Publications by Year: 2014

2014
Golemati S, Sanidas EA, Dangas GD. Long-term clinical outcomes after percutaneous coronary intervention for chronic total occlusions. Curr Cardiol Rep [Internet]. 2014;16(2). Publisher's VersionAbstract
Optimal treatment of chronic total occlusions (CTOs) remains one of the major challenges in interventional cardiology. A number of factors, including both patient clinical conditions and technical procedural considerations, have been identified to affect percutaneous coronary intervention (PCI) success and long-term outcomes, in large multicenter cohorts as well as smaller patient groups. As opposed to patient-centered factors, technical factors can be managed and as a result, a lot of research aims at improving stent technology and imaging guidance, toward enhancing PCI efficiency, in regards to patient safety.
Sifakis EG, Golemati S. Robust carotid artery recognition in longitudinal B-mode ultrasound images. IEEE Trans Image Process [Internet]. 2014;23(9):3762-3772. Publisher's VersionAbstract
Automatic segmentation of the arterial lumen from ultrasound images is an important task in clinical diagnosis. Carotid artery recognition, the first task in lumen segmentation, should be performed in a fully automated, fast, and reliable way to further facilitate the low-level task of arterial delineation. In this paper, a user-independent, real-time algorithm is introduced for carotid artery localization in longitudinal B-mode ultrasound images. The proposed technique acts directly on the raw image, and exploits basic statistics along with anatomical knowledge. The method's evaluation and parameter value optimization were performed on a threefold cross validation basis. In addition, the introduced algorithm was systematically compared with another algorithm for common carotid artery recognition in B-mode scans, separately for multi-frame and single-frame data. The data sets used included 2,149 images from 100 subjects taken from three different institutions and covering a wide range of possible lumen and surrounding tissue representations. Using the optimized values, the carotid artery was recognized in all the processed images in both multi-frame and single-frame data. Thus, the introduced technique will further reinforce automatic segmentation in longitudinal B-mode ultrasound images.
Gastounioti A, Kolias V, Golemati S, Tsiaparas NN, Matsakou A, Stoitsis JS, Kadoglou NP, Gkekas C, Kakisis JD, Liapis CD, et al. CAROTID - a web-based platform for optimal personalized management of atherosclerotic patients. Comput Methods Programs Biomed [Internet]. 2014;114(2):183-193. Publisher's VersionAbstract
Carotid atherosclerosis is the main cause of fatal cerebral ischemic events, thereby posing a major burden for public health and state economies. We propose a web-based platform named CAROTID to address the need for optimal management of patients with carotid atherosclerosis in a twofold sense: (a) objective selection of patients who need carotid-revascularization (i.e., high-risk patients), using a multifaceted description of the disease consisting of ultrasound imaging, biochemical and clinical markers, and (b) effective storage and retrieval of patient data to facilitate frequent follow-ups and direct comparisons with related cases. These two services are achieved by two interconnected modules, namely the computer-aided diagnosis (CAD) tool and the intelligent archival system, in a unified, remotely accessible system. We present the design of the platform and we describe three main usage scenarios to demonstrate the CAROTID utilization in clinical practice. Additionally, the platform was evaluated in a real clinical environment in terms of CAD performance, end-user satisfaction and time spent on different functionalities. CAROTID classification of high- and low-risk cases was 87%; the corresponding stenosis-degree-based classification would have been 61%. Questionnaire-based user satisfaction showed encouraging results in terms of ease-of-use, clinical usefulness and patient data protection. Times for different CAROTID functionalities were generally short; as an example, the time spent for generating the diagnostic decision was 5min in case of 4-s ultrasound video. Large datasets and future evaluation sessions in multiple medical institutions are still necessary to reveal with confidence the full potential of the platform.