts. In particular, a screening (n = 81) and an institutionally independent validation (n = 100, OVCAD multicenter study) serous OC (SOC) cohorts were analyzed. Bagnoli et al (2016) OC179 (n = 124) to OC133 (n = 100) and TCGA (n = 489) served as external validation cohorts. Patients' survival and disease progression were assessed as clinical endpoint events. Bootstrap analysis was performed for internal validation and decision curve analysis was utilized to evaluate clinical benefit. miR-181a overexpression was unveiled as powerful and independent molecular predictor of patients' poor survival and higher risk for disease progression after debulking surgery and platinum-based chemotherapy. Analysis of the OVCAD institutionally independent cohort, as well as of Bagnoli et al. and TCGA external cohorts further confirmed the unfavorable prognostic nature of miR-181a overexpression in SOC. Strikingly, multivariate prognostic models incorporating miR-181a with established disease markers clearly improved patients' risk-stratification and offered superior clinical benefit in OC prognostication. Conclusively, miR-181a evaluation could augment prognostic accuracy and support precision medicine decisions in OC.
Minoudi S, Karaiskou N, Avgeris M, Gkagkavouzis K, Tarantili P, Triantafyllidou D, Palilis L, Avramopoulou V, Tsikliras A, Barmperis K, Triantafyllidis A. Seafood mislabeling in Greek market using DNA barcoding. Food Control 2020;113:107213.Abstract
The mislabeling of seafood products is a worldwide observed issue even though labeling regulations have been established (either at local or European/International level). Various molecular methods have been developed for fish species identification and detection of fraud, with DNA barcoding being the most popular and accurate one. Here, we present the first large-scale analysis aimed at assessing the fish mislabeling rate in Greece, by amplifying a fragment of approximately 655bp of the COI gene in 285 fish products collected from multiple markets in Greece through a monitoring program of the Hellenic Food Authority (EFET) over a time span of 4 years. This study initiated in 2015 under a European Commission Recommendation on a coordinated control plan with a view to establishing the prevalence of fraudulent practices in the marketing of certain foods and was further supported by EFET for another 3 years in order to monitor the Greek market. Sequencing and species attribution was successful in 92.3% of the samples. In 12.9% of these (34 cases), discrepancies were detected between the declared and the identified species and therefore the products were characterized as mislabeled. This rate is low, compared to other studies in Greece and other regions of the Mediterranean Sea (e.g. Italy) and worldwide (e.g. Canada). On the other hand, it remains higher than the average global substitution rate of 8%, reported in a recent meta-analysis and the European rate of 6% detected during the EU coordinated control program in 2015. Flatfishes (order Pleuronectiformes) presented the highest mislabeling rate (28.3%) followed by gadiforms (order Gadiformes) with 13.7%. Although, in some cases the substitution can be unintentional due to similar morphological characteristics and geographical distribution among species, in 55.7% of the mislabeled samples the substituted species is of lower quality resulting inevitably also to an economic profit. Our results support the need for continuous and well-documented monitoring of Greek and European markets.
Panoutsopoulou K, Avgeris M, Mavridis K, Dreyer T, Dorn J, Obermayr E, Reinthaller A, Michaelidou K, Mahner S, Vergote I, Vanderstichele A, Braicu I, Sehouli J, Zeillinger R, Magdolen V, Scorilas A. miR-203 is an independent molecular predictor of prognosis and treatment outcome in ovarian cancer: a multi-institutional study. Carcinogenesis 2020;41:442-451.Abstract
Ovarian cancer (OC) accounts for the most gynecological cancer-related deaths in developed countries. Unfortunately, the lack of both evident early symptoms and effective asymptomatic population screening results in late diagnosis and inevitably poor prognosis. Hence, it is urgent to identify novel molecular markers to support personalized prognosis. In the present study, we have analyzed the clinical significance of miR-203 in OC using two institutionally independent cohorts. miR-203 levels were quantified in a screening (n = 125) and a validation cohort (n = 100, OVCAD multicenter study). Survival analysis was performed using progression and death as clinical endpoint events. Internal validation was conducted by bootstrap analysis, and decision curve analysis was used to evaluate the clinical benefit. Increased miR-203 levels in OC patients were correlated with unfavorable prognosis and higher risk for disease progression, independently of FIGO stage, tumor grade, residual tumor after surgery, chemotherapy response and age. The analysis of the institutionally independent validation cohort (OVCAD study) clearly confirmed the shorter survival outcome of the patients overexpressing miR-203. Additionally, integration of miR-203 levels with the established disease prognostic markers led to a superior stratification of OC patients that can ameliorate prognosis and benefit patient clinical management. In this regard, miR-203 expression constitutes a novel independent molecular marker to improve patients' prognosis in OC.
Avgeris M, Kokkinopoulou I, Maratou E, Mitrou P, Boutati E, Scorilas A, Fragoulis EG, Christodoulou MI. Blood-based analysis of 84 microRNAs identifies molecules deregulated in individuals with type-2 diabetes, risk factors for the disease or metabolic syndrome. Diabetes Res Clin Pract 2020;164:108187.Abstract
AIM: Micro-RNAs (miRNAs) are implicated in insulin-signaling and the development of type-2 diabetes (T2D). Their deregulated expression is mostly described in the pancreas, liver, skeletal muscle, or adipose tissue of diabetic animals. Relevant studies in humans are limited due to difficulties in accessing tissue-biopsies. Though, circulating miRNAs are indicators of organ-specific pathophysiological events and could potentially serve as disease biomarkers. We explored the profile of 84 T2D-related miRNAs in peripheral blood of subjects with or without the disease. METHODS: An RT-qPCR array screening 84 T2D-related miRNAs was applied in samples of T2D (n = 6) versus non-T2D (n = 6) subjects. The deregulated miRNAs were thereafter analyzed in peripheral blood samples of a validation cohort of 40 T2D and 37 non-T2D individuals [16 controls and 21 subjects with metabolic syndrome (Met-S) and/or T2D risk factors (T2D-RF)], using specific RT-qPCR assays. Correlations with clinicopathological parameters and risk factors were evaluated. RESULTS: Subjects with the disease displayed decreased levels of miR-214-3p, miR-24-3p and let-7f-5p, compared to those without. MiRNA levels correlated with serum insulin and HbA1c levels in individuals with T2D or Met-S/T2D-RF, and with higher BMI, dyslipidemia and family history in controls. CONCLUSIONS: Blood levels of miR-214-3p, miR-24-3p and let-7f-5p are down-regulated in T2D- and Met-S/T2D-RF subjects. Future studies are needed to evaluate their potential as disease biomarkers and elucidate the associated tissue-specific pathogenetic mechanisms.
2019
Avgeris M, Panoutsopoulou K, Papadimitriou MA, Scorilas A. Circulating exosomal miRNAs: clinical significance in human cancers. Expert Reviews of Molecular Diagnostics 2019;19:979-995.Abstract
Introduction: The identification of novel noninvasive biomarkers to ameliorate early-diagnosis, and disease prognosis, as well as to support personalized treatment and monitoring decisions is of first clinical priority for cancer patients' care. Exosomes are natural endosome-derived extracellular vesicles that have emerged as crucial mediators of intercellular communication and tumor progression. Considering that deregulated miRNA levels have been described in numerous human malignancies and that tumor-derived exosomes reflect miRNA expression of donor tumor cells, the evaluation of exosome-derived circulating miRNAs (exomiRs) may offer a new promising class of noninvasive molecular markers to improve patients' management and quality-of-life. Areas covered: In the current review we have summarized the existing knowledge on the clinical relevance of circulating exosomal miRNAs in improving cancer diagnosis and prognosis, and thus supporting personalized patients' management Expert commentary: Cancer research has highlighted the abundance of exomiRs in patients' plasma and serum samples, as well as their biomarker capabilities in the vast majority of human malignancies studied so far. Their analytical stability constitutes exomiRs ideal molecular markers to overcome numerous limitations of cancer clinical management, while future large-scale studies should unveil exomiRs translational utility in modern cancer molecular diagnostics.
Giannopoulou AF, Velentzas AD, Konstantakou EG, Avgeris M, Katarachia SA, Papandreou NC, Kalavros NI, Mpakou VE, Iconomidou V, Anastasiadou E, Kostakis IK, Papassideri IS, Voutsinas GE, Scorilas A, Stravopodis DJ. Revisiting Histone Deacetylases in Human Tumorigenesis: The Paradigm of Urothelial Bladder Cancer. Int J Mol Sci 2019;20Abstract
Urinary bladder cancer is a common malignancy, being characterized by substantial patient mortality and management cost. Its high somatic-mutation frequency and molecular heterogeneity usually renders tumors refractory to the applied regimens. Hitherto, methotrexate-vinblastine-adriamycin-cisplatin and gemcitabine-cisplatin represent the backbone of systemic chemotherapy. However, despite the initial chemosensitivity, the majority of treated patients will eventually develop chemoresistance, which severely reduces their survival expectancy. Since chromatin regulation genes are more frequently mutated in muscle-invasive bladder cancer, as compared to other epithelial tumors, targeted therapies against chromatin aberrations in chemoresistant clones may prove beneficial for the disease. "Acetyl-chromatin" homeostasis is regulated by the opposing functions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). The HDAC/SIRT (super-)family contains 18 members, which are divided in five classes, with each family member being differentially expressed in normal urinary bladder tissues. Since a strong association between irregular HDAC expression/activity and tumorigenesis has been previously demonstrated, we herein attempt to review the accumulated published evidences that implicate HDACs/SIRTs as critical regulators in urothelial bladder cancer. Moreover, the most extensively investigated HDAC inhibitors (HDACis) are also analyzed, and the respective clinical trials are also described. Interestingly, it seems that HDACis should be preferably used in drug-combination therapeutic schemes, including radiation.
