Publications by Year: 2012

2012
Skandalis SS, Aletras AJ, Gialeli C, Theocharis AD, Afratis N, Tzanakakis GN, Karamanos NK. Targeting the tumor proteasome as a mechanism to control the synthesis and bioactivity of matrix macromolecules. Curr Mol MedCurr Mol Med. 2012;12:1068-82.Abstract
Extracellular matrices (ECMs) are dynamic structures that provide cells not only with a structural support but, importantly, exhibit significant functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. In tumors, matrix effectors such as proteoglycans (PGs) and matrix metalloproteinases (MMPs) constitute major regulators of the interactions between tumor cells and their microenvironment and, therefore, they have been identified as potential molecular targets that are expected to advance the pharmacological treatment of cancer. ECMs composition is highly affected by cells through intrinsic regulatory mechanisms, such as the ubiquitin-proteasome system (UPS). Proteasome is a major cellular protease complex that controls the concentration and turnover of molecules in ECMs, including certain types of PGs, MMPs and collagens, and consequently, in the tumor microenvironment. Furthermore, proteasome activity is regulated by PG-derived intracellular glycosaminoglycan moieties revealing a critical inter-dependence of these compounds. Since ECMs renewal and degradation can be tightly regulated by proteasome activities, its modulation may be considered as a novel strategy to control the properties of tumor microenvironment. Currently, there are several proteasome inhibitors targeting distinct molecular pathways either approved or in clinical trials for the treatment of multiple cancers. In this review, the novel approach of targeting the proteasome to selectively regulate the synthesis and the bioactivity of certain matrix PGs and MMPs is presented and discussed.
Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, Pavao MS, Tzanakakis GN, Karamanos NK. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS JFEBS J. 2012;279:1177-97.Abstract
Glycosaminoglycans are natural heteropolysaccharides that are present in every mammalian tissue. They are composed of repeating disaccharide units that consist of either sulfated or non-sulfated monosaccharides. Their molecular size and the sulfation type vary depending on the tissue, and their state either as part of proteoglycan or as free chains. In this regard, glycosaminoglycans play important roles in physiological and pathological conditions. During recent years, cell biology studies have revealed that glycosaminoglycans are among the key macromolecules that affect cell properties and functions, acting directly on cell receptors or via interactions with growth factors. The accumulated knowledge regarding the altered structure of glycosaminoglycans in several diseases indicates their importance as biomarkers for disease diagnosis and progression, as well as pharmacological targets. This review summarizes how the fine structural characteristics of glycosaminoglycans, and enzymes involved in their biosynthesis and degradation, are involved in cell signaling, cell function and cancer progression. Prospects for glycosaminoglycan-based therapeutic targeting in cancer are also discussed.