Publications by Year: 2014

2014
Vasilopoulou M, Georgiadou DG, Soultati A, Boukos N, Gardelis S, Palilis LC, Fakis M, Skoulatakis G, Kennou S, Botzakaki M, et al. Atomic-Layer-Deposited Aluminum and Zirconium Oxides for Surface Passivation of TiO2 in High-Efficiency Organic Photovoltaics. Advanced Energy Materials [Internet]. 2014;4. WebsiteAbstract
The reduction in electronic recombination losses by the passivation of surfaces is a key factor enabling high-efficiency solar cells. Here a strategy to passivate surface trap states of TiO2 films used as cathode interlayers in organic photovoltaics (OPVs) through applying alumina (Al2O3) or zirconia (ZrO2) insulating nanolayers by thermal atomic layer deposition (ALD) is investigated. The results suggest that the surface traps in TiO2 are oxygen vacancies, which cause undesirable recombination and high electron extraction barrier, reducing the open-circuit voltage and the short-circuit current of the complete OPV device. It is found that the ALD metal oxides enable excellent passivation of the TiO2 surface followed by a downward shift of the conduction band minimum. OPV devices based on different photoactive layers and using the passivated TiO2 electron extraction layers exhibit a significant enhancement of more than 30% in their power conversion efficiencies compared to their reference devices without the insulating metal oxide nanolayers. This is a result of significant suppression of charge recombination and enhanced electron extraction rates at the TiO2/ALD metal oxide/organic interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gardelis S, Nassiopoulou AG. Evidence of significant down-conversion in a Si-based solar cell using CuInS2/ZnS core shell quantum dots. Applied Physics Letters [Internet]. 2014;104. WebsiteAbstract
We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS 2/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion. © 2014 AIP Publishing LLC.
Soultati A, Douvas AM, Georgiadou DG, Palilis LC, Bein T, Feckl JM, Gardelis S, Fakis M, Kennou S, Falaras P, et al. Solution-processed hydrogen molybdenum bronzes as highly conductive anode interlayers in efficient organic photovoltaics. Advanced Energy Materials [Internet]. 2014;4. WebsiteAbstract
Highly efficient and stable organic photovoltaic (OPV) cells are demonstrated by incorporating solution-processed hydrogen molybdenum bronzes as anode interlayers. The bronzes are synthesized using a sol-gel method with the critical step being the partial oxide reduction/hydrogenation using an alcohol-based solvent. Their composition, stoichiometry, and electronic properties strongly correlate with the annealing process to which the films are subjected after spin coating. Hydrogen molybdenum bronzes with moderate degree of reduction are found to be highly advantageous when used as anode interlayers in OPVs, as they maintain a high work function similar to the fully stoichiometric metal oxide, whereas they exhibit a high density of occupied gap states, which are beneficial for charge transport. Enhanced short-circuit current, open-circuit voltage and, fill factor, relative to reference devices incorporating either PEDOT-PSS or a solution processed stoichiometric molybdenum oxide, are obtained for a variety of bulk heterojunction mixtures based on different polymeric donors and fullerene acceptors. In particular, high power conversion efficiencies are obtained in devices that employed the s-H xMoO2.75 as the hole extraction layer. The incorporation of solution-processed hydrogen molybdenum bronzes as anode interlayers in organic photovoltaic cells is presented. High power conversion efficiencies are observed in devices based on polymeric donors and fullerene acceptors that include a bronze with a moderate degree of reduction, namely the s-H xMoO2.75, as the anode interlayer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vasilopoulou M, Georgiadou DG, Douvas AM, Soultati A, Constantoudis V, Davazoglou D, Gardelis S, Palilis LC, Fakis M, Kennou S, et al. Porphyrin oriented self-assembled nanostructures for efficient exciton dissociation in high-performing organic photovoltaics. Journal of Materials Chemistry A [Internet]. 2014;2:182-192. WebsiteAbstract
Herein we report on enhanced organic solar cell performance through the incorporation of cathode interfacial layers consisting of self-organized porphyrin nanostructures with a face-on configuration. In particular, a water/methanol-soluble porphyrin molecule, the free base meso-tetrakis(1- methylpyridinium-4-yl)porphyrin chloride, is employed as a novel cathode interlayer in bulk heterojunction organic photovoltaics. It is demonstrated that the self-organization of this porphyrin compound into aggregates in which molecules adopt a face-to-face orientation parallel to the organic semiconducting substrate induces a large local interfacial electric field that results in a significant enhancement of exciton dissociation. Consequently, enhanced photocurrent and open circuit voltage were obtained resulting in overall device efficiency improvement in organic photovoltaics based on bulk heterojunction mixtures of different polymeric donors and fullerene acceptors, regardless of the specific combination of donor-acceptor employed. To highlight the impact of molecular orientation a second porphyrin compound, the Zn-metallated meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride, was also studied and it was found that it forms aggregates with an edge-to-edge molecular configuration inducing a smaller increase in the device performance. © The Royal Society of Chemistry.