Rampias T, Karagiannis D, Avgeris M, Polyzos A, Kokkalis A, Kanaki Z, Kousidou E, Tzetis M, Kanavakis E, Stravodimos K, Manola KN, Pantelias GE, Scorilas A, Klinakis A. The lysine-specific methyltransferase KMT2C/MLL3 regulates DNA repair components in cancer. EMBO Reports 2019;20Abstract
Genome-wide studies in tumor cells have indicated that chromatin-modifying proteins are commonly mutated in human cancers. The lysine-specific methyltransferase 2C (KMT2C/MLL3) is a putative tumor suppressor in several epithelia and in myeloid cells. Here, we show that downregulation of KMT2C in bladder cancer cells leads to extensive changes in the epigenetic status and the expression of DNA damage response and DNA repair genes. More specifically, cells with low KMT2C activity are deficient in homologous recombination-mediated double-strand break DNA repair. Consequently, these cells suffer from substantially higher endogenous DNA damage and genomic instability. Finally, these cells seem to rely heavily on PARP1/2 for DNA repair, and treatment with the PARP1/2 inhibitor olaparib leads to synthetic lethality, suggesting that cancer cells with low KMT2C expression are attractive targets for therapies with PARP1/2 inhibitors.
Giannopoulou AF, Konstantakou EG, Velentzas AD, Avgeris SN, Avgeris M, Papandreou NC, Zoi I, Filippa V, Katarachia S, Lampidonis AD, Prombona A, Syntichaki P, Piperi C, Basdra EK, Iconomidou V, Papadavid E, Anastasiadou E, Papassideri IS, Papavassiliou AG, Voutsinas GE, Scorilas A, Stravopodis DJ. Gene-Specific Intron Retention Serves as Molecular Signature that Distinguishes Melanoma from Non-Melanoma Cancer Cells in Greek Patients. Int J Mol Sci 2019;20Abstract
BACKGROUND: Skin cancer represents the most common human malignancy, and it includes BCC, SCC, and melanoma. Since melanoma is one of the most aggressive types of cancer, we have herein attempted to develop a gene-specific intron retention signature that can distinguish BCC and SCC from melanoma biopsy tumors. METHODS: Intron retention events were examined through RT-sqPCR protocols, using total RNA preparations derived from BCC, SCC, and melanoma Greek biopsy specimens. Intron-hosted miRNA species and their target transcripts were predicted via the miRbase and miRDB bioinformatics platforms, respectively. Iotantronic ORFs were recognized through the ORF Finder application. Generation and visualization of protein interactomes were achieved by the IntAct and Cytoscape softwares, while tertiary protein structures were produced by using the I-TASSER online server. RESULTS: c-MYC and Sestrin-1 genes proved to undergo intron retention specifically in melanoma. Interaction maps of proteins encoded by genes being potentially targeted by retained intron-accommodated miRNAs were generated and SRPX2 was additionally delivered to our melanoma-specific signature. Novel ORFs were identified in MCT4 and Sestrin-1 introns, with potentially critical roles in melanoma development. CONCLUSIONS: The property of c-MYC, Sestrin-1, and SRPX2 genes to retain specific introns could be clinically used to molecularly differentiate non-melanoma from melanoma tumors.
Papadimitriou MA, Avgeris M, Levis PK, Tokas T, Stravodimos K, Scorilas A. DeltaNp63 transcript loss in bladder cancer constitutes an independent molecular predictor of TaT1 patients post-treatment relapse and progression. J Cancer Res Clin Oncol 2019;145:3075-3087.Abstract
PURPOSE: Bladder cancer represents a major cause of malignancy-related morbidity and the most expensive per-patient-to-treat cancer, due to the lifelong surveillance of the patients. Accurate disease prognosis is essential in establishing personalized treatment decisions; yet optimum tools for precise risk stratification remain a competing task. In the present study, we have performed the complete evaluation of TP63 clinical significance in improving disease prognosis. METHODS: The levels of DeltaNp63 and TAp63 transcripts of TP63 were quantified in 342 bladder tissue specimens of our screening cohort (n = 182). Hedegaard et al. (Cancer Cell 30:27-42. doi:10.1016/j.ccell.2016.05.004, 2016) (n = 476) and TCGA provisional (n = 413) were used as validation cohorts for NMIBC and MIBC, respectively. Survival analysis was performed using recurrence and progression for NMIBC or mortality for MIBC as endpoint events. Bootstrap analysis was performed for internal validation, while decision curve analysis was used for the evaluation of the clinical net benefit on disease prognosis. RESULTS: DeltaNp63 was significantly expressed in bladder tissues, and was found to be over-expressed in bladder tumors. Interestingly, reduced DeltaNp63 levels were correlated with muscle-invasive disease, high-grade tumors and high-EORTC-risk NMIBC patients. Moreover, DeltaNp63 loss was independently associated with higher risk for NMIBC relapse (HR = 2.730; p = 0.007) and progression (HR = 7.757; p = 0.016). Hedegaard et al. and TCGA validation cohorts confirmed our findings. Finally, multivariate models combining DeltaNup63 loss with established prognostic markers led to a superior clinical benefit for NMIBC prognosis and risk stratification. CONCLUSIONS: DeltaNup63 loss is associated with adverse outcome of NMIBC resulting in superior prediction of NMIBC early relapse and progression.
Christodoulou MI, Avgeris M, Kokkinopoulou I, Maratou E, Mitrou P, Kontos CK, Pappas E, Boutati E, Scorilas A, Fragoulis EG. Blood-based analysis of type-2 diabetes mellitus susceptibility genes identifies specific transcript variants with deregulated expression and association with disease risk. Sci Rep 2019;9:1512.Abstract
Despite significant progress by genome-wide association studies, the ability of genetic variants to conduce to the prediction or prognosis of type-2 diabetes (T2D) is weak. Expression analysis of the corresponding genes may suggest possible links between single-nucleotide polymorphisms and T2D phenotype and/or risk. Herein, we investigated the expression patterns of 24 T2D-susceptibility genes, and their individual transcript variants (tv), in peripheral blood of T2D patients and controls (CTs), applying RNA-seq and real-time qPCR methodologies, and explore possible associations with disease features. Our data revealed the deregulation of certain transcripts in T2D patients. Among them, the down-regulation of CAPN10 tv3 was confirmed as an independent predictor for T2D. In patients, increased expression of CDK5 tv2, CDKN2A tv3 or THADA tv5 correlated positively with serum insulin levels, of CDK5 tv1 positively with % HbA1c levels, while in controls, elevated levels of TSPAN8 were associated positively with the presence of T2D family history. Herein, a T2D-specific expression profile of specific transcripts of disease-susceptibility genes is for the first time described in human peripheral blood. Large-scale studies are needed to evaluate the potential of these molecules to serve as disease biomarkers.
Avgeris M, Tsilimantou A, Levis PK, Rampias T, Papadimitriou MA, Panoutsopoulou K, Stravodimos K, Scorilas A. Unraveling UCA1 lncRNA prognostic utility in urothelial bladder cancer. Carcinogenesis 2019;40:965-974.Abstract
In the era of precision oncology, bladder cancer (BlCa) is characterized by generic patient management and lack of personalized prognosis and surveillance. Herein, we have studied the clinical significance of urothelial cancer associated 1 (UCA1) lncRNA in improving patients' risk stratification and prognosis. A screening cohort of 176 BlCa patients was used for UCA1 quantification. The Hedegaard et al. (n = 476) and The Cancer Genome Atlas (TCGA) provisional (n = 413) were analyzed as validation cohorts for non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC), respectively. Patients' survival outcome was assessed using recurrence and progression for NMIBC or death for MIBC as clinical endpoint events. Bootstrap analysis was performed for internal validation of Cox regression analysis, whereas the clinical benefit of disease prognosis was assessed by decision curve analysis. UCA1 was significantly overexpressed in bladder tumors compared with normal urothelium, which was confirmed only in the case of NMIBC. Interestingly, reduced expression of UCA1 was correlated with muscle-invasive disease as well as with tumors of higher stage and grade. UCA1 loss was strongly associated with higher risk of short-term relapse [hazard ratio (HR) = 1.974; P = 0.032] and progression to invasive stages (HR = 3.476; P = 0.023) in NMIBC. In this regard, Hedegaard et al. and TCGA validation cohorts confirmed the unfavorable prognostic nature of UCA1 loss in BlCa. Finally, prognosis prediction models integrating UCA1 underexpression and established clinical disease markers contributed to improved stratification specificity and superior clinical benefit for NMIBC prognosis. Underexpression of UCA1 correlates with worse disease outcome in NMIBC and contributes to superior prediction of disease early relapse and progression as well as improved patient stratification specificity.
Economopoulou P, Koutsodontis G, Avgeris M, Strati A, Kroupis C, Pateras I, Kirodimos E, Giotakis E, Kotsantis I, Maragoudakis P, Gorgoulis V, Scorilas A, Lianidou E, Psyrri A. HPV16 E6/E7 expression in circulating tumor cells in oropharyngeal squamous cell cancers: A pilot study. PLoS One 2019;14:e0215984.Abstract
OBJECTIVES: Human papillomavirus-related oropharyngeal squamous cell carcinoma (HPV+ OPSCC) is increasing in incidence. Although HPV+ OPSCC has favorable prognosis, 10 to 25% of HPV+ OPSCCs eventually recur. We sought to evaluate the feasibility of detection of HPV16 E6/E7 expression in Circulating Tumor Cells (CTCs) and its utility as a prognostic tool in HPV16-associated OPSCC. MATERIALS AND METHODS: We developed a highly sensitive RT-qPCR assay for HPV mRNA expression in EpCAM(+) CTCs. In 22 patients with early stage and locally advanced OPSCC we evaluated HPV16 E6/E7 expression in the EpCAM(+) CTC fraction at baseline and at the end of concurrent chemoradiotherapy. HPV status in pre-therapy formalin-fixed paraffin-embedded (FFPE) tumor biopsies was assessed by p16 immunohistochemistry and polymerase chain reaction (PCR) and double positives were subjected to Real-time qPCR assay for detection of HPV16, 18 and 31 types. RESULTS: Fourteen of 22 OPSCC (63.6%) were HPV DNA+/p16+. Among HPV+/p16+ patients, 10 patients (71.4%) were HPV16 DNA+. HPV16 E6/E7(+) CTCs were detected in 3 of 10 patients (30%) at baseline and 4 of 9 patients (44.4%) at the end-of-treatment, all of which were p16+/HPV16 DNA+. Survival analysis showed a significantly higher risk for disease relapse (p = 0.001) and death (p = 0.005) in patients with HPV16 E6/E7(+) baseline CTCs. CONCLUSION: Detection of HPV E6/E7(+) CTCs might be a useful noninvasive test in liquid biopsy samples for determination of a clinically relevant HPV infection in HPV+ OPSCC. Combined interpretation of HPV E6/E7(+) CTCs with UICC staging data may lead to alteration of risk definition of patient subsets, with improved risk discrimination in early-stage disease.
2018
Avgeris M, Stamati L, Kontos CK, Piatopoulou D, Marmarinos A, Xagorari M, Baka M, Doganis D, Anastasiou T, Kosmidis H, Gourgiotis D, Scorilas A. BCL2L12 improves risk stratification and prediction of BFM-chemotherapy response in childhood acute lymphoblastic leukemia. Clin Chem Lab Med 2018;56:2104-2118.Abstract
Background Risk-adjusted treatment has led to outstanding improvements of the remission and survival rates of childhood acute lymphoblastic leukemia (ALL). Nevertheless, overtreatment-related toxicity and resistance to therapy have not been fully prevented. In the present study, we evaluated for the first time the clinical impact of the apoptosis-related BCL2L12 gene in prognosis and risk stratification of BFM-treated childhood ALL. Methods Bone marrow specimens were obtained from childhood ALL patients upon disease diagnosis and the end-of-induction (EoI; day 33) of the BFM protocol, as well as from control children. Following total RNA extraction and reverse transcription, BCL2L12 expression levels were determined by qPCR. Patients' cytogenetics, immunophenotyping and minimal residual disease (MRD) evaluation were performed according to the international guidelines. Results BCL2L12 expression was significantly increased in childhood ALL and correlated with higher BCL2/BAX expression ratio and favorable disease markers. More importantly, BCL2L12 expression was associated with disease remission, while the reduced BCL2L12 expression was able to predict patients' poor response to BFM therapy, in terms of M2-M3 response and MRD>/=0.1% on day 15. The survival analysis confirmed the significantly higher risk of the BFM-treated patients underexpressing BCL2L12 at disease diagnosis for early relapse and worse survival. Lastly, evaluation of BCL2L12 expression clearly strengthened the prognostic value of the established disease prognostic markers, leading to superior prediction of patients' outcome and improved specificity of BFM risk stratification. Conclusions The expression levels of the apoptosis-related BCL2L12 predict response to treatment and survival outcome of childhood ALL patients receiving BFM chemotherapy.
Panoutsopoulou K, Avgeris M, Scorilas A. miRNA and long non-coding RNA: molecular function and clinical value in breast and ovarian cancers. Expert Reviews of Molecular Diagnostics 2018;18:963-979.Abstract
The elucidation of tumor molecular hallmarks and the identification of novel molecular markers are of first translational priority in breast and ovarian cancer research, aiming to support personalized disease treatment and monitoring decisions. Recent high-throughput studies have revealed that ~ 80% of the genome is transcribed into RNAs without protein-coding potential, namely non-coding RNAs (ncRNAs), challenging the concept of 'junk DNA'. Undoubtedly, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) represent the best-studied family classes, emerging as the most powerful gene-expression regulators at epigenetic, transcriptional and post-transcriptional levels. Areas covered: Cancer research has highlighted the active implication of ncRNAs, most notably of miRNAs and lncRNAs, in almost every aspect of the cancer cells' biology as well as their deregulated expression in both breast and ovarian tumors. In the present manuscript we discuss the existing knowledge regarding the involvement of miRNAs and lncRNAs in the molecular background of breast and ovarian malignancies, to highlight their clinical utility in improving disease management. Expert commentary: miRNAs and lncRNAs represent central mediators of cancer cells' phenotype, and promising molecular markers and therapeutic targets to support precision medicine in breast and ovarian cancers.
Avgeris M, Tsilimantou A, Levis PK, Tokas T, Sideris DC, Stravodimos K, Ardavanis A, Scorilas A. Loss of GAS5 tumour suppressor lncRNA: an independent molecular cancer biomarker for short-term relapse and progression in bladder cancer patients. British Journal of Cancer 2018;119:1477-1486.Abstract
BACKGROUND: Bladder cancer (BlCa) heterogeneity and the lack of personalised prognosis lead to patients' highly variable treatment outcomes. Here, we have analysed the utility of the GAS5 tumour-suppressor lncRNA in improving BlCa prognosis. METHODS: GAS5 was quantified in a screening cohort of 176 patients. Hedegaard et al. (2016) (n = 476) and TCGA provisional (n = 413) were used as validation cohorts. Survival analysis was performed using recurrence and progression for NMIBC, or death for MIBC. Internal validation was performed by bootstrap analysis, and decision curve analysis was used to evaluate the clinical benefit on disease prognosis. RESULTS: GAS5 levels were significantly downregulated in BlCa and associated with invasive high-grade tumours, and high EORTC-risk NMIBC patients. GAS5 loss was strongly and independently correlated with higher risk for NMIBC early relapse (HR = 2.680, p = 0.011) and progression (HR = 6.362, p = 0.035). Hedegaard et al. and TCGA validation cohorts' analysis clearly confirmed the association of GAS5 loss with NMIBC worse prognosis. Finally, multivariate models incorporating GAS5 with disease established markers resulted in higher clinical benefit for NMIBC prognosis. CONCLUSIONS: GAS5 loss is associated with adverse outcome of NMIBC and results in improved positive prediction of NMIBC patients at higher risk for short-term relapse and progression, supporting personalised prognosis and treatment decisions.
Tsikrika FD, Avgeris M, Levis PK, Tokas T, Stravodimos K, Scorilas A. miR-221/222 cluster expression improves clinical stratification of non-muscle invasive bladder cancer (TaT1) patients' risk for short-term relapse and progression. Genes Chromosomes Cancer 2018;57:150-161.Abstract
Clinical heterogeneity of bladder cancer prognosis requires the identification of bladder tumors' molecular profile to improve the prediction value of the established and clinically used markers. In this study, we have analyzed miR-221/222 cluster expression in bladder tumors and its clinical significance for patients' prognosis and disease outcome. The study included 387 tissue specimens. Following extraction, total RNA was polyadenylated at 3'-end and reversed transcribed. SYBR-Green based qPCR assays were performed for the quantification of miR-221/222 expression. Extensive statistical analysis was completed for the evaluation of miR-221/222 cluster's clinical significance. The expression of miR-221/222 is significantly downregulated in tumors compared to normal urothelium, while ROC curve and logistic regression analysis highlighted cluster's discriminatory ability. However, miR-222 levels were increased in muscle-invasive (T2-T4) compared to superficial tumors (TaT1), and in high compared to low-grade tumors. Kaplan-Meier survival curves and Cox regression analysis revealed the stronger risk of TaT1 patients overexpressing miR-222 for disease short-term relapse and progression following treatment. Moreover, multivariate Cox models highlighted the independent prognostic value of miR-222 overexpression for TaT1 patients' poor prognosis. Finally, the analysis of miR-222 expression improved significantly the positive prediction strength of the clinically used prognostic markers of tumor stage, grade, EORTC risk-stratification and recurrence at the first follow-up cystoscopy for TaT1 patients' outcome, and resulted to higher clinical net benefit following decision curve analysis. In conclusion, the expression of miR-221/222 cluster is deregulated in bladder tumors and miR-222 overexpression results to a superior positive prediction of TaT1 patients' short-term relapse and progression.
Piatopoulou D, Avgeris M, Drakaki I, Marmarinos A, Xagorari M, Baka M, Pourtsidis A, Kossiva L, Gourgiotis D, Scorilas A. Clinical utility of miR-143/miR-182 levels in prognosis and risk stratification specificity of BFM-treated childhood acute lymphoblastic leukemia. Annals of Hematology 2018;97:1169-1182.Abstract
Although childhood acute lymphoblastic leukemia (ALL) is characterized by high remission rates, there are still patients who experience poor response to therapy or toxic effects due to intensive treatment. In the present study, we examined the expression profile of miR-143 and miR-182 in childhood ALL and evaluated their clinical significance for patients receiving Berlin-Frankfurt-Munster (BFM) protocol. Bone marrow specimens from 125 childhood ALL patients upon diagnosis and the end-of-induction (EoI; day 33), as well as from 64 healthy control children undergone RNA extraction, polyadenylation, and reverse transcription. Expression levels of miRNAs were quantified by qPCR analysis. Patients' cytogenetic, immunohistotype and MRD evaluation was performed according to international guidelines. Median follow-up time was 86.0 months (95% CI 74.0-98.0), while patients' mean DFS and OS intervals were 112.0 months (95% CI 104.2-119.8) and 109.2 months (95% CI 101.2-117.3), respectively. Bone marrow levels of miR-143/miR-182 were significantly decreased in childhood ALL patients at diagnosis and increased in more than 90% of patients at the EoI. Patients' survival analysis highlighted that children overexpressing miR-143/miR-182 at the EoI presented significantly higher risk for short-term relapse (log-rank test: p = 0.021; Cox regression: HR = 4.911, p = 0.038) and death (log-rank test: p = 0.028; Cox regression: HR = 4.590, p = 0.046). Finally, the evaluation of the miR-143/miR-182 EoI levels along with the established disease prognostic markers resulted to improved prediction of BFM-treated patients' survival outcome and response to therapy and additionally to superior BFM risk stratification specificity. Concluding, miR-143 and miR-182 could serve as novel prognostic molecular markers for pediatric ALL treated with BFM chemotherapy.
Kontos CK, Avgeris M, Vassilacopoulou D, Ardavanis A, Scorilas A. Molecular Effects of Treatment of Human Colorectal Cancer Cells with Natural and Classical Chemotherapeutic Drugs: Alterations in the Expression of Apoptosis-related BCL2 Family Members, Including BCL2L12. Curr Pharm Biotechnol 2018;19:1064-1075.Abstract
BACKGROUND: Current chemotherapy regimens for the treatment of colorectal cancer (CRC) include oxaliplatin, irinotecan, and fluorouracil along with leucovorin. Cytotoxicity involves the induction of programmed cell death. OBJECTIVE: The purpose of this study was to assess the molecular effects of doxorubicin (a 14-OH derivative of the natural product daunorubicin) and common chemotherapeutic drugs (used in the clinical practice to treat CRC) on the expression of the most prominent members of the BCL2 family, namely BCL2, BAX, BCLX, and MCL1. Moreover, we sought to define the role of BCL2L12, another member of the BCL2 family, the apoptotic role of which is ambiguous. METHODS: The MTT cell proliferation assay was used to determine the IC50 of each chemotherapeutic drug at 72 hours of treatment of Caco-2 and DLD-1 colorectal adenocarcinoma cell lines. Real-time PCR was used to quantify the antiapoptotic BCL2-alpha, BLCX-L, and MCL1-L transcripts, the proapoptotic BAX, BLCX-S, BLCX-ES, MCL1-S, and MCL1-ES transcripts, and BCL2L12 expression in relation to GAPDH mRNA levels. RESULTS: We constructed growth curves of Caco-2 and DLD-1 cells and determined the IC50 of each drug at 72 hours of treatment. Significant alterations in the expression levels of the studied BCL2 family genes and/or particular transcripts were observed. CONCLUSION: The intrinsic apoptotic pathway is activated during treatment of CRC cells with common chemotherapeutic drugs. Moreover, BCL2L12 mRNA expression increases progressively during treatment, similarly to the expression of other BCL2 family genes favoring apoptosis and/or particular proapoptotic transcripts, thus suggesting a proapoptotic role for BCL2L12 in chemotherapy-treated CRC cells.
2017
Piatopoulou D, Avgeris M, Marmarinos A, Xagorari M, Baka M, Doganis D, Kossiva L, Scorilas A, Gourgiotis D. miR-125b predicts childhood acute lymphoblastic leukaemia poor response to BFM chemotherapy treatment. British Journal of Cancer 2017;117:801-812.Abstract
BACKGROUND: Despite the favourable survival rates of childhood acute lymphoblastic leukaemia (ALL), a significant number of patients present resistance to antileukaemic agents and dismal prognosis. In this study, we analysed miR-125b expression in childhood ALL and evaluated its clinical utility for patients treated with Berlin-Frankfurt-Munster (BFM) protocol. METHODS: The study included 272 bone marrow specimens obtained on diagnosis and on BFM day 33 from 125 patients and 64 healthy children. Following extraction, RNA was polyadenylated and reverse transcribed. miR-125b levels were quantified by quantitative PCR. Cytogenetics, immunohistotype and MRD were analysed according to international guidelines. RESULTS: Downregulated miR-125b levels were detected in childhood ALL patients and correlated with adverse prognosis. Following BFM induction, miR-125b levels were significantly increased, however, elevated day 33/diagnosis miR-125b ratio was associated with unfavourable disease features. Loss of miR-125b during diagnosis and higher day 33/diagnosis ratio were correlated with stronger risk for disease short-term relapse and patients' worse survival. Moreover, multivariate regression models highlighted the independent prognostic value of miR-125b for childhood ALL. Finally, the combination of miR-125b with clinically used disease markers clearly enhanced the prediction of patients' resistance to BFM chemotherapy. CONCLUSIONS: miR-125b significantly improves the prognosis of childhood ALL patients' outcome under BFM treatment.
Psyrri A, Fortpied C, Koutsodontis G, Avgeris M, Kroupis C, Goutas N, Menis J, Herman L, Giurgea L, Remenar E, Degardin M, Pateras IS, Langendijk JA, van Herpen CML, Awada A, Germa-Lluch JR, Kienzer HR, Licitra L, Vermorken JB. Evaluation of the impact of tumor HPV status on outcome in patients with locally advanced unresectable head and neck squamous cell carcinoma (HNSCC) receiving cisplatin, 5-fluorouracil with or without docetaxel: a subset analysis of EORTC 24971 study. Annals of Oncology 2017;28:2213-2218.Abstract
BACKGROUND: EORTC 24971 was a phase III trial demonstrating superiority of induction regimen TPF (docetaxel, cisplatin, 5-fluorouracil) over PF (cisplatin/5-fluorouracil), in terms of progression-free (PFS) and overall survival (OS) in locoregionally advanced unresectable head and neck squamous cell carcinomas. We conducted a retrospective analysis of prospectively collected data aiming to evaluate whether only HPV(-) patients (pts) benefit from adding docetaxel to PF, in which case deintensifying induction treatment in HPV(+) pts could be considered. PATIENTS AND METHODS: Pretherapy tumor biopsies (blocks or slides) were assessed for high-risk HPV by p16 immunohistochemistry, PCR and quantitative PCR. HPV-DNA+ and/or p16+ tumors were subjected to in situ hybridization (ISH) and HPV E6 oncogene expression qRT-PCR analysis. Primary and secondary objectives were to evaluate the value of HPV/p16 status as predictive factor of treatment benefit in terms of PFS and OS. The predictive effect was analyzed based on the model used in the primary analysis of the study with the addition of a treatment by marker interaction term and tested at two-sided 5% significance level. RESULTS: Of 358, 119 pts had available tumor samples and 58 of them had oropharyngeal cancer. Median follow-up was 8.7 years. Sixteen of 119 (14%) evaluable samples were p16+ and 20 of 79 (25%) evaluable tumors were HPV-DNA+. 13 of 40 pts (33%) assessed with HPV-DNA ISH and 12 of 28 pts (43%) assessed for HPV E6 mRNA were positive. The preplanned analysis showed no statistical evidence of predictive value of HPV/p16 status for PFS (P = 0.287) or OS (P = 0.118). CONCLUSIONS: The incidence of HPV positivity was low in the subset of EORTC 24971 pts analyzed. In this analysis only powered to detect a large treatment by marker interaction, there was no statistical evidence that treatment effect found overall was different in magnitude in HPV(+) or HPV(-) pts. These results do not justify selection of TPF versus PF according to HPV status.
Tokas T, Gozen AS, Avgeris M, Tschada A, Fiedler M, Klein J, Rassweiler J. Combining of ETHOS Operating Ergonomic Platform, Three-dimensional Laparoscopic Camera, and Radius Surgical System Manipulators Improves Ergonomy in Urologic Laparoscopy: Comparison with Conventional Laparoscopy and da Vinci in a Pelvi Trainer. European Urology Focus 2017;3:413-420.Abstract
BACKGROUND: Posture, vision, and instrumentation limitations are the main predicaments of conventional laparoscopy. OBJECTIVE: To combine the ETHOS surgical chair, the three-dimensional laparoscope, and the Radius Surgical System manipulators, and compare the system with conventional laparoscopy and da Vinci in terms of task completion times and discomfort. DESIGN, SETTING, AND PARTICIPANTS: Fifteen trainees performed the three main laparoscopic suturing tasks of the Heilbronn training program (IV: simulation of dorsal venous complex suturing; V: circular suturing of tubular structure; and VI: urethrovesical anastomosis) in a pelvi trainer. The tasks were performed conventionally, utilizing the three devices, and robotically. Task completion times were recorded and the surgeon discomfort was evaluated using questionnaires. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Task completion times were compared using nonparametric Wilcoxon signed rank test and ergonomic scores were compared using Pearson chi-square test. RESULTS AND LIMITATIONS: The use of the full laparoscopic set (ETHOS chair, three-dimensional laparoscopic camera, Radius Surgical System needle holders), resulted in a significant improvement of the completion time of the three tested tasks compared with conventional laparoscopy (p<0.001) and similar to da Vinci surgery. After completing Tasks IV, V, and VI conventionally, 12 (80%), 13 (86.7%), and 13 (86.7%) of the 15 trainees, respectively, reported heavy total discomfort. The full laparoscopic system nullified heavy discomfort for Tasks IV and V and minimized it (6.7%) for the most demanding Task VI. Especially for Task VI, all trainees gained benefit, by using the system, in terms of task completion times and discomfort. The limited trainee robotic experience and the questionnaire subjectivity could be a potential limitation. CONCLUSIONS: The ergonomic laparoscopic system offers significantly improved task completion times and ergonomy than conventional laparoscopy. Furthermore, it demonstrates comparable results to robotic surgery. PATIENT SUMMARY: The study was conducted in a pelvi trainer and no patients were recruited.
Tokas T, Avgeris M, Alamanis C, Scorilas A, Stravodimos KG, Constantinides CA. Downregulated KLK13 expression in bladder cancer highlights tumor aggressiveness and unfavorable patients' prognosis. J Cancer Res Clin Oncol 2017;143:521-532.Abstract
PURPOSE: Despite recent research advantages on the molecular and subcellular background, bladder cancer (BlCa) remains a clinically neglected malignancy. This is strongly reflected by the generic approach of disease diagnosis and management. Additionally, patients' prognosis became a rather demanding task due to the great disease heterogeneity. Here, we aimed to evaluate, for the first time, the clinical value of KLK13 in BlCa. METHODS: A total of 279 bladder specimens (137 tumors, 107 adjacent normal tissues and 35 healthy samples) were included. Total RNA was extracted, reverse transcribed, and KLK13 expression was assessed by quantitative real-time PCR. RESULTS: KLK13 expression is significantly increased in bladder tumors compared to normal adjacent epithelium. However, reduced KLK13 expression is correlated with disease aggressiveness, including higher tumor stage and grade, and high-risk TaT1 tumors according to the EORTC stratification. Moreover, Kaplan-Meier and Cox regression analysis highlighted the prognostic value of the reduced KLK13 expression for the prediction of TaT1 patients' recurrence and shorter disease-free survival following TURBT. Finally, the combination of KLK13 expression with EORTC-risk stratification results to an improved prediction of TaT1 patients' outcome. CONCLUSION: This first clinical study of KLK13 in BlCa reveals its deregulated expression in bladder tumors and highlights KLK13 as a promising marker for improving TaT1 patients' prognosis following treatment.
Strati A, Koutsodontis G, Papaxoinis G, Angelidis I, Zavridou M, Economopoulou P, Kotsantis I, Avgeris M, Mazel M, Perisanidis C, Sasaki C, Alix-Panabieres C, Lianidou E, Psyrri A. Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. Annals of Oncology 2017;28:1923-1933.Abstract
BACKGROUND: Successful application of programmed death 1 (PD1) checkpoint inhibitors in the clinic may ultimately benefit from appropriate patient selection based upon predictive biomarkers. Molecular characterization of circulating tumor cells (CTC) is crucial for the investigation of molecular-targeted therapies while predictive biomarkers for response to PD1 checkpoint inhibitors are lacking. We sought to assess whether overexpression of PD-L1 in CTCs could be detected at baseline and at different timepoints during treatment in a prospective cohort of head and neck squamous cell carcinoma (HNSCC) patients and used to predict clinical outcome after treatment with curative intent. PATIENTS AND METHODS: We developed a highly sensitive, specific and robust RT-qPCR assay for PD-L1 mRNA expression in EpCAM(+) CTCs. In a prospective cohort of 113 locally advanced HNSCC patients treated with curative intent we evaluated PD-L1 expression in the EpCAM(+) CTC fraction at baseline, after 2 cycles of induction chemotherapy (week 6) and at the end of concurrent chemoradiotherapy (week 15). RESULTS: PD-L1 overexpression was found in 24/94 (25.5%) patients at baseline, 8/34 (23.5%) after induction chemotherapy and 12/54 (22.2%) patients at the end of treatment. Patients with CTCs overexpressing PD-L1 at end of treatment had shorter progression-free survival (P = 0.001) and overall survival (P < 0.001). Multivariate analysis revealed that PD-L1 overexpression at end of treatment was independent prognostic factor for progression-free survival and overall survival. The absence of PD-L1 overexpression at the end of treatment was strongly associated with complete response with an odds ratio = 16.00 (95% CI = 2.76-92.72, P = 0.002). CONCLUSIONS: We demonstrate that detection of CTCs overexpressing PD-L1 is feasible and may provide important prognostic information in HNSCC. Our results suggest that adjuvant PD1 inhibitors deserve evaluation in HNSCC patients in whom PD-L1(+) CTCs are detected at the end of curative treatment.
Kontos CK, Tsiakanikas P, Avgeris M, Papadopoulos IN, Scorilas A. miR-15a-5p, A Novel Prognostic Biomarker, Predicting Recurrent Colorectal Adenocarcinoma. Molecular Diagnosis & Therapy 2017;21:453-464.Abstract
INTRODUCTION: Colorectal cancer is one of the most common gastrointestinal diseases and the second leading cause of cancer-associated deaths among adults. miR-15a-5p is a post-transcriptional regulator of the proto-oncogene MYB, a transcription factor essential for prolonged cancer cell proliferation and survival. In the current study, we assessed the potential diagnostic and prognostic utility of miR-15a-5p expression in colorectal adenocarcinoma. METHODS: To accomplish this goal, total RNA was extracted from 182 colorectal adenocarcinoma specimens and 86 non-cancerous colorectal mucosae. After polyadenylation by poly(A) polymerase and subsequent reverse transcription with an oligo-dT adapter primer, miR-15a-5p expression was analyzed using an in-house developed reverse transcription quantitative real-time PCR method, based on SYBR Green chemistry. SNORD43 (RNU43) was used as an internal control gene. RESULTS: miR-15a-5p was significantly upregulated in colorectal tumors compared to non-cancerous colorectal mucosae, while ROC analysis suggested its potential use for diagnostic purposes. Moreover, miR-15a-5p overexpression predicts poor disease-free survival (DFS) and overall survival (OS). Multivariate Cox regression analysis confirmed that miR-15a-5p overexpression is a significant unfavorable prognosticator of DFS in colorectal adenocarcinoma, independent of other established prognostic factors plus treatment of patients. Importantly, miR-15a-5p overexpression retains its unfavorable prognostic value in patients with T3 colorectal adenocarcinoma and in those without distant metastasis (M0). More importantly, the cumulative DFS probability of patients with early stage disease was significantly lower for those with colorectal adenocarcinoma overexpressing miR-15a-5p. DISCUSSION: In conclusion, elevated expression of the cancer-associated miR-15a-5p predicts poor DFS and OS of colorectal adenocarcinoma patients. The prognostic value of miR-15a-5p expression regarding DFS is independent of clinicopathological factors currently used for colorectal adenocarcinoma prognosis.
2016
Avgeris M, Scorilas A. Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opinion on Therapeutic Targets 2016;20:801-18.Abstract
INTRODUCTION: Tissue kallikrein and the kallikrein-related peptidases (KLKs) constitute a family of 15 homologous secreted serine proteases with trypsin- or chymotrypsin-like activities, which participate in a broad spectrum of physiological procedures. Deregulated expression and/or activation of the majority of the family members have been reported in several human diseases, thereby making KLKs ideal targets for therapeutic intervention. AREAS COVERED: In the present review, we summarize the role of KLKs in normal human physiology and pathology, focusing on prostate cancer and skin diseases. Furthermore, we discuss the recent advances in the development of KLK-based therapies. A great number of diverse engineered KLKs inhibitors with improved potency, selectivity and immunogenicity have been synthesized by redesigning examples that are endogenous and naturally occurring. Moreover, encouraging results have been documented using KLKs-based vaccines and immunotherapies, as well as KLKs-mediated activation of pro-drugs. Finally, KLKs-targeting aptamers and KLKs-based imaging tools represent novel approaches towards the exploitation of KLKs' therapeutic value. EXPERT OPINION: The central/critical roles of KLK family in several human pathologies highlight KLKs as attractive molecular targets for developing novel therapeutics.
Vassilakopoulou M, Avgeris M, Velcheti V, Kotoula V, Rampias T, Chatzopoulos K, Perisanidis C, Kontos CK, Giotakis AI, Scorilas A, Rimm D, Sasaki C, Fountzilas G, Psyrri A. Evaluation of PD-L1 Expression and Associated Tumor-Infiltrating Lymphocytes in Laryngeal Squamous Cell Carcinoma. Clinical Cancer Research 2016;22:704-13.Abstract
PURPOSE: Programmed death-ligand 1 (PD-L1; also known as CD274 or B7-H1) expression represents a mechanism of immune escape for cancer. Our purpose was to characterize tumor PD-L1 expression and associated T-cell infiltration in primary laryngeal squamous cell carcinomas (SCC). EXPERIMENTAL DESIGN: A well-annotated cohort of 260 operable primary laryngeal SCCs [formalin-fixed paraffin-embedded (FFPE) specimens] was morphologically characterized for stromal tumor-infiltrating lymphocytes (TIL), on hematoxylin/eosin-stained whole sections and for PD-L1 mRNA expression by qRT-PCR in FFPE specimens. For PD-L1 protein expression, automated quantitative protein analysis (AQUA) was applied on tissue microarrays consisting of two cores from these tumors. In addition, PD-L1 mRNA expression in fresh-frozen tumors and normal adjacent tissue specimens was assessed in a second independent cohort of 89 patients with primary laryngeal SCC. RESULTS: PD-L1 mRNA levels were upregulated in tumors compared with surrounding normal tissue (P = 0.009). TILs density correlated with tumor PD-L1 AQUA levels (P = 0.021). Both high TILs density and high PD-L1 AQUA levels were significantly associated with superior disease-free survival (DFS; TILs: P = 0.009 and PD-L1: P = 0.044) and overall survival (OS; TILs: P = 0.015 and PD-L1: P = 0.059) of the patients and retained significance in multivariate analysis. CONCLUSIONS: Increased TILs density and PD-L1 levels are associated with better outcome in laryngeal squamous cell cancer. Assessment of TILs and PD-L1 expression could be useful to predict response to immune checkpoint inhibitors.
2015
Stamati L, Avgeris M, Kosmidis H, Baka M, Anastasiou T, Piatopoulou D, Scorilas A, Gourgiotis D. Overexpression of BCL2 and BAX following BFM induction therapy predicts ch-ALL patients' poor response to treatment and short-term relapse. J Cancer Res Clin Oncol 2015;141:2023-36.Abstract
PURPOSE: The identification of childhood acute lymphoblastic leukemia (ch-ALL) patients who are at a higher risk of chemotherapy resistance and relapse is essential for successful treatment decisions, despite the application of novel therapies. The aim of the study is the evaluation of BCL2 and BAX expression for the prognosis of ch-ALL patients treated with Berlin-Frankfurt-Munster (BFM) backbone protocol. METHODS: Bone marrow specimens were obtained at the time of diagnosis and on day 33 following BFM treatment induction from 82 ch-ALL patients, as well as from 63 healthy children. Following extraction, total RNA was reverse transcribed and BCL2 and BAX expression levels were determined by qPCR. RESULTS: BCL2 expression and BCL2/BAX ratio were strongly upregulated in ch-ALL compared to healthy children and were correlated with favorable prognostic disease features. Increased levels of BCL2 and BAX expression were associated with disease remission, as ch-ALL patients with lower expression ran a significantly higher risk of M2-M3 response, positive MRD and poor survival outcome. Moreover, the upregulation of BCL2 and BAX following BFM treatment induction was shown to represent an independent predictor of patients' short-term relapse, which was further confirmed in ch-ALL patients with favorable prognostic markers. CONCLUSIONS: In conclusion, BCL2 and BAX could be effectively used for an enhanced prediction of BFM-treated patients' outcome.
Avgeris M, Mavridis K, Tokas T, Stravodimos K, Fragoulis EG, Scorilas A. Uncovering the clinical utility of miR-143, miR-145 and miR-224 for predicting the survival of bladder cancer patients following treatment. Carcinogenesis 2015;36:528-37.Abstract
Accurate prognosis is a key factor in establishing optimal therapeutic decisions; yet in the case of bladder cancer (BlCa) current prognostic indicators cannot ensure optimal disease management. Here, we aimed to evaluate the previously unexplored clinical potential of the urological cancer-related miR-145, miR-143 and miR-224 in BlCa. A total of 279 bladder tissue specimens were included in this study (133 BlCa, 107 adjacent normal and 39 healthy samples). Total RNA was extracted from tissues, it was polyadenylated and reverse transcribed to cDNA. The expression of target molecules was measured via quantitative real-time PCR. The expression levels of both miR-143 and miR-145 were significantly decreased, whereas those of miR-224 were increased in BlCa. Receiver operating characteristic curve analysis indicated a significant discriminatory capacity for miR-143/miR-145 levels. Important associations with disease aggressiveness were observed for all three microRNAs; elevated levels were observed in tumors of higher stage and grade, as well as in 'high-risk' TaT1 patients. More importantly, high miR-143/145 levels could effectively prognose inferior overall survival for muscle-invasive patients and could independently predict the progression of superficial tumors. Finally, the combination of miR-143/145 overexpression with the widely used prognostic markers of European Organization for Research and Treatment of Cancer-risk groups or recurrence at the first follow-up cystoscopy resulted to a superior positive prediction of non-muscle-invasive bladder cancer short-term progression compared with the use of the abovementioned markers alone. The cancer-related miR-143, miR-145 and miR-224 were investigated for the first time in the clinical setting of BlCa, and miR-143/145 cluster constitutes a novel marker helpful for providing an enhanced prediction of oncologic outcome for BlCa patients.
2014
Avgeris M, Stravodimos K, Scorilas A. Loss of miR-378 in prostate cancer, a common regulator of KLK2 and KLK4, correlates with aggressive disease phenotype and predicts the short-term relapse of the patients. Biological Chemistry 2014;395:1095-104.Abstract
A large number of prostate cancer (PCa) patients receive treatment without significant benefits, strengthening the need for accurate prognosis, which can be supported by the study of miRNAs. In silico specificity analysis was performed for the identification of miRNAs able to regulate KLK2 and KLK4 expression. Total RNA was extracted from prostate tissues obtained from PCa and benign prostate hyperplasia patients. Thereafter, RNA was polyadenylated and reverse transcribed to cDNA, which was used for qPCR analysis. miR-378 was predicted to target both KLK2 and KLK4 and downregulated levels detected in PCa patients (p=0.050). The reduction of miR-378 was correlated with higher Gleason score (p=0.018), larger diameter tumors (p=0.034), and elevated serum PSA (p=0.006). Regarding prognosis, miR-378 was able to improve risk stratification according to Gleason score or tumor stage, while higher risk to recur highlighted for the patients expressing lower miR-378 levels. Finally, the loss of miR-378 was able to predict the short-term relapse of 'high'- and 'very high'-recurrence-risk patients, independent of Gleason score, tumor stage, PSA, and age as indicated by Kaplan-Meier survival curves (p=0.030) and multivariate Cox regression analysis (p=0.018). In conclusion, loss of miR-378 expression increases the risk for PCa progression and relapse, despite active treatment.
Rampias T, Vgenopoulou P, Avgeris M, Polyzos A, Stravodimos K, Valavanis C, Scorilas A, Klinakis A. A new tumor suppressor role for the Notch pathway in bladder cancer. Nature Medicine 2014;20:1199-205.Abstract
The Notch signaling pathway controls cell fates through interactions between neighboring cells by positively or negatively affecting the processes of proliferation, differentiation and apoptosis in a context-dependent manner. This pathway has been implicated in human cancer as both an oncogene and a tumor suppressor. Here we report new inactivating mutations in Notch pathway components in over 40% of human bladder cancers examined. Bladder cancer is the fourth most commonly diagnosed malignancy in the male population of the United States. Thus far, driver mutations in fibroblast growth factor receptor 3 (FGFR3) and, less commonly, in RAS proteins have been identified. We show that Notch activation in bladder cancer cells suppresses proliferation both in vitro and in vivo by directly upregulating dual-specificity phosphatases (DUSPs), thus reducing the phosphorylation of ERK1 and ERK2 (ERK1/2). In mouse models, genetic inactivation of Notch signaling leads to Erk1/2 phosphorylation, resulting in tumorigenesis in the urinary tract. Collectively our findings show that loss of Notch activity is a driving event in urothelial cancer.
Foutadakis S, Avgeris M, Tokas T, Stravodimos K, Scorilas A. Increased BCL2L12 expression predicts the short-term relapse of patients with TaT1 bladder cancer following transurethral resection of bladder tumors. Urological Oncology 2014;32:39 e29-36.Abstract
OBJECTIVES: More than half of the diagnosed patients with bladder cancer (BCa) recur at least once following their initial treatment. Thus, patients' monitoring and prognosis is of utmost importance. However, the need for intensive surveillance of BCa significantly burdens patients' health-related quality of life. The aim of the present study is the expression analysis of BCL2L12, a recently identified member of the BCL2 apoptosis-related gene family, in BCa and the evaluation of BCL2L12 prognostic significance for the survival outcome of the patients. METHODS AND MATERIALS: Our study included 115 patients with BCa, and tissue specimens were obtained from the tumor area as well as from adjacent normal bladder wall. BCL2L12 expression was determined using quantitative real-time polymerase chain reaction assay, and was further correlated with patients' clinicopathological features and follow-up survival data. RESULTS: Up-regulated BCL2L12 expression levels were detected in malignant bladder specimens compared with normal ones. The higher BCL2L12 expression was further associated with shorter disease-free survival of the patients with BCa. Focusing on patients with TaT1 non-muscle invasive BCa, BCL2L12 expression levels were correlated with higher recurrence rate at the first follow-up cystoscopy and were unveiled to be an independent unfavorable predictor of patients' short-term recurrence following transurethral resection. Finally, BCL2L12 expression levels were also associated with poor disease-free survival of the high-grade TaT1 patients. CONCLUSIONS: Our data highlight the unfavorable prognostic value of BCL2L12 for patients with BCa and support its potential clinical use for the assessment of TaT1 patients' recurrence risk.
Mavridis K, Avgeris M, Scorilas A. Targeting kallikrein-related peptidases in prostate cancer. Expert Opinion on Therapeutic Targets 2014;18:365-83.Abstract
INTRODUCTION: Novel therapeutic compounds are needed for prostate cancer (CaP), given the limitations of already used drugs and the disease's mortality, often attributed to castrate resistance. Tissue kallikrein and kallikrein-related peptidases (KLKs) form a family of serine proteases aberrantly expressed and broadly implicated in human malignancies. In CaP, KLKs participate in the promotion of cell proliferation, extracellular matrix degradation, tumour cell invasion and metastasis. AREAS COVERED: This review discusses the different ways of inhibiting, modulating and exploiting KLK activity and/or expression as emerging CaP therapeutics. KLKs are targeted by diverse naturally occurring substances, including proteinaceous inhibitors, low-molecular-weight peptides and Zn(2+). Synthetic KLK inhibitors include protein/peptide-based inhibitors and small molecules. A re-engineered serpin-based KLK inhibitor is under evaluation in first-in-human trials as a CaP therapeutic, whereas additional potent and selective KLK inhibitors with relevance to CaP have been synthesized. KLK3-activated pro-drugs have entered Phase I and Phase II clinical trials as therapeutics for prostate tumours. The KLK3-based PROSTVAC(R) vaccine is evaluated in Phase III clinical trials. Targeting KLK expression via RNA interference methods could represent another promising therapeutic approach for CaP. EXPERT OPINION: Apart from their immense biomarker potential, KLKs also hold promise as the basis of novel CaP therapeutics.
2013
Avgeris M, Stravodimos K, Fragoulis EG, Scorilas A. The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients. British Journal of Cancer 2013;108:2573-81.Abstract
BACKGROUND: Prostate cancer (PCa) is characterised by great heterogeneity of the disease progression rate. Tumours range from insignificant and not life threatening to high risk for relapse ones. Consequently, a large number of patients undergo unnecessary treatment. miR-145 is a well-documented tumour suppressor and its expression, which is regulated by the p53 pathway, has been found to be decreased in the majority of human malignancies. The aim of our study was to evaluate the clinical utility of miR-145 for the prognostication of PCa. METHODS: Total RNA was isolated from 137 prostate tissue specimens obtained from 73 radical prostatectomy-treated PCa patients and 64 transurethral- or open prostatectomy-treated benign prostate hyperplasia (BPH) patients. Following polyadenylation and reverse transcription, miR-145 levels were determined by quantitative real-time PCR assay, using SNORD48 (RNU48) for normalisation purposes. RESULTS: Downregulated miR-145 expression was found in PCa compared with BPH patients. The reduction of miR-145 expression in PCa was correlated with higher Gleason score, advanced clinical stage, larger tumour diameter and higher prostate-specific antigen (PSA) and follow-up PSA levels. In addition, higher risk for biochemical recurrence and significantly shorter disease-free survival (DFS) was found for the PCa patients expressing lower miR-145. Focusing on 'low- and intermediate-recurrence risk' PCa patients, miR-145 loss was revealed to be a reliable predictor of biochemical relapse and poor DFS independent from Gleason score, clinical stage, PSA and patients' age. CONCLUSION: The loss of the tumour-suppressor miR-145 increases the risk for disease progression and predicts the poor survival of PCa patients.
2012
Koutalellis G, Stravodimos K, Avgeris M, Mavridis K, Scorilas A, Lazaris A, Constantinides C. L-dopa decarboxylase (DDC) gene expression is related to outcome in patients with prostate cancer. BJU International 2012;110:E267-73.Abstract
What's known on the subject? and What does the study add? L-dopa decarboxylase (DDC) has been documented as a novel co-activator of androgen receptor transcriptional activity. Recently, it was shown that DDC gene expression is significantly higher in patients with PCa than in those with BPH. In the present study, there was a significant association between the DDC gene expression levels and the pathological stage and Gleason score of patients with prostate cancer (PCa). Moreover, DDC expression was shown to be an unfavourable prognostic marker of biochemical recurrence and disease-free survival in patients with PCa treated by radical prostatectomy. OBJECTIVE: To determine whether L-dopa decarboxylase gene (DDC) expression levels in patients with prostate cancer (PCa) correlate to biochemical recurrence and disease prognosis after radical prostatectomy (RP). PATIENTS AND METHODS: The present study consisted of 56 samples with confirmed malignancy from patients with PCa who had undergone RP at a single tertiary academic centre. Total RNA was isolated from tissue specimens and a SYBR Green fluorescence-based quantitative real-time polymerase chain reaction methodology was developed for the determination of DDC mRNA expression levels of the tested tissues. Follow-up time ranged between 1.0 and 62.0 months (mean +/- SE, 28.6 +/- 2.1 month; median, 31.5 months). Time to biochemical recurrence was defined as the interval between the surgery and the measurement of two consecutive values of prostate-specific antigen (PSA) >/=0.2 ng/mL. RESULTS: DDC expression levels were found to be positively correlated with the tumour-node-metastasis stage (P = 0.021) and Gleason score (P = 0.036) of the patients with PCa. Patients with PCa with raised DDC expression levels run a significantly higher risk of biochemical recurrence after RP, as indicated by Cox proportional regression analysis (P = 0.021). Multivariate Cox proportional regression models revealed the preoperative PSA-, age- and digital rectal examination-independent prognostic value of DDC expression for the prediction of disease-free survival (DFS) among patients with PCa (P = 0.036). Kaplan-Meier survival analysis confirms the significantly shorter DFS after RP of PCa with higher DDC expression levels (P = 0.015). CONCLUSIONS: This is the first study indicating the potential of DDC expression as a novel prognostic biomarker in patients with PCa who have undergone RP. For further evaluation and clinical application of the findings of the present study, a direct analysis of mRNA and/or its protein expression level in preoperative biopsy, blood serum and urine should be conducted.
Avgeris M, Mavridis K, Scorilas A. Kallikrein-related peptidases in prostate, breast, and ovarian cancers: from pathobiology to clinical relevance. Biological Chemistry 2012;393:301-17.Abstract
Tissue kallikrein (KLK1) and kallikrein-related peptidases (KLK2-15) comprise a family of 15 highly conserved secreted serine proteases with similar structural characteristics and a wide spectrum of functional properties. Both gene expression and protein activity of KLKs are rigorously controlled at various levels via diverse mechanisms, including extensive steroid hormone regulation, to exert their broad physiological role. Nevertheless, deregulated expression, secretion, and function of KLK family members has been observed in several pathological conditions and, particularly, in endocrine-related human malignancies, including those of the prostate, breast, and ovary. The cancer-related abnormal activity of KLKs upon substrates such as growth factors, cell adhesion molecules, cell surface receptors, and extracellular matrix proteins facilitate both tumorigenesis and disease progression to the advanced stages. The well-documented relationship between KLK status and the clinical outcome of cancer patients has led to their identification as promising diagnostic, prognostic, and treatment response monitoring biomarkers for these complex disease entities. The main objective of this review is to summarize the existing knowledge concerning the role of KLKs in prostate, breast, and ovarian cancers and to highlight their continually evolving biomarker capabilities that can provide significant benefits for the management of cancer patients.
2011
Avgeris M, Papachristopoulou G, Polychronis A, Scorilas A. Down-regulation of kallikrein-related peptidase 5 (KLK5) expression in breast cancer patients: a biomarker for the differential diagnosis of breast lesions. Clinical Proteomics 2011;8:5.Abstract
BACKGROUND: Kallikrein-related peptidase 5 (KLK5) is a secreted trypsin-like protease of the KLK family, encoded by the KLK5 gene. KLK5 has been found to cleave various extracellular matrix components, as well as to activate several other KLK proteases, triggering the stimulation of tissue microenvironment proteolytic cascades. MATERIAL AND METHODS: KLK5 expression levels were quantified in 102 cancerous and benign breast tissue specimens, obtained by randomly chosen patients, using RT-qPCR assay. Subsequently, advanced biostatistics were applied in order to analyze the KLK5 expression profile in the two patients' cohorts and also to evaluate its clinical significance for the discrimination of breast tumors. RESULTS: A statistically significant (p < 0.001) down-regulation of the KLK5 expression levels were observed in the malignant specimens compared to the benign ones. Logistic regression and ROC curve analysis revealed the significant (p < 0.001) and the independent (p < 0.001) value of the KLK5 expression quantification, for the discrimination of the malignant from the benign mammary gland biopsies. Moreover, KLK5 expression levels correlate with the pre-menopausal status (p < 0.005) as well as the ER-negative staining (p = 0.028) of women with breast cancer. CONCLUSIONS: The quantification of KLK5 expression in breast tissue biopsies may be considered as a novel and independent biomarker for the differential diagnosis between malignant and benign tumors of the mammary gland.
Papachristopoulou G, Avgeris M, Charlaftis A, Scorilas A. Quantitative expression analysis and study of the novel human kallikrein-related peptidase 14 gene (KLK14) in malignant and benign breast tissues. Thrombosis and Haemostasis 2011;105:131-7.Abstract
Human kallikrein-related peptidase 14 gene (KLK14) is regulated by androgens and progestins. This gene is expressed in the central nervous system and endocrine tissues such as the breast, prostate and ovary. The differential KLK14 mRNA expression levels are related to several human neoplasias, among them breast cancer. The aim of this study was to analyse the KLK14 expression in breast tissues and to investigate its differential diagnostic and prognostic value in the mammary carcinomas. For this purpose, we isolated total RNA from 70 malignant and 33 benign specimens. After testing RNA quality, we synthesised cDNA by reverse transcription and applied a highly sensitive quantitative real-time PCR (qRT-PCR) method for KLK14 mRNA quantification using the SYBR Green(R) chemistry. HPRT1 was used as a reference gene and the BT20 breast cancer cell line as a calibrator. Relative quantification analysis was performed using the comparative CT method 2-DeltaDeltaCT. KLK14 expression was detected in both types of breast tumours. However, a statistically significant increase of the KLK14 mRNA level was observed in the malignant, compared to the benign tumour samples (p<0.001), highlighting its value in discriminating these breast lesions. Elevated KLK14 expression profiles were associated with higher tumour grade (p=0.043) and size (p=0.007) in cancerous samples. Furthermore, KLK14 mRNA expression showed negative correlation in a statistically significant manner with estrogen receptor status (p=0.024). In accordance with logistic regression models (p=0.012) and receiver-operating-characteristics analysis (p<0.001), KLK14 gene expression could be evaluated as a putative independent diagnostic biomarker in breast tumour biopsies.
Avgeris M, Stravodimos K, Scorilas A. Kallikrein-related peptidase 4 gene (KLK4) in prostate tumors: quantitative expression analysis and evaluation of its clinical significance. Prostate 2011;71:1780-9.Abstract
BACKGROUND: Recently accumulating evidences underline the central role of the kallikrein-related peptidases family (KLKs) in prostate cancer (PCa) development and progression. The KLK4 is a prostate highly expressed gene under the transcriptional control of androgens, encoding for the KLK4 extracellular serine protease. The aim of this study is to investigate the expression status of KLK4 in PCa patients in order to reveal its utility in PCa establishment and clinical management. METHODS: Prostatic tissue specimens were obtained from 60 PCa and 59 benign prostate hyperplasia (BPH) randomly chosen patients. Using a developed quantitative real-time RT-PCR method, KLK4 expression levels were determined in the specimens of the two patients' cohorts. Advance biostatistical analysis was completed to explore the clinical value of KLK4 expression in PCa and BPH patients. RESULTS: PCa patients presented a statistically significant (P = 0.002) elevation, more than threefold, of the KLK4 transcripts compared to BPH ones. The KLK4 expression levels were also positive correlated with PCa patients' stage (P = 0.031) and preoperative prostate-specific antigen (PSA) serum concentrations (P < 0.001). ROC curve and logistic regression analysis revealed the significant (P = 0.002) and the independent (P = 0.044) clinical value of the KLK4 expression for the discrimination of PCa from BPH patients. CONCLUSIONS: The KLK4 expression analysis reveals its up-regulation in PCa cells, which is significantly associated with the advanced stages of the disease and the patients' preoperative PSA serum levels. KLK4 quantification serves as an independent biomarker for the discrimination between the malignant and the benign nature of prostate tumors.
2010
Mavridis K, Avgeris M, Koutalellis G, Stravodimos K, Scorilas A. Expression analysis and study of the KLK15 mRNA splice variants in prostate cancer and benign prostatic hyperplasia. Cancer Science 2010;101:693-9.Abstract
Prostate cancer is the most commonly diagnosed malignancy in male populations in the Western world. The KLK15 gene, the newest member of the kallikrein family, is expressed in the prostate gland. The purpose of this study is the expression analysis and the clinical evaluation of the KLK15 mRNA spliced variants in prostate cancer (CaP) and benign prostatic hyperplasia (BPH) patients. Total RNA was isolated from 104 CaP and BPH tissue specimens. After testing the quality of the RNA, cDNA was produced by reverse transcription, and PCR was performed for the amplification of the KLK15 mRNA transcripts. GAPDH and HPRT genes were used as endogenous controls Our data revealed that mRNA spliced variants of KLK15 were differentially expressed in prostate tissue specimens. Analysis of data showed a statistically significant (P < 0.001) increase in the frequency of overexpression of KLK15 transcripts encoding for both the active isoform and for the isoform 3 in CaP compared to BPH samples. Furthermore, KLK15 transcripts were found to be highly expressed in more aggressive tumors (P = 0.017). These results suggest that KLK15 expression analysis could be employed as a valuable tool for the discrimination between BPH and CaP tissue specimens and as an unfavorable prognostic marker for prostate cancer.
Avgeris M, Mavridis K, Scorilas A. Kallikrein-related peptidase genes as promising biomarkers for prognosis and monitoring of human malignancies. Biological Chemistry 2010;391:505-11.Abstract
Tissue kallikrein (KLK1) and the kallikrein-related peptidase (KLK2-15) genes encode for a subgroup of 15 homologous secreted serine proteases possessing numerous physiological roles, such as the regulation of blood pressure, hormone processing and tissue remodeling. The expression of KLKs is detected in a broad spectrum of human tissues where it has been found to be regulated mainly by steroids hormones. The aberrant expression of KLKs, presented in many human malignancies, highlights the significance of this gene family for early diagnosis, prognosis and monitoring of cancer patients, as it is strongly emphasized by the routine use of PSA (KLK3) for prostate cancer management. Here, we review the presently known data regarding the role of KLKs as cancer biomarkers, giving emphasis on novel information about the subject.
2009
Papachristopoulou G, Avgeris M, Scorilas A. Expression analysis and study of KLK4 in benign and malignant breast tumours. Thrombosis and Haemostasis 2009;101:381-7.Abstract
The steroid hormone-regulated gene KLK4 (kallikrein 4) is a new member of the human kallikrein-related peptidase gene family. Up to date, studies report that KLK4 is differentially expressed in many tumours. The purpose of this study was the expression analysis and study of KLK4 in benign and malignant breast tumours. Total RNA was isolated from 16 benign and 45 malignant breast tissue specimens. After testing RNA quality, cDNA was prepared by reverse transcription. Highly sensitive quantitative real-time PCR method for KLK4 mRNA quantification was developed using the SYBR Green chemistry. GAPDH served as a housekeeping gene. Relative quantification analysis was performed using the comparative C(T) method 2(-DeltaDeltaC)(T) KLK4 expression was found to vary in both patients' cohorts; however, a statistically significant elevation of the KLK4 mRNA levels was observed in malignant compared to benign tumour patients. Low KLK4 expression levels were found in well-differentiated tumours (p = 0.011) as well as in stage I (p = 0.024) patients. Moreover, a statistically significant (r(s) = -0.318, p = 0.035) negative correlation between the KLK4 expression and progesterone receptor staining was observed. ROC and logistic regression analysis recommended that KLK4 gene expression may be used as a new potential biomarker in breast cancer.
2008
Avgeris M, Koutalellis G, Fragoulis EG, Scorilas A. Expression analysis and clinical utility of L-Dopa decarboxylase (DDC) in prostate cancer. Clinical Biochemistry 2008;41:1140-9.Abstract
BACKGROUND: L-Dopa decarboxylase (DDC) is a pyridoxal 5'-phosphate-dependent enzyme that was found to be involved in many malignancies. The aim of this study was to investigate the mRNA expression levels of DDC in prostate tissues and to evaluate its clinical utility in prostate cancer (CaP). METHODS: Total RNA was isolated from 118 tissue specimens from benign prostate hyperplasia (BPH) and CaP patients and a highly sensitive quantitative real-time RT-PCR (qRT-PCR) method for DDC mRNA quantification has been developed using the SYBR Green chemistry. LNCaP prostate cancer cell line was used as a calibrator and GAPDH as a housekeeping gene. RESULTS: DDC was found to be overexpressed, at the mRNA level, in the specimens from prostate cancer patients, in comparison to those from benign prostate hyperplasia patients (p<0.001). Logistic regression and ROC analysis have demonstrated that the DDC expression has significant discriminatory value between CaP and BPH (p<0.001). DDC expression status was compared with other established prognostic factors, in prostate cancer. High expression levels of DDC were found more frequently in high Gleason's score tumors (p=0.022) as well as in advanced stage patients (p=0.032). CONCLUSIONS: Our data reveal the potential of DDC expression, at the mRNA level, as a novel biomarker in prostate cancer.